
Profiling migration cost index
We profiled a set of candidate workloads on semi-modern servers with 
Intel Xeon CPUs, and graphed the overhead under different bandwidth 
constraints, using wide-area VM bandwidth measured in previous studies.

Overhead analysis on candidate workloads

Research questions
• How to accurately predict workload energy usage and dataset size?

• What happens when input datasets are already geo-replicated?

• What if multiple jobs depend on a few shared datasets?

• How to deal with renewable variation with fixed compute capacity?

• How to effectively reduce total power usage at high-carbon locations?

Evaluation plan
We are currently implementing our system on Nautilus, a Kubernetes 
research platform that supports three US regions.

We are building a kubectl wrapper so users can seamlessly opt in. We 
plan to provide insights like predicted carbon savings, estimated migration 
cost and actual net savings.

Proposed space-shifting solution
We propose a geo-distributed cloud scheduling platform that maximizes the use of 
low-carbon power.

At a high level, we employ a two-level scheduling system that:

1. adjusts resource footprint across regions based on carbon cleanness,
2. assigns individual jobs to their optimal locations while considering both 

carbon savings and migration cost.

The resource pool manager adjusts the available resources in each region, based on 
the carbon cleanness and current utilization:

1. if there are more workloads, it prioritizes the regions with low-carbon power;
2. if there are fewer workloads, it reduces the resource footprint in high-carbon 

regions. This operates at a lower frequency, e.g. 15min.

The job scheduler makes real-time decisions on where to run a job, by considering:

1. available resources: based on capacity at each region,
2. carbon cleanness: from crawled energy data, and

3. migration cost: based on data size and WAN bandwidth.

The goal is to avoid moving jobs with high migration cost that negates the carbon 
savings.

Carbon savings vs migration cost
To balance between carbon savings and migration cost, we calculate:

• the overhead in terms of additional energy consumption of moving a 
workload (+X%), and compare it with

• the carbon savings of such movement (−Y%).

If X is on par with Y, then it’s not worthwhile to move this workload, but if X << Y, 
this means that we can achieve carbon savings with relatively negligible overhead.

This intuition incentivizes us to define this new metric to guide migration decisions, 
which is the ratio of a job’s predicted compute energy usage and its input/output 
data size. More formally, we define:

migration cost index = 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦 𝑢𝑠𝑎𝑔𝑒
𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑑𝑎𝑡𝑎 𝑠𝑖𝑧𝑒

We then use this index to guide our migration decisions among a large set of jobs.
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Background
Data centers are consuming more energy and thus producing more carbon 
emissions. To deal with the growing carbon footprint of computing, operators 
have begun adopting low-carbon renewable energy sources like solar and wind.

However, this is not a trivial task, as these renewables often vary across time of 
day or geographical locations. This creates an interesting and non-trivial 
optimization problem where:

• a carbon-agnostic approach runs workloads when/where they arrive, but

• a carbon-aware approach moves workloads in time or space to take 
advantage of available low-carbon renewable energy.

Existing research focuses on time-shifting workloads by delaying work from high-
carbon hours to low-carbon hours, but shifting within a single site limits the 
carbon saving potentials. In this work, we investigate space-shifting, a more 
involved process that spans across multiple sites. Although space-shifting may 
result in higher overhead, it has the potential to generate even greater carbon 
savings.

Intermittent renewable energy availability
The availability of renewables can fluctuate significantly depending on the time of 
day and geographical location, owning to their inherent characteristics. For 
example, solar peaks around mid-day and hydro/wind are highly regional.

The figure below shows the renewable availability in Google’s data centers as of 
2022. Note that some regions are cleaner (greener) than other regions and most 
regions exhibit daily variation of low-carbon renewables.

Renewable availability in Google’s Data Centers in 2022 (Source: cloud.google.com)
Low-carbon power (in green) varies across both time and space

Workload Migration cost index (kJ/GB)

Compression (gzip) 0.47

Video resizing (4k → 1080p, h.264) 1.41

Video effect (4k, grayscale, h.264) 11.53

Compile Linux 76.42

Video effect (4k, grayscale, h.265) 96.8

Single model ML inference 1800

Learn more on our website: 

https://cloud.google.com/blog/topics/sustainability/5-years-of-100-percent-renewable-energy

