
Sprocket: A Serverless Video Processing Framework
Lixiang Ao

University of California, San Diego
liao@cs.ucsd.edu

Liz Izhikevich
University of California, San Diego

eizhikev@ucsd.edu

Geoffrey M. Voelker
University of California, San Diego

voelker@cs.ucsd.edu

George Porter
University of California, San Diego

gmporter@cs.ucsd.edu

ABSTRACT
Sprocket is a highly configurable, stage-based, scalable, serverless
video processing framework that exploits intra-video parallelism
to achieve low latency. Sprocket enables developers to program a
series of operations over video content in a modular, extensible
manner. Programmers implement custom operations, ranging from
simple video transformations to more complex computer vision
tasks, in a simple pipeline specification language to construct custom
video processing pipelines. Sprocket then handles the underlying
access, encoding and decoding, and processing of video and image
content across operations in a highly parallel manner. In this paper
we describe the design and implementation of the Sprocket system
on the AWS Lambda serverless cloud infrastructure, and evaluate
Sprocket under a variety of conditions to show that it delivers its
performance goals of high parallelism, low latency, and low cost
(10s of seconds to process a 3,600 second video 1000-way parallel
for less than $3).

CCS CONCEPTS
• Networks� Cloud computing; • Computer systems organiza-
tion� Cloud computing; • Information systems� Multimedia
information systems;

ACM Reference Format:
Lixiang Ao, Liz Izhikevich, Geoffrey M. Voelker, and George Porter. 2018.
Sprocket: A Serverless Video Processing Framework. In Proceedings of ACM
Symposium on Cloud Computing , Carlsbad, CA, USA, October 11–13, 2018
(SoCC ’18), 12 pages.
https://doi.org/10.1145/3267809.3267815

1 INTRODUCTION
Frameworks such as MapReduce [10], Spark [35], and GraphLab [24]
have made it possible to process terabytes of traditional data sources,
such as logs, transaction records, and other Web data, as ordinary
routine tasks. However, little attention has been given to process-
ing video content, an increasingly dominant source of data both
in terms of bytes generated and bytes transmitted on the Internet.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6011-1/18/10. . . $15.00
https://doi.org/10.1145/3267809.3267815

Video is increasingly subjected to a rapidly expanding “pipeline”
of computation, including color, lighting, and shading adjustments,
digital watermarks, format, resolution, and frame-rate modifications,
and transcoding for eventual delivery. Moreover, new forms of ma-
chine learning and computer vision algorithms enable extracting
semantically meaningful information from video frames, enabling
algorithms to “peer inside” what was previously an opaque source
of data. Nonetheless, extracting knowledge from raw video is a chal-
lenge, due in part to the inability to easily process video content, as
well as the sheer size of video objects.

In this paper we describe the design and implementation of
Sprocket, a serverless video processing. Sprocket enables developers
to program a series of pipelined operations over video content in a
modular, extensible manner. By composing operations, developers
are able to build custom processing pipelines whose elements can be
reused and shared. Sprocket handles the underlying access, loading,
encoding and decoding, and movement of video and image content
across operations in a highly parallel manner. Our goal with Sprocket
is to not only support traditional video processing operations and
transformations, such as transcoding to lower resolutions or applying
filters, but also to enable much more sophisticated video processing
applications, such as answering queries of the form, “Show just the
scenes in the movie in which Wonder Woman appears”.

We specifically target cloud services because they are an ideal
platform for our goals of low latency, high parallelism at low cost,
and support for new kinds of data processing applications. Tools
that operate with low latency become interactive and more useful.
With Sprocket, we want developers to be able to create applications
that let users interactively transform video or perform queries across
video content and stream the results. Independent of the length of
video input, we show that Sprocket applications can start streaming
results to users in seconds.

To achieve interactivity, though, we need to employ high degrees
of parallelism to reduce processing time, while also minimizing the
monetary cost of using such extensive parallelism. As a result, we
designed and implemented Sprocket to use the new serverless frame-
works offered by cloud providers, such as Amazon’s Lambda and
Microsoft’s and Google’s Function platforms. The serverless plat-
forms use containers for virtualization and isolation, and applications
can allocate and use thousands of them at millisecond timescales.
Furthermore, providers offer these containers with a billing model
that also charges at sub-second time scales. Running a Sprocket
application that can process a video with 1,000-way concurrency
using Lambdas on a full-length HD movie costs about $3 per hour
of processed video.

https://doi.org/10.1145/3267809.3267815
https://doi.org/10.1145/3267809.3267815

SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA L. Ao et al.

Finally, the availability of sophisticated tools on cloud platforms
enables new kinds of applications for video content. Cloud providers
are increasingly offering support for a wide variety of image process-
ing and computer vision APIs, ranging from OCR to face and object
detection and recognition. We show how a Sprocket application con-
sisting of just a few stages can use the Amazon Rekognition service
to perform sophisticated queries on video, such as returning just the
scenes in a movie featuring a particular actor, and again stream the
results in seconds.

In the remainder of this paper we start by providing background
on video data properties and challenges. We then describe the design
and implementation of Sprocket, in particular the pipeline program-
ming model and support for data streaming and worker scheduling.
Finally, we evaluate Sprocket’s performance from various perspec-
tives, including where it spends its time executing pipeline oper-
ations, how it exploits parallelism and intrinsic properties of the
processing video, how it meets streaming deadlines when generating
output, the performance characteristics of a complex application,
and how it compares to other general processing frameworks.

2 BACKGROUND
Video data is one of the predominant forms of data in the world: 70%
of consumer Internet traffic is compressed video content [7]. Video
streaming service providers like YouTube and Netflix, and social
networks like Facebook and Instagram, receive, edit, encode, and
stream multiple TBs of video data every day. Processing video data,
however, presents unique challenges due to its unique properties.

As 4K and VR videos become more common, the size of video
files increase rapidly: 4K videos typically have a bit-rate of over 30
Mbps, and a 2-hour-long movie can be 30 GB in size. Even applying
a simple transformation on these videos can take hours using a single
machine. In production environments, the video processing pipeline
can become very complicated. Some large-scale applications require
hundreds of tasks to be executed. The efficient scheduling and exe-
cution of video processing pipelines becomes a challenging task in
these systems. Sprocket’s use of a serverless framework allows for
scheduling and processing to happen seamlessly and efficiently.

Working with the individual frames of a video is also no triv-
ial matter. Since video encoding takes advantage of both spatial
and temporal similarity for compression, individual frames become
dependent on other frames. The encoder thus inserts “keyframes”
to allow for groups of pictures (GOP) to be independent of each
other. This structure, however, results in individual frames being
non-uniform in size, as shown in Figure 1, and thus can greatly
affect the behavior of sending, storing, and computing on the data.
Accessing frames within a GOP requires at least partial decoding
of that segment of the video, since all but the initial frame in the
GOP are encoded as differences from that primary image. As we
will show, Sprocket not only handles this decode operation on behalf
of application pipelines, but also uses the encoded video to enable
its approach to straggler mitigation, described in Section 3.6.

The content of the video itself can also greatly affect the behavior
of any video-processing system. For example, a system that is run-
ning face detection will inherently take more time on a video that
has many faces, as opposed to no faces. Furthermore, some Sprocket

By
te
s

λ

GOP	=	2	sec

λ λ

Pipeline

Ke
y	
Fr
am

e

Ke
y	
Fr
am

e

Ke
y	
Fr
am

e

1	sec

GOP	=	2	sec GOP	=	2	sec

1	sec 1	sec 1	sec 1	sec 1	sec

Figure 1: Frame sizes in a GOP.

pipelines contain data dependencies, in addition to higher-level con-
trol dependencies, that impose unique requirements on its scheduling
approach, as described in the next section. Sprocket takes the content
of the video into account by dynamically dedicating more serverless
computing resources when processing certain scenes, as described
in Section 3.5.4.

Recent work has also specifically focused on video processing ap-
plications. ExCamera is a highly parallel video encoder that encodes
small chunks of video in Lambda threads in parallel, ultimately
stitching them together into a single final video file [12] (indeed,
experience with Lambdas developing ExCamera convinced us of
their viability for Sprocket). Other video analytic systems include
VideoStorm, which focuses on querying characteristics of streamed
live video content and the resource, quality, and delay tradeoffs of
scheduling large numbers of queries on a cluster [37]. The Stream-
ing Video Engine is Facebook’s framework for processing all user-
supplied video content at scale, with a particular focus on reducing
the latency of ingesting and re-encoding video content so that it can
be shared with other users [17].

3 SPROCKET DESIGN
Before describing the design of Sprocket, we first highlight two
example scenarios of its use. First, imagine that a user has a video
on their laptop that they are editing, and they wish to see a version
of the video with a remapped set of colors. They invoke, either via a
command-line tool or through an interface in their editing program,
a Sprocket-based filter tool with the new color mapping. The video
is uploaded to the cloud, and Sprocket applies the filter to the video
and they are able to stream the updated version in their browser
within a few seconds.

In a second example, imagine that a user is watching a two-hour
long video of a school play, and wants to only watch the portions
starring their child. They visit a web page, backed by Sprocket, that
lets them submit a URL of the video, along with a URL of their
child’s face, and within a few seconds they are able to stream an
abbreviated version of the play in their browser featuring only those
scenes starring their child.

Sprocket: A Serverless Video Processing Framework SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

Optional
Video

Formats
Decode Filter Encode

Optional
Video

Formats

Figure 2: Logical overview of the Video Filter pipeline.

3.1 Overview
Sprocket is a scalable video processing framework designed to trans-
form a single video input according to a user-specified program.
Users write these programs in a domain-specific language, described
in Section 3.7, which is expressed as a dataflow graph. The dataflow
graph consists of vertices and edges, similar to other dataflow sys-
tems such as Tez [32]. Edges (which we also refer to as streams)
convey data between vertices, in particular individual frames of
video, groups of frames, or compressed segments of consecutive
frames we call chunks. Vertices execute individual functions, speci-
fied by the user, on data that arrives at their input(s), emitting any
resulting frames or chunks to the next part of the DAG via one or
more output edges. We refer to a single DAG program as a pipeline,
and refer to vertices in that DAG as pipeline stages.

The modular design of the pipeline and pipeline specification
allows developers to build complex video processing systems with
little effort. The simplicity of the interactions with the Lambda
infrastructure greatly mitigate the management overhead.

In this section, we describe a set of example applications built on
the Sprocket framework, highlighting underlying stage implemen-
tations used to build those applications. Developers can use these
stages to build custom pipelines, and can also implement new stages
to extend this set of functionality.

3.2 Application 1: Video filter
Our first application example is a pipeline that applies an image
processing filter, drawn from those supported by the FFmpeg tool,
to an entire video (Figure 2). This pipeline consists of three stages:
Decode, Filter, and Encode. An input, which can be in the format of
a video link (YouTube, Vimeo, etc.), a cloud-local file hosted on S3,
or uploaded by the user, will be sent to multiple Lambda workers
in parallel. Each worker will decode a chunk of video into a set
of sequential frames. The Lambda worker then invokes FFmpeg
on each frame. Lastly, each transformed frame will be encoded
into an output format, either a single compressed file (e.g., via the
Ex.Camera distributed encoder) or to multiple fixed-length chunks
suitable for streaming via the MPEG-DASH [9] format.

3.2.1 Stage design. Sprocket will initially evaluate the input
video type and handle initiating the parallel nature of the pipeline
accordingly. For example, for a video URL input, Sprocket will
broadcast the link to each of many parallel download-and-decode
workers, along with video metadata and the number of frames as-
signed to each worker, so that those workers can download and begin
processing the input video in parallel.

This Sprocket pipeline consists of three stages:
Decode: This stage decodes a specified chunk of input video into

individual frames (in PNG format). Decode receives video metadata
as input, along with the timestamp of where in the video to begin
decoding, and how many frames to output to the downstream worker.

MatchFacePerson
Name

Decode
Scene-
Change

Facial-
Recognition Draw Encode

Optional
Video

Formats

Optional
Video

Formats

Figure 3: Logical overview of Facial Recognition pipeline
stages.

After processing, the decode stage emits the decoded frames to the
S3 intermediate storage system.

Filter: The Filter stage applies the FFmpeg binary to a chunk
of frames. Filter is spawned directly after the Decode stage and
receives metadata along with references to the location of the frames
stored on intermediate storage. Filter collects the frames from S3
and applies one of its internal filters as specified in the pipeline’s
pipespec configuration file, described later in Section 3.7.

Encode: This stage is responsible for encoding frames. Encode
also uses FFmpeg, running in a different Lambda worker, which
receives metadata along with references to the location of the frames
in S3. Encode collects the frames from S3, encoding them using the
specified encoder format, and finally writes them either in MPEG-
DASH format or a single compressed output file generated by Ex-
Camera. The final result is stored in S3.

3.3 Application 2: Facial Recognition
A second pipeline we describe implements facial recognition, which
demonstrates a more sophisticated set of operations, including call-
ing out to other cloud services to implement the facial recognition
support (Figure 3). This pipeline takes an actor’s name and a refer-
ence video URL as input, and draws a box around the given actor’s
face in all scenes of the video. This application could support the
theatrical production motivating scenario presented earlier.

3.3.1 Stage design. The Facial Recognition pipeline consists
of six stages: MatchFace, Decode, SceneChange, FacialRecognition,
Draw, and Encode (Figure 3). At the beginning of the pipeline, an
actor’s name, provided by the user, will be used to locate candidate
images from a Web search for later use in facial recognition. In
parallel, the provided input video URL is fetched and decoded into
fixed-length chunks of frames, currently one second each. Workers
in parallel will then run a scene change algorithm on each chunk
of frames to bin them into separate scenes. For each set of chunks
grouped in scenes, a worker will then run a facial recognition algo-
rithm to determine if the target face is present in that scene. If a face
is identified in the scene, the chunk of frames will have a bounding
box drawn on all the frames at the appropriate position returned
by the vision algorithm API, which is then sent downstream to the
Encode stage. If no face is detected, then the group of chunks will
be sent directly to Encode.

Along with the stages described in the previous section, the fol-
lowing stages are used in the Facial Recognition pipeline:

MatchFace: The MatchFace stage searches for a target image
for the face of a person whose name is specified as a parameter.
Sprocket currently uses Amazon’s Rekognition API [27], but could
also use other service offerings: Microsoft offers a computer vision

SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA L. Ao et al.

API as part of its Cognitive Services cloud offering [25], and Google
offers a cloud-hosted vision system for labeling and understanding
images through its Google Cloud Vision API [14].

MatchFace invokes one of these third-party image search services
(in our case Amazon Rekognition) to find the top-k images returned
given the provided name. The stage then iterates through the returned
images and runs a face detection algorithm, via external API call, to
determine whether the chosen target image contains a face. The first
image to pass the facial detection algorithm becomes the selected
target image. MatchFace then stores the selected image in S3 for
eventual use by downstream stages. Unlike other stages, MatchFace
itself does not emit any data directly to downstream stages.

SceneChange: The SceneChange stage detects scene changes in
a set of decoded frames. It is invoked after the Decode stage, and is
sent a reference to the decoded frames stored in S3. SceneChange
collects the frames from S3 and, after detecting the scene change
offsets (using an algorithm internal to FFmpeg), emits an event
containing a list of these references to frames stored in S3, paired
with a boolean value marking which frames serve as the boundaries
of the scene change.

FacialRecognition: The FacialRecognition stage detects if a
group of frames contains a target face (e.g., of the provided ac-
tor). The FacialRecognition stage is spawned once for every group
of frames that make up one scene. We chose this design, rather than
running on every frame in the scene, due to rate limits when invoking
third-party recognition algorithms. FacialRecognition downloads the
frames from S3 and calls the facial recognition algorithm once on
every n frames in the scene. The facial recognition algorithm returns
whether or not the target image was detected in the frame, and a
bounding box of the identified face in the original frame. If at least
one frame in the scene is found to contain the target face, all frames
in the scene are marked as having the target face. The stage then
emits an event containing a list of references to the frame in S3
paired with a bounding box of the identified face. If no target face is
identified, FacialRecognition emits a list of frame references paired
with empty bounding boxes.

Draw: The Draw stage draws a box at an arbitrary position in the
frame, in this case provided as a bounding box around a recognized
face. Draw is instantiated from the FacialRecognition stage and
only continues if a scene was labeled as containing a recognized
face. Otherwise, draw automatically skips to its final state and sends
references to the frames in S3 directly to the downstream stage.
Draw only uses the dimensions from one bounded box to draw the
same bounding box on all frames. Therefore, Draw assumes that
there is little movement of faces in a single scene. We leave as future
work interpolating the position of the box based on sampled points
throughout the scene. Draw writes the new frames to S3 and emits
an event containing a list of frame references.

An alternative version of a Facial Recognition pipeline can also
choose to emit scenes that only contain the recognized face. In this
case, the Draw stage would be replaced by a SceneKeep stage that
only emits references to frames if a face is recognized. Otherwise,
the stage will emit an empty list and those particular frames will
never be encoded. SceneKeep would be employed to implement
the version of the pipeline that edits out all scenes of a theatrical
production that do not include a given actor (e.g., the user’s child).

...
(3) control

RPC
Lambda
gateway

(1) invoke

(2) launch
daemon

task

intermediate
storage (S3)

AWS Lambda
platform

input
videos

output
videos

user’s
computercoordinator

(4) start

Lambda
instance

Figure 4: Sprocket Overview

3.3.2 Calling external cloud services. Calling an external
API to run a facial recognition algorithm creates different challenges
for Sprocket. The first is the additonal latency of calling the external
service that is beyond Sprocket’s control. The second is that Sprocket
may encounter an API call throughput limit that slows down the
execution time of stages. This execution latency increases as the
parallelism of the pipeline increases, since more concurrent calls
create a faster overload of the external API. To address this, Sprocket
does two things. First, the facial recognition pipeline includes the
scene detection stage, reducing the number of calls to the facial
recognition API within one scene. Second, the pipeline has the
option to use the streaming scheduler, described in more detail in
Section 4.3, which adaptively calculates the minimum amount of
Lambdas needed to meet a streaming deadline throughout execution.
In this way, Sprocket limits the amount of concurrent API calls
needed, thus avoiding API call throughput limits.

3.4 Invoking and managing Lambdas
The Sprocket Coordinator manages the system-wide “control plane,”
managing the life-cycles of Lambda workers including spawning
and tearing them down, and orchestrating the flow of data between
workers via the intermediate data storage system. We implemented
the Sprocket coordinator in Python, which runs either on a VM in the
cloud or on the user’s computer. Amazon has since deployed Step
Functions [30], which is a Lambda workflow management system
that serves a similar purpose as our coordinator. Currently AWS Step
Functions cannot implement Sprocket pipelines, since support for
dynamic levels of parallelism in Step Functions is currently limited.
It can scale the number of Lambdas based on an overall workload,
but it is not evident how to scale individual stages based on dynamic
load or resource optimizations at that stage. Figure 4 shows a detailed
overview of the main components of our Python-based coordinator
design.

The coordinator maps the execution of one task within the Sprocket
dataflow graph to a Lambda worker. An individual Lambda worker
is invoked by receiving data on its inputs via the delivery function,

Sprocket: A Serverless Video Processing Framework SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

which comes either from external input sources or from upstream
workers via the intermediate storage system. In the AWS cloud,
Lambda instances cannot establish direct network connections be-
tween each other, and so we convey all data from upstream workers
to downstream workers through the intermediate store, in particular
through S3. This approach has the added advantage of enabling the
scheduler to decouple the execution lifetimes of upstream and down-
stream stages, enabling them to exist at disparate times. Although
the rather heavy-weight S3 storage interface may seem like a poten-
tial performance bottleneck, Jonas et al. [19] have shown that it can
scale to support thousands of clients without imposing significant
performance penalties.

We indirectly control Lambda workers via a modified version of
Mu [12], a framework for managing parallel execution of Lambda
instances. The Coordinator sends invocation requests to the AWS
API gateway to manage Lambda functions. Once the Lambda in-
stance is started, it spawns a local daemon within the Lambda that
establishes a connection back to the Coordinator so that the Co-
ordinator can communicate with and manage them. Each Lambda
worker is implemented as a state machine, and the particular state
machine employed is sent through this interface. In this way, an
individual Lambda does not yet know what role it will play in the
overall pipeline until it has connected back to the coordinator to
request further instructions. This approach has the potential benefit
of reducing variance and stragglers.

The Coordinator and the Lambda workers interact with each other
using asynchronous RPC. The Coordinator gives commands to the
Lambda workers while the workers reply with status reports. The
Coordinator treats the status reports as inputs to its internal DAG
dataflow, enabling it to generate new states to send to Lambda work-
ers to further process the overall pipeline. If the status report from a
worker indicates an error in executing the most recent command, the
coordinator can re-send the command to the worker or potentially
spawn a new worker to continue the execution of that task.

We extend Mu in several ways to support Sprocket’s design.
Instead of batch-style invocation of Lambdas in Mu, we support
dynamic creation of tasks during processing, and asynchronous mes-
saging and data transfer among the Lambda workers. Moreover,
Sprocket abstracts away from any particular serverless platform
and can easily support other platforms such as Google Cloud Func-
tions [13].

3.5 Pipeline scheduling
3.5.1 Managing on-demand Lambdas. Sprocket’s dataflow

scheduler relies on the stateless nature of AWS Lambda functions.
Generally, a cluster or job scheduler will allocate a large set of re-
sources in advance, and then manage that pool of resources over time
across a large number of jobs. For example, Mesos [16] manages
resources among frameworks, with each having their own scheduler
to further manage resources among applications and tasks. Because
Sprocket is targeting a serverless cloud environment, the Sprocket
scheduler can allocate and deallocate Lambda resources on fine-
grained timescales, rather than all at once at system start time. The
cloud provider is then responsible for managing that pool of re-
sources.

The primary resource limit that Sprocket faces is a concurrency
limit imposed by the provider, which bounds per account the number
of Lambda workers that can run concurrently, as well as the rate at
which new Lambda workers can be spawned. In this work, we focus
on applying Sprocket to a single instance of a single pipeline, and
so assume that it can freely use resources up to the account-wide
concurrency limit.

When the demand for concurrent workers is within the concur-
rency limit set by the provider, scheduling is straightforward: any
requested task will immediately trigger an invocation of a worker and
begin its processing after the worker is launched. We have observed
that the vast majority of Lambda workers launch with subsecond
latency. In terms of responsiveness, we therefore treat the workers
as a homogeneous resource.

When the demand for Lambda workers exceeds the concurrency
limit, such as when processing a long video or processing a very deep
pipeline, some tasks have to be deferred and scheduled later. Clients
can specify which scheduling policy to use, either optimizing for
the lowest overall execution time, or optimizing to prioritize earlier
frames for streaming results. The “overall time” strategy minimizes
the overall job time by increasing the parallelism of each stage and
making sure the task is utilizing the most available Lambda workers.
The “time to first frame” strategy identifies the tasks that are on the
critical path of the eventual output’s frame presentation time (the
time at which an output frame will be displayed), and assigns these
tasks higher scheduling priorities.

3.5.2 Optimizing for streaming. Sprocket’s ability to seam-
lessly allocate and deallocate resources also allows it to change its
scheduling behavior in real time, based on the pattern of the current
job. Concretely, Sprocket’s streaming scheduler continuously keeps
track of the amount of time it is taking to process the current frames
to determine if it will meet the streaming deadline. If Sprocket is cur-
rently ahead of schedule, the streaming scheduler will speculatively
put the current pipeline to sleep for the number of seconds nearly
equivalent to the difference between the streaming deadline and the
current execution time. Putting the executing pipeline to sleep not
only optimizes for use of minimum Lambda resources, as the num-
ber of new Lambda invocations drops down to zero for the current
pipeline, but also lends itself well to achieving load balancing so a
simultaneous different pipeline can be run on sprocket. Section 4.3
evaluates Sprocket’s streaming performance.

3.5.3 Supporting complex dependencies. Depending on the
complexity of the implementation of a vertex in a given dataflow
DAG, it is not always straightforward for the scheduler to know when
to execute that stage. Indeed, there may exist dependencies across a
stage’s input that depend on other parts of the DAG. To capture these
dependencies, Sprocket defines a delivery function for every stage
which specifies the dependencies on its inputs. It is the responsibility
of the Sprocket framework, not the implementer of the stage, to
manage and satisfy these dependencies. Managing the dependencies
and scheduling of inputs to continuous query and dataflow systems
is a well-studied problem in a number of domains, and Sprocket’s
delivery functions might benefit from further development (e.g.,
“moments of symmetry” and “synchronization barriers” as described
by Avnur and Hellerstein [5]).

SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA L. Ao et al.

input
chunks

blend
delivery
function

input
chunks

decode
stage

scheduler
decode
stage

blend
stage

default
delivery
function

encode
stage

Lambda
gateway

Lambda
worker

...

Figure 5: A detailed view of the Sprocket Coordinator for the
blend pipeline

In a video pipeline, the most basic dependency is one-to-one: the
output from an upstream worker is only processed by a single down-
stream worker, and the downstream worker only needs the output
from a single upstream worker. An example of this dependency is a
pipeline that takes a chunk of video as an input, decodes that chunk
into a sequence of individual frames, applies a filter to that frame set
(e.g., color modification), and then encodes the frames back into a
compressed chunk. In this simple example, a downstream worker
only needs one input event: once an input is ready, the task can be
run immediately.

3.5.4 Customizing delivery functions. An example of a pipeline
with complex dependencies is the blend application which superim-
poses the content of two videos.This blend application might serve
as one component of a multi-step “green screen” application which
replaces regions of an image of a certain color with a separate live
video stream. This application includes two parallel decode stages,
each of which converts the input video into individual frames. The
next stage is a “blend” node, which needs to overlay each frame of
one video with the corresponding frame from the other. An example
of this pipeline can be seen in Figure 5.

For the blend application to work, it needs simultaneous access to
corresponding frames. We define a pair delivery function that is used
to capture this dependency. The “pair” delivery function ensures
that frame number i from one video is delivered to the blend stage
simultaneously with frame i from the other video. In other words,
the delivery function has to wait for both upstream stages to have
generated a set of continuous frames bearing the same presentation
timestamps (“pts”), which are used to match up the frames from the
two input sources. Once such a pairing occurs, the delivery function
will deliver the merged input to the downstream worker as an atomic
unit to the encode stage. The encode stage then gathers a set of
frames before encoding them into a single compressed output video.
A delivery function specific to the encoder ensures that it receives
the correct number of frames and ensures that they are consecutive
and in order.

Delivery functions can also be used to mitigate challenges of
complex pipelines. For example, the Facial Recognition pipeline
can incur new scheduling challenges based on the properties of the
input data. Stragglers might arise, not just based on performance
variation within the cloud platform (e.g., a slow Lambda worker),

but rather as a data-dependent result of whether or not a given frame
contains a face, as has been reported in other contexts [22]. Scenes
with recognized faces must eventually go through the Draw stage,
thereby unavoidably taking a longer time to complete. Customizing
different delivery functions can help address the recognized face
straggler problem.

One way to mitigate the recognized face stragglers is to create
a delivery function that has the capability to split up the delivery
of downstream events based on cut-off markers provided by the
upstream stage. With this design, the FacialRecognition stage is able
to request the next downstream stage, Draw, to receive only one
frame per worker. By dedicating one Lambda worker per frame, the
Draw stage completes almost instantly and takes minimal overhead
compared to the rest of the pipeline. Other techniques for straggler [3,
36] and skew mitigation [1, 21, 23], drawn from the database and
distributed systems literature, could be employed as well.

3.5.5 Partition function comparison . The delivery function
serves a similar role as partition functions in Hadoop and Spark,
which determine how the system re-distributes data from upstream
to downstream elements, ensuring that the partitioning satisfies data
dependency requirements, including avoiding skew in the workload
distribution. However, the main difference between Sprocket delivery
functions and these other partition functions is that, in Hadoop and
Spark, they are serialization points in the pipeline: the respective
worker will have to wait for all the input data to be ready to apply
a partition function to further send the resulting data downstream.
The delivery functions in Sprocket, however, deliver whatever work
is available, which is particularly useful when processing video.
As long as there exists some inputs to a stage that satisfy the data
dependency requirements, the delivery function will ensure that the
downstream worker is invoked with work to do.

3.6 Straggler mitigation
In a pipeline that consists of a large number of workers, stragglers
are likely to happen. For example, I/O, CPU scheduling, hardware
malfunction and non-deterministic programs can significantly slow
down one or more workers. For video applications, it is common for
a single worker to have a “wide dependency” of subsequent frames,
i.e., many downstream tasks depending on that worker’s output, thus
stalling the entire pipeline. Such events can directly impact user
experiences, such as forcing the user to wait for the streaming of a
particular chunk.

Speculative execution [10, 36] is widely used to tackle stragglers.
When the framework detects which workers are slower, it duplicates
the worker’s tasks to other nodes. However, by the time a straggler
is detected and the speculative task is launched, it may already
be too late to mitigate the straggler. To deal with this problem,
proactively cloning tasks [2] can be used. However, this approach
requires sending extra copies of input data to the workers and may
potentially cause resource contention.

In Sprocket, we combine the two approaches, while avoiding
the disadvantages of both, by exploiting the characteristics of input
video chunks. Concretely, with straggler mitigation, we choose to
use input video chunks that decode into a group of pictures (GOP)
that is twice as long than the usual chosen length (e.g., a two-second
chunk instead of the usual one-second chunk). Sprocket then sends

Sprocket: A Serverless Video Processing Framework SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

both seconds of the chunk to the worker dedicated to processing the
first second of the GOP, and the worker dedicated to processing the
second second of the GOP. We call both workers a “pair”. A worker
first processes its assigned part of the GOP. After it finishes, it checks
if the other worker in the pair is finished. If not, it continues to work
on the other worker’s part of the GOP, which in effect becomes
speculative execution. Because the other worker’s data is already
there, speculative execution can be conducted efficiently.

Although workers in a pair have identical data, we are not dou-
bling the total amount of data transferred. As seen in Figure 1, the
second half of a GOP is smaller in size due to the absence of the key
frame. We calculate that, in total, the extra data sent is less than a
quarter of the original data.

3.7 Programming Sprocket applications
Sprocket programmers construct pipelines using a domain-specific
pipeline specification language. In a pipeline specification (“pipespec”),
a user first specifies the set of stages making up the pipeline, and
then they specify the directed edges that connect those stages. Each
edge must connect an upstream endpoint to a downstream endpoint,
except for input/output endpoints that represent external sources and
sinks of video to the pipeline.

The pipespec allows for individual stages to be parameterized
with stage-specific parameters (e.g., target bit-rate parameter of
an encoding stage), system-wide parameters (e.g., which Lambda
function should be used to implement a stage), and additional data
dependency information (Section 3.5.3). Similarly, edges can be
parameterized to provide context and directives, e.g., how to convey
data through the intermediate storage system to downstream stages
or optimizations for interacting with stable storage such as S3.

Below is an example pipespec for a sample “blend” application,
described in Section 3.5.4 which superimposes the content of two
videos.

{ "nodes:
[{

"name": "decode_0",
"stage": "decode"

}, {
"name": "decode_1",
"stage": "decode"

}, {
"name": "blend",
"stage": "blend",
"delivery_function":

"pair_delivery_func"
}, {
"name": "encode",
"stage": "encode"

}
],
"streams":
[{

"src": "input_0:chunks",
"dst": "decode_0:chunks"

}, {
"src": "input_1:chunks",
"dst": "decode_1:chunks"

}, {
"src": "decode_0:frames",
"dst": "blend:frames_0"

}, {
"src": "decode_1:frames",
"dst": "blend:frames_1"

}, {
"src": "blend:frames",

"dst": "encode:frames"
}, {
"src": "encode:chunks",
"dst": "output_0:chunks"

}
]

}

Listing 1: The Blend pipespec example. Note that input_0 and
output_0 are bound to runtime parameters.

Edges include a source and a destination which specify upstream
and downstream endpoints, respectively. An endpoint is defined by
a stage name and an edge identifier within the stage, separated by a
colon. In this way a stage can specify multiple streams that connect
to it, providing broadcast/multicast semantics. The prefix of the
edge identifier also implicitly indicates the data type of the stream:
only matched data types can be sent through it, and the source and
destination types have to match.

4 EVALUATION
In this section we evaluate Sprocket’s behavior from various per-
spectives, including where it spends its time executing pipeline
operations, how it exploits parallelism, how it meets streaming dead-
lines when generating output, the performance characteristics of a
complex application, and how it compares to other general process-
ing frameworks. We execute Sprocket using the Lambda service
in AWS’s North Virginia region (us-east-1). The Lambda in-
stances use 3GB of memory, and the Coordinator runs on an AWS
EC2 c5.xlarge instance. Table 1 shows the properties of the test
videos we use.

In general, the results we report in this section use “warm” Lambda
instances, which do not include the delays for creating a new con-
tainer, initializing the runtime, etc. The benefits of warm Lambdas
are well known in the community (e.g., [33]) because they reduce
Lambda creation delays considerably: in our experience, the time to
invoke 1,000 cold Lambdas is on the order of 6 seconds, while the
time to invoke 1,000 warm Lambdas is an order of magnitude less at
600 ms. We report results with warm Lambdas because we expect
them to be a reasonably common case; our experience is that warm
Lambdas are cached for at least 15 mins, and often much longer (if
a VM has at least one active instance, [33] reports 27 mins, and 1–3
hours).

4.1 Time breakdown
First we show where Sprocket workers spend their time when exe-
cuting pipeline operations. Figure 6 shows the execution times for
734 workers performing a simple operation on the TEARS OF STEEL

video (Table 1). Each worker operates on a one-second chunk of
video, reading and decoding it in one stage, converting it from color
to grayscale using FFmpeg in a second stage, and then encoding and
writing it back to S3 as the final stage. Each bar in the graph shows
the total execution time for the worker, and the bar breaks down the
time into processing (encode, grayscale, decode), accessing video
chunks from storage (each stage reads and writes to S3), and any
waiting time.

For this pipeline, overall execution time is split roughly evenly as
follows: across all of the workers, on average 34.7% of time is spent
encoding and decoding, 30.4% is spent grayscaling, and 27.6% of

SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA L. Ao et al.

Name Length FPS Content Resolution

EARTH [11] 10 hours 25 Nature 1080p
SYNTHETIC EARTH Variable 25 Uniform 1 second chunks from Earth 1080p
SINTEL [28] 14 min 48 sec 24 Animation/Action 1080p
TEARS OF STEEL [31] 12 min 14 sec 24 Action/Science Fiction 1080p
NATURE [26] 60 sec 25 Trailer/Contains no faces 720p
AVENGERS TRAILER [4] 35 sec 24 Trailer/Action/Contains faces 720p
INTERVIEW [8] 45 sec 24 Interview/Contains faces 720p

Table 1: Details of input videos used in the experiments.

0 100 200 300 400 500 600 700
Worker Number

0

5

10

15

20

25

Pr
oc

es
s T

im
e

(s
)

write S3
FFmpeg

read S3
invocation

Figure 6: Execution time breakdown running the grayscale
pipeline on the TEARS OF STEEL video.

time is spent reading and writing to S3, while the remaining 7.3% is
spent waiting for the creation and initialization of the workers. There
is much variation among workers, but the variation is primarily due
to the nature of the video input: chunks of video that contain less
data (are more compressible) take less time to process and read/write
to S3.

4.2 Burst parallelism
A key benefit of using serverless cloud infrastructure is the oppor-
tunity for inexpensive burst parallelism. For short periods of time,
users can inexpensively launch computationally intensive jobs that
exploit large-scale parallelism. We show how Sprocket takes advan-
tage of this opportunity with an experiment that processes jobs in
constant time for inputs that do not exceed the parallelism limits of
the underlying infrastructure. Figure 7 shows the completion times
of Sprocket executing the grayscale pipeline as a function of video
length for four videos. In this experiment, we scale the number of
workers with the length of input video. Each worker processes one
second of video, and the x-axis shows the length of input video
and hence number of workers used (e.g., 600 workers process the
first 600 seconds of video). We show curves up to 1,000 workers
(the limit of parallelism that we reliably and consistently extract
from AWS), unless the video length is less than 1000 seconds. We
measure both the job completion time (total) and the time 99% tasks

finish (99th percentile). Each point corresponds to the average of five
runs, and the error bars show the minimum and maximum values.

For the SYNTHETIC video, in which every chunk has the same
content, Sprocket achieves constant execution time until 800 workers,
where times increase slightly due to slight resource contention on S3
accesses. For the EARTH video, the time increase from 200 to 400
workers is caused by data size increases in the video content, since
the first few minutes of the EARTH video are highly compressible.
In SINTEL, the increased processing time near the end of the video
is caused by more data variance near the final stage of the movie.
TEARS OF STEEL has more data variance among chunks than other
videos throughout the movie, so the distance between total time and
99th percentile is larger.

4.3 Streaming
In previous experiments we used Sprocket as a batch system focusing
on completion time for the entire video. But we designed Sprocket
to operate equally well as a streaming system. In this mode, once
Sprocket finishes processing the first result frame, users can start to
stream the video. Recall from Section 3 that workers encode video
chunks into standalone DASH segments. As a result, even if a video
is hours in length it does not need to be serialized into a single final
video file before viewing. Sprocket is also able to handle streaming
input, thus being able to process input video that is most recent.
Hence, streaming is seamless as long as Sprocket processes and
delivers subsequent video chunks in time.

To demonstrate this behavior, we execute the grayscale pipeline
on the first hour of the EARTH video. Figure 8 shows the completion
time of each worker and its chunk of video for the variable amount
of workers determined by the streaming scheduler (Section 3.5.2)
for 1,000 workers and for 20 workers. The dashed line corresponds
to the deadline that Sprocket needs to meet for seamless streaming.
The line starts at the completion time of the first chunk since users
have to wait for Sprocket to process it. But once started, Sprocket
can easily meet the deadline for the remainder of the video.

The inset graph zooms in to the first 100 seconds of video, clearly
showing stairstep behavior for both the 20-worker and streaming
scheduler configuration. Each step corresponds to one wave of n
workers executing in parallel, and zooming into the graph shows
the steady and stable performance over time as waves of workers
process the video.

4.4 A complex pipeline
Sprocket’s behavior is highly dependent on the properties of the input
video. Straightforward filters or transformations of video chunks

Sprocket: A Serverless Video Processing Framework SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

200 400 600 800 1000
Number of Concurrent Workers

0
5

10
15
20
25
30
35
40

Co
m

pl
et

io
n

Ti
m

e
(s

)

Total
99 Percentile

(a) Synthetic

200 400 600 800 1000
Number of Concurrent Workers

0
5

10
15
20
25
30
35
40

Co
m

pl
et

io
n

Ti
m

e
(s

)

Total
99 Percentile

(b) Earth

200 400 600 800 1000
Number of Concurrent Workers

0
5

10
15
20
25
30
35
40

Co
m

pl
et

io
n

Ti
m

e
(s

)

Total
99 Percentile

(c) Sintel

200 400 600 800 1000
Number of Concurrent Workers

0
5

10
15
20
25
30
35
40

Co
m

pl
et

io
n

Ti
m

e
(s

)

Total
99 Percentile

(d) Tears of Steel

Figure 7: Matching Lambda parallelism to video length.

0 500 1000 1500 2000 2500 3000 3500
Presentation Timestamp (s)

0

500

1000

1500

2000

2500

3000

3500

Pr
oc

es
s T

im
e

(s
)

streaming deadline
streaming scheduler
20 workers
1000 workers

0 25 50 75 0
20
40
60
80
100

Figure 8: Streaming the EARTH video through the grayscale
pipeline.

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Completion Time (s)

0

2

4

6

8

10

12

N
u
m

b
e
r

o
f

W
o
rk

e
rs

Face

NoFace

Figure 9: FacialRecognition stage behavior with and without
faces.

perform the same work on each frame. The behavior of a more
complex pipeline that recognizes and draws a box around a given
actor’s face, however, greatly depends on whether the input video
contains a face, and whether that face is the one being queried. To
demonstrate, we run the FacialRecognition pipeline on the NATURE

and INTERVIEW videos (we use these short videos due to rate limits
of Amazon’s Rekognition API, as discussed in Section 3.3.2).

Figure 9 illustrates the bimodal execution times of the pipeline’s
Lambda workers in the FacialRecognition stage, depending upon the
presence of a face in a given frame. Lambda workers processing the
NATURE video, which has no faces, take between 1.5 and 4 seconds
to complete the FacialRecognition stage. This execution time con-
sists of the time it takes to invoke Amazon Rekognition to detect any
faces present. Since no input frames contain faces, the stage passes
along the frames immediately. For the INTERVIEW video, all the
frames have faces, so the Lambda workers will experience increased
execution times. When Rekognition does detect a face in a frame, it
makes a second API call to compare the detected face with the target
face. This second call adds another 1.5 to 3.5 seconds of execution

SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA L. Ao et al.

0 5 10 15 20 25 30
Chunk #

20

30

40

50

60

Ti
m

e
(s

)

No Mitigation
Sprocket
Cloning

Figure 10: Comparison of chunk delivery time with various
straggler mitigation strategies.

time, resulting in the bimodal execution times. For this experiment,
the total execution time for the 60-second NATURE video with no
faces was 32 seconds, and the execution time for the 45-second
INTERVIEW video with faces was 45 seconds.

4.5 Straggler mitigation
We evaluate the straggler mitigation strategy in the decode stage of
the FacialRecognition pipeline. In the FacialRecognition pipeline,
there is a serialization point between two stages, causing the delay
of a single chunk to delay all later chunks.

We measure the pipeline performance without straggler mitiga-
tion, with a simple cloning strategy, and with Sprocket’s straggler
mitigation strategy (Section 3.6) for comparison. The cloning strat-
egy duplicates each task, and when a task finishes the decoding
process, it sends a message to terminate the other task. Since it is
difficult to create reproducable straggler situations when using AWS
organically, we instead emulate stragglers by forcing a particular task
to sleep for 30 seconds before decoding. As shown in Figure 10, if
there is no straggler mitigation, a straggler in this pipeline can delay
the delivery of many chunks. When using cloning or Sprocket’s strag-
gler mitigation, though, the delay is nearly reduced to the expected
time to process a chunk.

Both task cloning and Sprocket’s straggler mitigation removed the
effects of the straggler. But they have different costs: task cloning
performs much more redundant work than Sprocket’s approach.
Table 2 presents the total Lambda time in the decode stage under the
different strategies, averaged across five runs.

As explained in Section 3.6, after a worker finishes processing
its own part of the GOP, it continues to work on the other worker’s
part of the GOP if the pair’s work is not finished. In the case that
there is no straggler, this strategy only creates little extra Lambda
running time, because the finish time for two workers in the same
GOP is often very close. Once speculative execution finishes, the
worker sends a notification to the straggler worker to terminate it
immediately. In terms of cost, the slight difference in extra Lambda

No Straggler (sec) Straggler (sec)

No Mitigation 181.05±6.17 218.58±15.44
Cloning 259.54±8.23 252.17±3.58
Sprocket 184.25±5.75 191.77±6.02

Table 2: Total Lambda running time and standard deviation in
the Decode stage under different straggler mitigation strategies.
The higher Lambda run times for cloning results in higher costs
compared with Sprocket’s strategy.

running time causes a negligible difference in extra costs. Although
the cloning strategy duplicates each task, it does not double the total
Lambda running time when there is no straggler — it costs only 41%
more Lambda running time compared to no mitigation or Sprocket’s
approach.

The reason is twofold. First, once the faster task finishes the
decoding task, it sends a stop message to the slower duplicated task,
and the slower task can immediately stop what it has been doing
and skip writing to S3. As a result, writing output data to S3 is
never duplicated. Second, there is an inherit advantage of cloning —
the faster decode time of the two tasks decides the average decode
time. The cloning strategy also has a faster average task time, but
it requires more concurrent Lambda workers, and thus more total
Lambda running time. Sprocket’s straggler mitigation is almost as
effective as cloning the tasks, yet cloning costs 41% more Lambda
running time than Sprocket when there is no straggler, and around
31% when there is one.

4.6 Alternatives
The rise in data processing requirements has led to the develop-
ment of a number of parallel data processing frameworks. Tools
such as MapReduce [10], Hadoop [15], and Spark [29] have be-
come essential components for many organizations processing large
volumes of semi-structured, primarily textual data. A number of
distributed-computing frameworks, such as Dryad [18], Apache
Tez [32], Apache Kafka [20], and Hyracks [6] further implement
pipeline-oriented computation and support arbitrary DAG-structured
computation, with data passed along edges in a computation graph.
These environments are particularly beneficial when they can amor-
tize their resource footprint over a large number of user requests,
enabling increased resource efficiency and job throughput via op-
timized resource allocation, assignment, and scheduling decisions
(e.g., [16, 34]).

Sprocket, however, focuses instead on individual users who want
to submit a single job to the cloud, and thus cannot amortize the
resource footprint of any acquired resources over anything else. We
would like to enable these users to program their video process-
ing application independently, without requiring major providers
to implement their desired functionality. As a result, we focus on
serverless cloud environments which are well-suited to this deploy-
ment scenario. The ability to have near-instant, extremely bursty
parallelism on demand is a compelling alternative to requiring a tra-
ditional, dedicated cluster-based approach. The on-demand nature of
cloud serverless infrastructure allows any user to run jobs consisting

Sprocket: A Serverless Video Processing Framework SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

0 5 10 15 20 25 30
Length of Video (m)

0

2

4

6

8

10

12

Pr
oc

es
s T

im
e

(m
)

Local Script
Spark Cold
Spark Warm
Sprocket

Figure 11: Comparing different video pipeline implementa-
tions.

of thousands of parallel executions for short periods of time at low
cost, even for a single job.

Cloud providers do provide elastic offerings of more established
parallel data processing systems such as Hadoop and Spark, but they
are not a good match for Sprocket’s goals. In terms of responsiveness,
allocating and provisioning clusters potentially takes minutes before
the new cluster can begin accepting jobs. Processing video with even
simple transformations often does not involve any reduction in the
data (input and output sizes are similar); efficiencies afforded by
reductions in MapReduce-style computations do not apply to a wide
range of video processing tasks.

To make this argument more concrete, we perform a simple ex-
periment to illustrate the performance of a simple video process-
ing application on Amazon’s EMR Spark, an EC2 instance, and
Sprocket. We use the EARTH video as input, segmented into two-
second video chunks, and performed a simple grayscale operation
using the FFmpeg tool in all frameworks. The Spark implementa-
tion used an 18-node cluster, with each node processing a partitioned
set of video chunks into resulting mp4 output files. The EC2 imple-
mentation executed a batch script running 64 FFmpeg processes in
parallel on an m4.16xlarge instance, which has 64 virtual cores and
256 GiB of memory. Sprocket used a filter pipeline (Section 3.2)
executing a variable number of Amazon Lambdas, one per chunk,
using up to 1,000 instances. Intermediate data was stored locally and
the final output written to S3.

Figure 11 shows the execution time of the application on each
platform as a function of video length. For Spark we show two lines,
one including the time to provision and bootstrap the resources on
AWS, and the other with just the application time after the cluster is
ready. The Sprocket curve represents using either “cold” or “warm”
Lambdas; the difference between the two is so small at these time
scales that having separate curves would just overlap each other.
Our goal is not to present this experiment as a “bakeoff” among
the most optimized versions possible, but to illustrate the benefits
of using serverless infrastructure for a single job. In particular, the

startup time of provisioning cluster resources is significant in existing
commercial offerings, which Sprocket avoids using the on-demand
nature of Lambdas. (There are monetary advantages as well: the
computation costs for a 30-minute video using the Local Script,
Spark Warm, and Sprocket were $2.38, $1.42, $0.63, respectively.)

5 CONCLUSION
Sprocket is a parallel data processing framework for video content
that uses serverless cloud infrastructure to achieve low latency and
high parallelism. Sprocket applications can range from traditional
video processing tasks, such as filters and other transformations, to
more advanced operations such as facial recognition. Applications
consist of a familiar DAG in which vertices execute modular user-
defined functions on video frames, and frame data flows along the
edges connecting the outputs and inputs of vertices in the graph.
Sprocket targets serverless cloud infrastructure such as Amazon
Lambda as the execution environment. As a result, Sprocket does not
require dedicated infrastructure, can take advantage of the massive
parallelism supported by underlying container-based virtualization,
and can launch applications on-demand with minimal startup delay.

ACKNOWLEDGEMENTS
We thank the anonymous reviewers for their insightful feedback
and suggestions. We are also grateful to Cindy Moore for man-
aging software and systems used in this project. Finally, we are
particularly grateful to Elizabeth Farkas, Elizabeth Guerrero, Adrian
Mendoza, and Zheng Tang. Enrolled in UCSD’s Early Scholars
Research Program, they were adventurous undergraduates willing
to use a research prototype to implement their own video pipeline
applications, a podcast outline generator and celebrity face detec-
tor. This work was supported in part by NSF grants CNS-1629973,
CNS-1763260, CNS-1553490, and CNS-1564185, and by generous
research, operational and/or in-kind support via the UCSD Center
for Networked Systems (CNS).

REFERENCES
[1] ANANTHANARAYANAN, G., AGARWAL, S., KANDULA, S., GREENBERG, A.,

STOICA, I., HARLAN, D., AND HARRIS, E. Scarlett: Coping with Skewed
Content Popularity in MapReduce Clusters. In Proceedings of the Sixth European
Conference on Computer Systems (EuroSys) (Salzburg, Austria, April 2011), ACM,
pp. 287–300.

[2] ANANTHANARAYANAN, G., GHODSI, A., SHENKER, S., AND STOICA, I. Ef-
fective Straggler Mitigation: Attack of the Clones. In Proceedings of the 10th
USENIX Symposium on Networked Systems Design and Implementation (NSDI)
(Lombard, IL, April 2013), USENIX Association, pp. 185–198.

[3] ANANTHANARAYANAN, G., KANDULA, S., GREENBERG, A., STOICA, I., LU,
Y., SAHA, B., AND HARRIS, E. Reining in the Outliers in Map-Reduce Clusters
Using Mantri. In Proceedings of the 9th USENIX Conference on Operating
Systems Design and Implementation (OSDI) (Vancouver, BC, Canada, October
2010), USENIX Association, pp. 265–278.

[4] Avengers Trailer. https://www.youtube.com/watch?v=eMobkagZu64.
[5] AVNUR, R., AND HELLERSTEIN, J. M. Eddies: Continuously Adaptive Query

Processing. In Proceedings of the 2000 ACM SIGMOD International Conference
on Management of Data (SIGMOD) (Dallas, TX, May 2000), pp. 261–272.

[6] BORKAR, V., CAREY, M., GROVER, R., ONOSE, N., AND VERNICA, R.
Hyracks: A Flexible and Extensible Foundation for Data-Intensive Computing.
In Proceedings of the 27th IEEE International Conference on Data Engineering
(ICDE) (Hanover, Germany, April 2011), pp. 1151–1162.

[7] Cisco Visual Networking Index: Forecast and Methodology, 2016–
2021. https://www.cisco.com/c/en/us/solutions/collateral/service-provider/
visual-networking-index-vni/complete-white-paper-c11-481360.html.

[8] Colbert Interview. https://www.youtube.com/watch?v=Y6XXMGUb5kU.
[9] MPEG Dash Industry Forum. http://dashif.org/.

https://www.youtube.com/watch?v=eMobkagZu64
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html
https://www.youtube.com/watch?v=Y6XXMGUb5kU
http://dashif.org/

SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA L. Ao et al.

[10] DEAN, J., AND GHEMAWAT, S. MapReduce: Simplified Data Processing on
Large Clusters. In Proceedings of the 6th Conference on Symposium on Operating
Systems Design & Implementation (OSDI) (San Francisco, CA, December 2004),
USENIX Association, pp. 137–149.

[11] Earth. https://www.youtube.com/watch?v=wnhvanMdx4s.
[12] FOULADI, S., WAHBY, R. S., SHACKLETT, B., BALASUBRAMANIAM, K. V.,

ZENG, W., BHALERAO, R., SIVARAMAN, A., PORTER, G., AND WINSTEIN,
K. Encoding, Fast and Slow: Low-Latency Video Processing Using Thousands
of Tiny Threads. In Proceedings of the 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI) (Boston, MA, Mar. 2017).

[13] Google Cloud Functions. https://cloud.google.com/functions/.
[14] Google Cloud Vision API. https://cloud.google.com/vision/.
[15] Apache Hadoop. http://hadoop.apache.org/.
[16] HINDMAN, B., KONWINSKI, A., ZAHARIA, M., GHODSI, A., JOSEPH, A. D.,

KATZ, R., SHENKER, S., AND STOICA, I. Mesos: A Platform for Fine-grained
Resource Sharing in the Data Center. In Proceedings of the 8th USENIX Con-
ference on Networked Systems Design and Implementation (NSDI) (Boston, MA,
March 2011), USENIX Association, pp. 295–308.

[17] HUANG, Q., ANG, P., NYKIEL, T., TVERDOKHLIB, I., YAJURVEDI, A., IV,
P. D., YAN, X., BYKOV, M., LIANG, C., TALWAR, M., MATHUR, A., KULKA-
RNI, S., BURKE, M., AND LLOYD, W. SVE: Distributed Video Processing
at Facebook Scale. In Proceedings of the 26th ACM Symposium on Operating
Systems Principles (SOSP) (Shanghai, China, October 2017), ACM.

[18] ISARD, M., BUDIU, M., YU, Y., BIRRELL, A., AND FETTERLY, D. Dryad: Dis-
tributed Data-parallel Programs from Sequential Building Blocks. In Proceedings
of the 2nd ACM European Conference on Computer Systems (EuroSys) (Lisbon,
Portugal, 2007), ACM, pp. 59–72.

[19] JONAS, E., PU, Q., VENKATARAMAN, S., STOICA, I., AND RECHT, B. Occupy
the Cloud: Distributed Computing for the 99%. In Proceedings of the ACM
Symposium on Cloud Computing (SoCC) (Santa Clara, CA, September 2017),
ACM, pp. 445–451.

[20] Apache Kafka. https://kafka.apache.org/.
[21] KWON, Y., BALAZINSKA, M., HOWE, B., AND ROLIA, J. Skew-Resistant

Parallel Processing of Feature-Extracting Scientific User-Defined Functions. In
Proceedings of the 1st ACM Symposium on Cloud Computing (SoCC) (Indianapo-
lis, Indiana, June 2010), ACM, pp. 75–86.

[22] KWON, Y., BALAZINSKA, M., HOWE, B., AND ROLIA, J. A Study of Skew in
MapReduce Applications. The 5th Open Cirrus Summit, 2011.

[23] KWON, Y., BALAZINSKA, M., HOWE, B., AND ROLIA, J. SkewTune: Mitigating
Skew in Mapreduce Applications. In Proceedings of the 2012 ACM SIGMOD In-
ternational Conference on Management of Data (SIGMOD) (Scottsdale, Arizona,
May 2012), ACM, pp. 25–36.

[24] LOW, Y., BICKSON, D., GONZALEZ, J., GUESTRIN, C., KYROLA, A., AND
HELLERSTEIN, J. M. Distributed GraphLab: A Framework for Machine Learning
and Data Mining in the Cloud. Proceedings of the VLDB Endowment Vol. 5, No.
8 (2012), 716–727.

[25] Microsoft Computer Vision and Cognitive Services API. https://azure.microsoft.
com/en-us/services/cognitive-services/computer-vision/.

[26] Nature. https://www.youtube.com/watch?v=eMobkagZu64.
[27] AWS Rekognition. https://aws.amazon.com/rekognition/.
[28] Sintel. https://www.youtube.com/watch?v=qR5vOXbZsI4.
[29] Apache Spark. http://spark.apache.org/.
[30] AWS Step Functions. https://aws.amazon.com/step-functions/.
[31] Tears of Steel. https://www.youtube.com/watch?v=OHOpb2fS-cM.
[32] Apache Tez. https://tez.apache.org.
[33] WANG, L., LI, M., ZHANG, Y., RISTENPART, T., AND SWIFT, M. Peeking

Behind the Curtains of Serverless Platforms. In Proceedings of the 2018 USENIX
Annual Technical Conference (USENIX ATC) (Boston, MA, July 2018), USENIX
Association, pp. 133–145.

[34] Apache Yarn. https://hortonworks.com/apache/yarn/.
[35] ZAHARIA, M., CHOWDHURY, M., DAS, T., DAVE, A., MA, J., MCCAULEY, M.,

FRANKLIN, M. J., SHENKER, S., AND STOICA, I. Resilient Distributed Datasets:
A Fault-Tolerant Abstraction for In-Memory Cluster Computing. In Proceedings
of the 9th USENIX conference on Networked Systems Design and Implementation
(NSDI) (San Jose, CA, April 2012), USENIX Association, pp. 2–2.

[36] ZAHARIA, M., KONWINSKI, A., JOSEPH, A. D., KATZ, R., AND STOICA,
I. Improving MapReduce Performance in Heterogeneous Environments. In
Proceedings of the 8th USENIX Symposium on Operating Systems Design and
Implementation (OSDI) (San Diego, CA, December 2008), USENIX Association,
pp. 29–42.

[37] ZHANG, H., ANANTHANARAYANAN, G., BODIK, P., PHILIPOSE, M., BAHL, P.,
AND FREEDMAN, M. J. Live Video Analytics at Scale with Approximation and
Delay-Tolerance. In Proceedings of the 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI) (Boston, MA, March 2017), USENIX
Association, pp. 377–392.

https://www.youtube.com/watch?v=wnhvanMdx4s
https://cloud.google.com/functions/
https://cloud.google.com/vision/
http://hadoop.apache.org/
https://kafka.apache.org/
https://azure.microsoft.com/en-us/services/cognitive-services/computer-vision/
https://azure.microsoft.com/en-us/services/cognitive-services/computer-vision/
https://www.youtube.com/watch?v=eMobkagZu64
https://aws.amazon.com/rekognition/
https://www.youtube.com/watch?v=qR5vOXbZsI4
http://spark.apache.org/
https://aws.amazon.com/step-functions/
https://www.youtube.com/watch?v=OHOpb2fS-cM
https://tez.apache.org
https://hortonworks.com/apache/yarn/

	Abstract
	1 Introduction
	2 Background
	3 Sprocket design
	3.1 Overview
	3.2 Application 1: Video filter
	3.3 Application 2: Facial Recognition
	3.4 Invoking and managing Lambdas
	3.5 Pipeline scheduling
	3.6 Straggler mitigation
	3.7 Programming Sprocket applications

	4 Evaluation
	4.1 Time breakdown
	4.2 Burst parallelism
	4.3 Streaming
	4.4 A complex pipeline
	4.5 Straggler mitigation
	4.6 Alternatives

	5 Conclusion
	References

