
Particle: Ephemeral Endpoints for Serverless
Networking

Shelby Thomas
UC San Diego

shelbyt@ucsd.edu

Lixiang Ao
UC San Diego

liao@eng.ucsd.edu

Geoffrey M. Voelker
UC San Diego

voelker@cs.ucsd.edu

George Porter
UC San Diego

gmporter@cs.ucsd.edu

Abstract
Burst-parallel serverless applications invoke thousands of
short-lived distributed functions to complete complex jobs
such as data analytics, video encoding, or compilation. While
these tasks execute in seconds, starting and configuring the
virtual network they rely on is a major bottleneck that can
consume up to 84% of total startup time. In this paper we
characterize the magnitude of this network cold start problem
in three popular overlay networks, Docker Swarm, Weave,
and Linux Overlay. We focus on end-to-end startup time that
encompasses both the time to boot a group of containers as
well as interconnecting them. Our primary observation is
that existing overlay approaches for serverless networking
scale poorly in short-lived serverless environments. Based
on our findings we develop Particle, a network stack tai-
lored for multi-node serverless overlay networks that opti-
mizes network creation without sacrificing multi-tenancy,
generality, or throughput. When integrated into a serverless
burst-parallel video processing pipeline, Particle improves
application runtime by 2.4–3× over existing overlays.

CCS Concepts
• Computer systems organization → Cloud comput-
ing.

Keywords
serverless, networking, burst parallel, lambda

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
SoCC ’20, October 19–21, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8137-6/20/10.
https://doi.org/10.1145/3419111.3421275

ACM Reference Format:
Shelby Thomas, Lixiang Ao, GeoffreyM. Voelker, and George Porter.
2020. Particle: Ephemeral Endpoints for Serverless Networking.
In ACM Symposium on Cloud Computing (SoCC ’20), October 19–
21, 2020, Virtual Event, USA. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3419111.3421275

1 Introduction
Serverless computing offers a high-level computing abstrac-
tion within the cloud computing landscape [18]. From a user
perspective, it simplifies application deployment since the
provider manages a much larger portion of resources in-
cluding network, OSes, runtimes, and libraries which allows
users to focus on their application code. Although providers
initially designed serverless platforms to support web and
API services, users can now launch thousands of parallel
“functions” within a few seconds, dramatically increasing the
elasticity of cloud computing resources.

A growing new use of these short-lived functions has been
the emergence of “burst-parallel” jobs. Burst-parallel jobs
are characterized as parallel tasks with very high fanout con-
sisting of thousands of serverless functions, all deployed by
a single user. Fouladi et al. [11] showed how to apply this
approach to video encoding, reducing the encoding time for
an industry-grade encoder from 149 minutes to 2.6 minutes.
Ao et al. [4] applied a similar model to develop a cloud-based
burst-parallel system for an end-to-end video processing
pipeline that performed 4× better than Spark on video pro-
cessing jobs. Compared to traditional serverless use cases, a
single job consisting of thousands of concurrent functions
has unique infrastructure requirements that current server-
less platforms do not support efficiently.
In particular, the networking layer underpinning server-

less platforms is particularly inefficient for burst-parallel
applications. These applications use hundreds of concurrent
serverless functions to complete complex tasks and, in lieu
of native peer-to-peer networking capabilities on serverless
platforms, must coordinate through intermediate storage [4,
10, 11, 20]. This workaround has been widely used thus far,

https://doi.org/10.1145/3419111.3421275
https://doi.org/10.1145/3419111.3421275

SoCC ’20, October 19–21, 2020, Virtual Event, USA Shelby Thomas, Lixiang Ao, Geoffrey M. Voelker, and George Porter

but is ad-hoc, application-specific, requires additional infras-
tructure services, and complicates user code. These draw-
backs are an impediment to efficiently supporting a wider
range of general burst-parallel data analytics, such as the
“shuffle” phase in MapReduce-like applications [8, 28], mes-
sage passing in typical scientific computing applications [12],
and vertex traversals in communication graphs of dataflow
systems [15, 24, 30].

While none of the major cloud providers today have burst-
parallel optimized networking capabilities, enabling this kind
of peer-to-peer networking has been of increasing interest
in industry [31] and academia [18]. Two workarounds have
been proposed, namely NAT hole punching and overlay net-
working, yet both have versatility and performance draw-
backs, as we describe later in this paper.
To demonstrate this point, consider an application built

with the Pywren [17, 29] runtime, shown in Figure 1. In
this experiment, 100 containers start simultaneously, each
performing a basic computation before sending an ack to
a leader node when completed. For all three conventional
approaches, starting 100 containers takes about 4.8 seconds.
This network overhead is 4x longer than the application run-
time, or 66–84% of the total serverless startup time; indeed,
the network startup overhead can even exceed actual appli-
cation execution. For burst-parallel applications, fast startup
time is critical, much in the same way that conventional
applications benefit from fast thread creation.

In this paper we characterize existing network approaches
for serverless and propose an optimized network stack, Par-
ticle, to reduce network overhead when setting up networks
for burst-parallel serverless jobs. Particle’s key insight is
that the network underpinning a burst-parallel job need not
provide isolation between a user’s containers, only between
containers of different users. This trade-off is similar to why
threads are more efficient to create as compared to processes,
due to the difference in inter-thread isolation guarantees.
We show that Particle can support a number of different
serverless frameworks.

To summarize, the contributions of this paper are:

• An evaluation of the challenges of serverless burst-
parallel networkingwith a focus on the network startup
problem.

• An evaluation of three different designs to overcome
network startup issues.

• A final design, Particle, that enables constant time net-
work creation and startup. We evaluate Particle with
microbenchmarks, serverless patterns, burst-parallel
applications, multi-tenant settings, and verify no ad-
verse effects on network throughput.

The source code for Particle is available at the following
URL: https://github.com/shelbyt/socc20particle.

Lin
ux

 Ove
rla

y

with
 EV

PN

Dock
er

Sw
arm

Ove
rla

y

Wea
ve

 Ove
rla

y

Pa
rtic

le
0

5

10

15

20

Ti
m

e
(s

)

Application Run
Network Startup
Container Startup

Figure 1: Time to connect 100 virtualized instances
to an overlay network. Network start time takes up
to 83% of the total startup time. When comparing to
Docker Swarm Particle reduces network setup by 32×,
reducing end-to-end start time by 3.5×.

2 Background and Motivation
Much effort on serverless systems has focused on container
startup time separate from the role of the network for inter-
function communication. As serverless evolves from inde-
pendent single functions to coordinated burst-parallel ap-
plications, fast, versatile, and scalable network creation be-
comes increasingly critical to satisfy the bursty nature of
this application class.
VXLAN-based overlay networks such as Weave, Linux

Overlay, and Docker Swarm were designed to accommodate
the versatility and scalability requirements of modern dat-
acenter networks, but their implementation is tailored to
support tens of strictly isolated long-running connections
rather than thousands of short-running ones.
We describe the underlying mechanism for how overlay

networks are architected today and benchmark each piece
of overlay network creation at both the application level
and kernel level. Our primary finding is that the overlay
data plane interacts with containers in a way that introduces
severe latency issues for many VXLAN-based overlays — an
issue that is exacerbated when interconnecting hundreds of
serverless functions. Fortunately, such a bottleneck provides
the opportunity for addressing the problem in a portable and
general manner.
Containerization is the most common isolation mecha-

nism in serverless platforms and is used by Google Function,
IBM OpenWhisk, and Azure Functions. Therefore we focus
the rest of the paper on containers as an execution platform.

https://github.com/shelbyt/socc20particle

Particle: Ephemeral Endpoints for Serverless Networking SoCC ’20, October 19–21, 2020, Virtual Event, USA

Total Connections / Nodes Connection Time (s)
101 / 1 15.74
404 / 4 15.66
1616 / 16 15.99

Table 1: Scaling Up Nodes: End-to-end startup time re-
mains relatively constant when increasing numbers
of nodeswhile keeping the number of connections per
node constant.

2.1 Overlay Data and Control Planes
The underlying technology that enables overlays is the VXLAN
protocol. VXLAN is an encapsulation protocol that wraps
packets from a container groupwith unique identifiers (VNIs)
that allow communication without compromising isolation.
Devices connected in this way then form an overlay network.
An overlay network consists of two distinct parts, the control
plane and the data plane. The control plane is an in-network
service that exists to manage overlay networks across mul-
tiple tenants. These connections are initiated by the data
plane within each host. The data plane, unlike the control
plane, exists only as long as the serverless application. It
is responsible for forwarding data to the correct containers
based on VNI, IP, and MAC address.

The VXLANdata plane requires each host to have a VXLAN
Tunnel Endpoint (VTEP) that is responsible for VXLAN ter-
mination and encapsulation. When a packet is sent from one
container to another using VXLAN, the VTEP on the host
encapsulates the original Ethernet frame from the container
with a VXLAN header. The encapsulated packet in turn is
sent out of the host with an outer IP and MAC header. When
another container receives the packet, the VTEP on the re-
ceiver side looks at the VNI and inner MAC addresses and
delivers the payload to the appropriate container.

Overlay networks also require a control plane to manage
VTEP routing information. The control plane keeps a map-
ping of host VTEPs, VNIs, and container MAC addresses.
When a container on one host sends data to a container on
a different host, the VTEP encapsulates the packet with the
VNI and checks locally if the routing information exists. If it
does not, the control plane is probed and then the packet is
routed with the new route. Control plane implementations
are diverse, with some using virtual routers [33], gossip pro-
tocols [9], BGP [6], and KVstores [7, 9].

The glue that holds both of these network planes together
is the network namespace. The Linux network namespace
mechanism creates new logical network stacks in the kernel
that each have their own network devices, neighbor and rout-
ing tables, /proc/net directories, and other network stack
state. A network namespace is created by calling unshare

Total Connections Namespace Setup Time (s)
100 10.02
400 38.90
1600 119.79

Table 2: Scaling Up Connections Per Node: In con-
trast to Table 1, increasing the number of connec-
tions/namespaces on a single node scales poorly.

or clone with a CLONE_NEWNET flag depending on the imple-
mentation. In the context of the overlay, the Virtual Ethernet
devices (VETH) are used as endpoints that then connect
namespaces together and can be configured to have MAC
and IP addresses.

Overheads with respect to the data plane are a function of
setting up namespaces, while overheads in the control plane
are a function of setting up routes. To understand which of
these place a larger burden on the application we perform a
scalability analysis for both.

2.2 Performance Bottlenecks
We aim to understand overlay performance bottlenecks with-
out being tied to any specific overlay approach. To this end,
we avoid using proprietary software for these microbench-
marks when possible and build our overlay network using na-
tive Linux commands to manage the data and control planes.
To ground our understanding of system overheads, we car-
ried out a small microbenchmark. This experiment ran on
Amazon AWS, using c5.4xlarge machines with Ubuntu 18.04
on Linux kernel 5.0.0-1004. We created a fully functional
overlay network using the BGP-based Quagga EVPN [5] as
the virtual router and the Linux native iproute2 v5.2.0 [14]
to manage Docker containers and namespaces.
Scaling Node Counts: We first determine whether adding
more nodes to an existing overlay network slows down the
control plane. To answer this question, we first launched
a 100-container cluster and created an overlay network in-
terconnecting the containers on each node. We varied the
number of nodes and recorded when new routes were added.
Table 1 summarizes our observations, showing the time re-
quired to start a Docker container, initiate the data plane,
connect to the control plane, and send data to a given re-
ceiver node. To increase the load on the BGP-based control
plane, we scale up the number of nodes (and thus endpoints
that connect to the control plane). The number of contain-
ers per host remains the same but the number that needs
to be connected increases linearly until 1600 containers are
networked. The extra connections are ones between VTEPs.
Takeaway: On 16 nodes the performance impact from the
control plane is negligible and within the margin of error at

SoCC ’20, October 19–21, 2020, Virtual Event, USA Shelby Thomas, Lixiang Ao, Geoffrey M. Voelker, and George Porter

84:1a:00:00:00:1a
10.0.0.10

❶

vxl42

host

host netns VTEP netns container netns

br42

vxl42

host

host netns VTEP netns

veth-l veth-g

veth-g
84:1a:00:00:00:1b
10.0.0.11

veth-g
84:1a:00:00:00:1a
10.0.0.10

84:1a:00:00:00:1c
10.0.0.12

veth-l

veth-l

Multiple Containers

Create a new network namespace
for container

br42

vxl42

host

host netns VTEP netns

br42
veth-l

veth-g

vxl42

host

host netns

br42

veth-l

veth-g

vxl42

host

host netns

br42

vxl42

host

host netns

br42

veth-g

vxl42

host

host netns

br42

veth-g

❷

❸ ❹

❻

veth-gveth-l

veth-l veth-l

IPM
A
C

container netns

container netns container netnsVTEP netns VTEP netns

container netnsVTEP netns container netnsVTEP netns

Container0

Container1

Container2

Create Guest and Local VETH

Move Guest VETH into Container Move Local VETH into VTEP

❺

Attach Local to VXLAN VNI Bridge
Up both VETH interface

Attach IP and MAC to Guest

Repeat steps for additional containers

Figure 2: Creating a new network interface for the
overlay dataplace involves a sequence of operations
that are repeated for each new container. We refer to
the network namespace as “netns”. Initially only the
VTEP, which communicates with the control plane,
exists. BR is the bridge interface and VXL is the
VXLAN interface attached to the bridge.

this observed scale. We will show that this outcome is not
the case for the data plane.
Increasing Connections On A Single Node: Next we character-
ize the impact on data plane performance and scalability of
adding containers to an overlay network. We create a single
overlay network on a node and connect it to the control
plane, varying the number of network namespaces added to
this overlay. We focus our analysis on the overhead of the
network namespaces themselves, rather than on container
creation time.

Step Time (s) Percent of Total

S1 0.10 0.92%
S2 0.10 0.92%
S3 5.18 47.71%
S4 4.77 43.95%
S5 0.49 4.45%
S6 0.22 2.03%

Table 3: Breakdown of the steps in Figure 2 for the
overlay data plane for 100 network namespaces. Most
time is spent moving VETH devices between names-
paces (steps S3 and S4).

Table 2 shows that the overall time increases linearly with
the number of namespaces attached to the overlay (unlike
what we observed with the control plane). Note that we
show only the time to instantiate the network data plane.
We measure scalability by varying the number of names-
paces attached to this overlay network. We observe that the
majority of the time is spent in the kernel.
Takeaway: Table 1 shows that end-to-end startup takes
15.74 seconds with 100 containers on one node. Table 2 shows
that most of this time goes to networking the namespace
together, more than 60% of the end-to-end startup time. As
the number of network namespaces increases, so does the
setup penalty. This lack of scalability is a major bottleneck
for burst-parallel deployments on serverless.

2.3 The Role of Network Namespaces
Figure 2 illustrates the steps involved in adding a new net-
work namespace to an overlay network. This process is sim-
ilar for all overlay network software using a VXLAN-based
overlay.

Initially the host instantiates a control plane namespace for
the VTEP and the host’s standard network namespace. First,
we create a new guest network namespace. Next, we create a
pair of VETH devices in the host namespace. From the host
namespace, we place these VETH devices into the network
namespace for the control plane and guest namespace. We
then tether the local VETH with the VTEP’s VXLAN and
bridge interface, and turn up the local and guest interfaces.
Finally, we establish a connection to the VTEP by setting an
IP and MAC for the guest network namespace. At this point
the guest is connected to the overlay and all data will transfer
through the appropriate VNI. These steps are repeated for
each new guest in the overlay network.

We further breakdown data plane creation by instrument-
ing the steps from Figure 2 with eBPF [22], and report relative
and absolute times for connecting 100 network namespaces
to the overlay. Table 3 breaks down execution time across

Particle: Ephemeral Endpoints for Serverless Networking SoCC ’20, October 19–21, 2020, Virtual Event, USA

Serverless Networks Isolated Low Latency IP Addressable L3 Solution Connection Type

NAT Hole Punching ✓ ✗ ✗ ✓✗ Point-to-point
Kubernetes Pods ✓ - ✗ ✗ Port multiplexing and volumes
Docker Host Networking ✗ ✓ ✓ ✓ Direct IP
Overlay Network ✓ ✗ ✓ ✓ Direct IP
Particle ✓ ✓ ✓ ✓ Direct IP

Table 4: Comparison of capabilities and challenges for different serverless networking options: A serverless net-
work solution must be suitable for a bursty low latency multi-tenant environment. Serverless systems must also
be able to work with Layer-3 connectivity and provide a per function IP for direct interfunction communica-
tion [32]. Today’s overlay networks have the appropriate control plane mechanisms for serverless environments
but have high network startup latency.

the steps shown in Figure 2. Most of the time is spent in two
steps, S3 and S4, and a negligible amount in others. While
most of the other steps from Figure 2 either configure a VETH
device or create a new one, S3 and S4 are the only ones that
perform a namespace crossing and move a network interface,
the VETH. The local VETH device is moved from the host
network namespace into the control plane network names-
pace and the guest VETH is moved from the host network
namespace into the guest network namespace.
Moving VETH devices is inherently expensive because

the dev_change_net_namespace kernel routine performs a
long-running task to ensure that the VETH device is safely
moved while holding the rtnetlink semaphore. When a
move is initiated, the kernel first informs all devices on the
notifier chain that the VETH is being unregistered. Next, it
removes the VETH device handle from the host namespace
and flushes old configurations. Finally, it updates the VETH
data structure to point to the new namespace, and informs
the namespace and notifier chain that the device is live.
In terms of scalability, when more guests are added to

the overlay each of these six steps are repeated, resulting
in three different unshare calls and two namespace moves
per container. This overhead accounts for the linear increase
in time in Table 2. A design for a burst-parallel overlay net-
work needs to address both the scalability and performance
challenges.

2.4 Challenges of Existing Approaches

Table 4 compares the capabilities and challenges for different
serverless networking options. Any serverless networking
approach must be suitable for a bursty low latency multi-
tenant environment and make minimum assumptions about
the network and application layer. Additionally, based on
previous work [13, 31, 32], serverless systems must also be
able to work with Layer-3 connectivity, as nodes hosting
lambda functions are not always Layer-2 adjacent.

Overlay networks are attractive because they fulfill most
of the requirements, but current implementations have signif-
icant performance overheads. Container orchestrators such
as Kubernetes use pods to consolidate containers under a
single namespace with one routable IP per pod because of the
“one-container-per-pod” commonly-used design pattern [25].
This approach potentially has higher startup latency as each
pod starts a container, a network namespace, and a pause con-
tainer. If we use hundreds of containers per pod to avoid this
overhead, each container will need to communicate through
application-managed port multiplexing or by creating a vol-
ume in the pod for containers to share. From a developer
standpoint, changing applications to have port multiplexing
logic and manage per-pod databases with related application
logic incurs significant engineering costs.

Other alternatives also have significant limitations. Using
the Docker host network fundamentally is not a multi-tenant
solution, and NAT hole punching requires creating multi-
ple point-to-point connection pairs, none of which are IP
addressable. Based on our evaluation of existing approaches,
we have designed Particle to satisfy existing serverless re-
quirements, and focus on the ability to quickly generate and
interconnect thousands of ephemeral network endpoints.

3 Particle Design

We present Particle, a networking architecture that optimizes
network startup in burst-parallel serverless environments.
Particle provides an ephemeral dynamically generated pool
of IPs at an almost constant startup time. Rather than us-
ing memory-intensive caching techniques, Particle creates
groups of network endpoints by first separating network
creation from other user namespaces, and then optimizes
the creation of network endpoints by eliminating serialisa-
tion points, batching calls, and consolidating VETH devices
while maintaining per-function IPs. In this way, Particle can
accelerate network namespace creation without any adverse
effect on capability or generality for applications. Particle

SoCC ’20, October 19–21, 2020, Virtual Event, USA Shelby Thomas, Lixiang Ao, Geoffrey M. Voelker, and George Porter

addresses the challenges from §2.4 through three design
principles:

Match Infrastructure to Application: Burst-parallel applica-
tions invoke hundreds to thousands of serverless instances
to complete a single complex job. Today’s underlying in-
frastructure is not optimized for the bursty nature of this
application class since each serverless task is treated as a
stateless independent function. Particle employs techniques
to consolidate network infrastructure without compromising
generality, programmability, or network versatility.

Generic Socket Interface: Containers that have their IPs
allocated by Particle must be able to communicate with each
other without the need for any specialized IPC protocol,
system, or storage. Accessing third party or network-hosted
services must also be possible. Containers must be able to use
POSIX socket calls to communicate with each other (§3.1).

Portability: Particle makes minimum assumptions about
the systemwhere it is deployed. Porting Particle to additional
overlay systems is straightforward as most overlays rely on
the default Docker runtime for network provisioning. When
integrated, Particle has no adverse effect on throughput.

3.1 Design Space Exploration
In this section we explore three different approaches for
optimizing network startup: (1) namespace consolidation, (2)
batching, and (3) virtual interface consolidation. We seek to
understand the trade-offs in each optimization to inform our
final Particle design. In Figure 3 we use microbenchmarks
that focus on network creation time to compare the designs,
and use the Linux Overlay data plane as the baseline (system
configuration details in §5).

Design 1: Namespace Consolidation Based on our findings
in §2.3, the network namespace itself is a contributor to high
startup latency. One way to address this problem is to adopt
what many container orchestrators such as Kubernetes [25]
and Amazon Elastic Containers [3] do when co-locating
related services under one network namespace and IP. These
services perform namespace consolidation to simplify the
management plane, but we can extend the traditional ‘one-
container-per-pod’ model to ‘many-containers-per-pod’ as
a performance optimization. This optimization is a natural
fit for a burst-parallel environment where many serverless
instances work together as part of a single task.
We explore this design by creating a new root network

namespace for groups of containers, but each container main-
tains separate kernel namespaces (mnt, pid, ipc, user, cgroup)
for other types of isolation. In this way namespaces can
also be created for each tenant, while individual contain-
ers operate without needing to change assumptions about
the environment. Each container is attached to the Particle

100 Endpoints

1000 Endpoints

0.53±0.04

0.55±0.01

Figure 3: Time to connect 100 and 1000 concurrent
network namespaces to an overlay. While the base-
line and other optimizations increase linearly with
more endpoints, VETH consolidation allows Particle’s
startup to remain close to constant when scaled up.

root namespace and inherits all of its iptables and routing
configuration without creating a network namespace itself.
Since we want each container to have an addressable and
routable IP address (§2.4), we create a VETH interface for
each container inside the namespace with an IP and MAC
address.

Microbenchmark results in Figure 3 show that this “shared
namespace” design has a modest performance benefit when
starting 1000 endpoints, but almost no performance impact
for 100 endpoints: shared namespaces alone do not address
the root issue shown in Table 3. When a new container is cre-
ated the overlay controller must create a VETH pair for each
new container and perform VETH moving. With a shared
namespace, the only difference is that, rather than moving
the VETH into a separate network namespace per container,
the VETH moves into the shared network namespace.
This optimization can be taken a step further if the host

namespace can be used rather than an additional shared
namespace. Doing so reduces the number of namespaces and

Particle: Ephemeral Endpoints for Serverless Networking SoCC ’20, October 19–21, 2020, Virtual Event, USA

it reduces one VETH move: the host namespace creates a
VETH pair and only moves the local end into the VTEP. The
trade-off is that this optimization does not match a multi-
tenant setting as there is no isolation of the host interfaces.

Design 2: Batching and IP Pooling Amajor disadvantage with
shared namespace consolidation is that, although it takes
advantage of the fact that burst-parallel tasks can be consoli-
dated within a single root network namespace, setting up the
network namespace itself was still performed iteratively. The
advantage to performing namespace consolidation is that it
reduces the complexity of managing many namespaces in
a burst-parallel environment. In the next design, we push
the ideas further by performing a batching optimization to
VETH creation inside the network namespace.

With batching, when a burst-parallel request is received,
the system creates an IP pool based on a specified IP range
and number of containers. Rather than wait until the con-
tainer is created, all the necessary virtual interfaces for the
data plane are created immediately and attached to the root
network namespace. Once complete, the system then enters
the control plane namespace of the overlay and sets up the
corresponding VETH devices and attaches them in batch
to the VXLAN port. One key benefit to batching is that it
reduces context switching and the number of unshare calls.
However, implementing batching alone still results in 𝑂 (𝑁)
namespace crossings and VETH movings.
For the same benchmark, Figure 3 shows that batching

provides a 22% improvement over a standard Linux Overlay
with 100 containers, and improves to 42% with 1000 contain-
ers. Although batching improves performance over Linux
Overlay and a simple shared namespace, the system still
performs many 𝑂 (𝑁) operations within the namespace, al-
beit batched. For example, 𝑁 different VETH devices, MAC
addresses, and IP addresses are still being created.

Final Design: Virtual Interface Consolidation The first two
designs develop a management plane, the root namespace,
and the insight that creating the network, VETH and IPs
in batches for a burst-parallel group improves performance.
Unfortunately, neither of these designs significantly reduces
the total number VETH devices that the system must create.
Table 3 shows that regardless of batching and namespace
consolidation, each VETH device created incurs an overhead.
Additionally, for each container created there are still 𝑂 (𝑁)
VETH devices created and 𝑂 (𝑁) VETH interfaces moved
across namespaces. The first two designs improve perfor-
mance, but do not address this last issue. As a final design
element, we focus on making VETH device creation a con-
stant time operation rather than a linear one. To do so, we
create a single VETH device inside the root namespace and
attach multiple IPs to this root VETH interface.

Burst parallel job is invoked

Particle Namespaces are provisioned
on multiple nodes. One namespace
per job per node.

Create one VETH device per node.
Multiple IP addresses are attached to
this device in a batch.

Containers are created and inherit the
VETH and IP pool from the Particle
Namspace. They immediately begin
using available IPs to transmit data
between each other and other nodes.

invoke (200, λ, 2)

node 1

VETH
node 0

node 1

Particle Net Namespace
VETH

node 0

node 1

node 0
Particle Net Namespace

Particle Net Namespace

IP IP

Figure 4: A Particle namespace with containers at-
tached. Only the network namespace is shared among
containers of a single application. Each Particle
namespace has its ownMAC address which is given to
the VTEP for routing. Multiple tenants have different
Particle namespaces.

In traditional overlay networks there is a one-to-one map-
ping between VETH device pairs and containers. This map-
ping is only necessary because each container resides in its
own isolated environment. We dispense with per-container
network isolation, attaching one VETH pair to the control
and data planes. Multiple IPs and MACs are then attached to
the root namespace’s single root VETH interface. From the
perspective of the control plane, all IP addresses attached to
a VXLAN interface are routed.
Figure 3 shows that this new one-to-many mapping be-

tween VETH interfaces and IP addresses improves perfor-
mance by an order of magnitude since only one namespace
crossing is required for one burst-parallel job. VETH con-
solidation improves performance by a factor of 17× when
creating 100 containers, and 213× with 1000 containers.
The absolute time to start 100 network namespaces is

534ms, and for 1000 network namespaces 553ms. The 534ms
comes from two parts, creating a new root network names-
pace and attaching the overlay. The root namespace starts as
a Docker containerwith only the loopback interface (—net=none)
which takes on average 300ms. The remaining 234ms is the
time to create the root VETH interface, attach it to the control
plane network namespace, and add IP addresses.

At a high level Particle systematically replaces expensive
O(N) “per-container” calls to be O(1) “per-job” calls. Based

SoCC ’20, October 19–21, 2020, Virtual Event, USA Shelby Thomas, Lixiang Ao, Geoffrey M. Voelker, and George Porter

br31

vxl31

VTEP netns

veth-l0 veth-guest1

84:1a:00:00:00:1c
10.0.0.11

10.0.0.10

Particle Guest 1 netnsParticle Guest 0 netns

84:1a:00:00:00:1b

10.0.0.10

10.0.0.11
br42

vxl42

veth-l1

Particle: Multitenant

veth-guest0

Guest 0
Container0

Guest 0
Container1

Guest 1
Container0

Guest 1
Container1

Host

Figure 5: Multitenancy with Particle: Each application has its own Particle namespace to maintain network isola-
tion from other tenants and the host. The control plane is responsible for provisioning extra VNIs in the form of
additional VXLAN interfaces for additional tenants. Designing an overlay this way also allows each guest to use
any IP address they want without restriction.

on our findings in §2.3 the creation of a container network
involves several kernel locks that effectively serialize net-
work creation. This overhead is exacerbated when trying to
create hundreds of serverless instances and corresponding
network endpoints to coordinate a single job.

Particle is designed to be integrated into existing overlay
networks with minimum changes. As described in §2.2, over-
lay networks consist of a control plane and data plane. While
the control plane varies among designs, all of them rely on a
similar data plane implementation as shown in Figure 2.

Burst-parallel applications have the property that the logi-
cal compute unit is a batch of serverless instances working to-
wards a single goal. As a result, while each container benefits
from the standard isolation guarantees (process, file system,
etc.), the network interface does not require strict isolation
among instances. Particle does, however, still enforce strict
network isolation from the host and other tenants.

Figure 4 illustrates Particle’s architecture. A single names-
pace and VETH device are created per tenant per node. Multi-
ple secondary IPs are then attached to the VETH device, cre-
ating an ephemeral per-job IP pool. The overlay enables these
IPs to be routable through its own policies and mechanisms.
Containers can then attach to available IPs and transmit data
between containers both intra- and inter-node. When the
job completes, Particle removes its namespace and IPs.
Figure 5 shows an example of VETH consolidation in a

multi-tenant setting. Each guest has its own Particle names-
pace with a MAC that is shared with the VTEP. A single
VETH interface can host thousands of secondary IP addresses
for any container sharing the Particle (root) namespace. Ap-
plications have several different options for how to interface
with this system.

3.2 Isolation and Application Interface
Consolidating VETH devices and namespaces of multiple
containers into one virtual device in one namespace can have
side effects for containers within an application. Separate
namespaces isolate network resources and provide security

isolation. If a container is compromised, other containers in
different namespaces are unaffected. Because Particle con-
solidates network namespaces, it cannot provide the same
granularity of security isolation. However, since Particle only
consolidates namespaces of the same tenant/application, and
different tenants are always isolated by separate namespaces,
we consider this tradeoff acceptable for application patterns
consisting of multiple serverless instances working together
as part of the same application.
Conceptually, applications request different IP addresses

for different containers, and Particle assigns those IPs to
avoid conflicts. However, if the application in the containers
do not respect the assignment, different containers for the
same application can interfere with each other by trying to
bind to the same IP address/port pair. One scenario where
this can happen inadvertently is when an application runs
multiple containers on the same host and shares a VETH
device via Particle. If they try to bind to the same port with
INADDR_ANY, a port conflict can occur. As a result, applica-
tions need to use the IP addresses assigned to them to avoid
such conflicts. Rather than relying on the application to use
the correct IP address, Particle can interpose by overriding
libc’s bind call (via an LD_PRELOAD mechanism) to ensure
that the IP address arguments match the IP addresses as-
signed to the container. If the application does not use the
dynamically-linked libc, or directly calls the bind syscall,
Linux Seccomp [16] provides a mechanism to enforce the
assignment of the IP addresses. Seccomp’s filter mode al-
lows specifying what arguments are acceptable for certain
syscalls, in this case, assigned IPs as arguments for bind.

4 Implementation

Particle is implemented in C and is integrated into the iproute2
tool included natively in Linux. Particle is not designed to
be used directly, rather it is a core module that exists within
an overlay system. As a result, Particle does not make any
assumptions about what kind of control plane is being used.

Particle: Ephemeral Endpoints for Serverless Networking SoCC ’20, October 19–21, 2020, Virtual Event, USA

100/1 200/2 400/4 800/8
Containers/Nodes

0

10

20

30

40

Ti
m

e
(s

)

Docker Swarm Overlay
Weave Overlay
Linux Overlay
Particle+Weave
Particle+Linux

Figure 6: Multi-node Aggregation Application: Total
time to start a group of containers, connect to an over-
lay, and coordinate an all-to-one aggregation job. Par-
ticle has no adverse effect on the overlay control plane
as more nodes are added.

Porting Particle to an existing overlay network requires
an adapter on the control and data plane side. For the data
plane, now overlay systems do not need to create a network
namespace when provisioning single containers. Addition-
ally, they must create one additional container that is passed
into Particle for the group namespace. For overlay systems
that use a key-value store, a control plane adapter is required
to pass the IPs into the database as a one-time operation.
In our evaluation we integrate Particle’s module into the

Linux Overlay and Weave Overlay systems. In both cases,
these overlays pass in the namespace of the VTEP and must
create a new container with no initial network. A pointer
to this network namespace is also passed into Particle. At
this point Particle has a handle to both a control plane net-
work namespace (VTEP) and data plane network namespace.
Based on howmany containers are requested, Particle initial-
izes the shared namespace with the same number of IPs. Con-
text is switched back to the existing overlay system which
advertises the route to the other members of the control
plane based on the Particle MAC address.

5 Evaluation
We first evaluate Particle’s startup performance for two com-
munication patterns: aggregation and shuffle [18]. Next we
evaluate Particle’s performance on a real-world burst-parallel
application, Sprocket. Finally, we look at Particle’s perfor-
mance in a multi-tenant setting.

In our experimentswe useAWSEC2 C5.4xlarge instances,
each with 24 vCPUs, 32 GB of memory, and 10 Gb/s network
bandwidth. All instances are in the same virtual private cloud

0 5 10 15 20 25 30
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Particle+Linux
Particle+Weave

Linux Overlay
Docker Swarm

Figure 7: Multi-Node Shuffle Application: CDFs of
messages sent in a shuffle application. 100 sender
and receivers on two nodes exchange 10,000 messages.
Overlays using Particle reduce startup time so appli-
cation code starts almost immediately.

(VPC) and placement group for stable network performance.
The instances run Ubuntu 18.04.2 LTS using a Linux 5.0.0
kernel with a default configuration. We use iproute2 ver-
sion 5.2.0, Quagga router version 1.0.0, and Docker version
19.03.1-ce.

By default we launch containers concurrently with an
optimal number of threads. We determine the optimal num-
ber by trying different values and choosing the one with
maximum throughput. Due to the demanding nature of the
burst-parallel benchmarks we let the applications themselves
determine the number of threads and run the application on
96 core C5.24xlarge machines with 192 GB of memory and
25Gb/s bandwidth.

5.1 Serverless Communication Patterns
We evaluate Particle’s performance at an application level by
measuring its time to complete data aggregation and shuffle
jobs. Because our focus is on container startup and network
initialization time instead of data transfer rates, we send
short synthetic messages in the data aggregation and shuffle
jobs. As a result, it provides an upper bound on how fast
data aggregation and shuffle jobs can be completed. By the
time the tests complete, all containers are started, and all
communication paths are established. This experiment is
performed on multiple nodes and evaluates Particle against
existing systems running the same job.We use Linux Overlay
with EVPN, Weave, and Docker Swarm Overlay as compari-
son points. Each of these systems uses the default overlay
configuration without additional parameters.

SoCC ’20, October 19–21, 2020, Virtual Event, USA Shelby Thomas, Lixiang Ao, Geoffrey M. Voelker, and George Porter

S
ta

ge
 1

S
ta

ge
 2

S
ta

ge
 3

Figure 8: Timeline of Video Processing Pipeline: Comparing Docker Swarm, Linux Overlay, and Particle perfor-
mance running a Sprocket video processing pipeline. Points on the 𝑥-axis represent the processing steps of a
single video chunk (decode, filter, and encode), ordered by completion time. Particle eliminates the bottleneck in
container startup, and runs 3× and 2.4× faster than Docker Swarm and Linux Overlay, respectively.

Aggregation. The aggregation benchmark tests an all-to-one
communication pattern in which many containers send a
short TCP message to one receiver container. Once created,
sending containers try establishing a TCP connection to the
receiving container until success. Figure 6 shows Particle’s
completion time compared to existing systems. We run 100
containers on each EC2 host, and we vary the number of
hosts from 1 to 16 and, hence, the total number of containers
from 100 to 1600.

Across multiple nodes Particle’s performance is around 7
seconds. Out of this time, starting the 100 Docker containers
on each node takes 5–6 seconds and starting Particle takes
500ms. The rest of the time is spent making the TCP con-
nection to the receiver and waiting for the receiver to send
back a timestamp message. Once the overhead of starting
Docker containers is included, the 17× improvement from
the microbenchmark is reduced to a 2–3× improvement.

While the performance of most systems remains constant
when increasing the number of nodes, Docker Swarm Over-
lay increases super linearly when usingmore than four nodes.
The Docker Overlay is a feature-rich control plane implemen-
tation that maintains global cluster state using RAFT [26]. In
the context of burst-parallel applications many of these fea-
tures such as load balancing and redundancy are less useful
on a per-container context. Rather, they need to be imple-
mented at a per-container-group granularity. Each container
group implements its own redundancy protocols within the
group [4] and each group needs to be load balanced.

Shuffle. Shuffle is a common communication pattern for data
analytics workloads [27]. In this experiment we launch the
same number of shuffle sender and receiver containers at
the same time. Immediately after launching, senders keep

Startup Data
Transfer

Data
Processing

Docker Swarm 69.86% 1.89% 28.25%
Linux Overlay 62.12% 2.50% 35.38%
Particle 17.77% 10.92% 71.31%

Table 5: Video Pipeline Breakdown: Percent of total
run time spent in different operations in three net-
works. We take the average of three runs. Particle
spends the most time in actual video data processing.

trying to establish TCP connections to all receivers. When
established, senders transmit short TCP messages to all the
receivers. We use two nodes with 100 containers per node,
totaling 10,000 messages sent.
Figure 7 shows the CDFs of sent shuffle messages using

different overlay systems. Our results show that the shuffle
application on overlays with Particle (Particle+LinuxOverlay
and Particle+Weave) outperform existing systems. (Standard
Weave is omitted as the bursty nature of the application
causes multiple IP conflicts in its control plane, which in-
creased shuffle time significantly.) Using Particle, nearly all of
the senders and receivers are able to create TCP connections
and exchange messages in 7–8 seconds, while on Docker
Overlay and Linux Overlay the time is much larger at 27–30
seconds and 20–22 seconds. These results are also consistent
with the results in Figure 6. In both applications, execution
time is dominated by network setup.

5.2 Burst-Parallel Video Processing
We evaluate Particle’s performance on a real-world burst-
parallel application, the Sprocket [4] video processing pipeline.

Particle: Ephemeral Endpoints for Serverless Networking SoCC ’20, October 19–21, 2020, Virtual Event, USA

Sprocket is a serverless system that takes a video as input and
first decodes it into frames. These frames are then subject to
various transforms such as object detection, facial recogni-
tion, or grayscale. After the transforms complete, the frames
are finally re-encoded. We ported Sprocket’s runtime to run
locally and changed its communication module to work with
Docker Swarm Overlay, Linux Overlay, and Particle+Linux
Overlay.
Each stage (decode, transform, encode) is processed on a

different nodes using 100 containers in each stage. The input
video consists of 100 one-second video chunks, which are
given as input to a first wave of 100 containers started at the
same time. Once each video chunk has finished a stage, it
signals the downstream service to start a new container and
pull data via the overlay network. The process is repeated
until the video chunk has passed through three stages.
Figure 8 shows the per-chunk processing timeline of a

Sprocket pipeline. Before each pipeline stage, the containers
must start and connect to the overlay network so data can
be sent to the downstream machines. With Docker Swarm
and Linux Overlay, the startup time dominates the overall
processing time. Even though each chunk is started simulta-
neously during the first stage, the network causes a serializa-
tion effect that prevents the system from being truly burst-
parallel. On subsequent stages, the containers are started
on-demand,i.e., as soon as a chunk has finished processing it
starts the next stage without a barrier. This freedom causes
subsequent stages to take relatively less time as there is re-
duced contention on the machine.

Particle eliminates the bottleneck in startup so that all con-
tainers are started within 2 seconds. As a result, the Sprocket
pipeline using Particle is 3× faster than using Docker Swarm
and 2.4× faster than Linux Overlay.
The increased data transfer time between the Particle

pipeline’s decode stage and filter stage is because the elim-
ination of serialization in container startup increases the
number of concurrent data transfers. This change shifts the
bottleneck to the network, temporarily congesting the net-
work and slowing down the transfer step; in other words,
Particle accelerates network startup to the point where net-
work throughput becomes the bottleneck. This effect does
not manifest between the filter and encode stages because
processing of the decode-filter stage effectively spreads out
the data transfer. When using Docker Swarm and Linux
Overlay, container startup is much slower, spreading out
data transfers between stages and preventing the system
from fully utilizing the network.

Table 5 summarizes the percentage of time spent on each
stage over three runs. Particle spends most of the time doing
data processing, while other overlay networks spend sub-
stantial time in the startup stage. Particle’s higher proportion

50x50 100x100
0

10

20

30

40

50

60

Ti
m

e
(s

)

Docker Swarm
Linux Overlay
Linux Overlay+Particle

Figure 9: Burst-parallel Sort: In this distributed map-
reduce sort, we measure the run time of Docker
Swarm, LinuxOverlay, andParticle. There are two con-
figurations: 50×50 containers sort 3.2 GB of data, and
100×100 containers sort 6.4GB of data. Particle is 1.22–
1.28× faster than Linux Overlay and 2.58–2.72× faster
than Docker Swarm.

of time in data transfer is a result of both reduced overall
execution time and the network saturation discussed above.
For a user paying for a serverless burst-parallel service,

Particle enables the cost of a job to reflect meaningful work
being done rather than infrastructure and setup time.

5.3 Burst-Parallel Sort
We evaluate Particle’s performance on a map-reduce sort
pipeline. Map-reduce sort has an all-to-all shuffle communi-
cation pattern, which is different from Sprocket. After the
same number of mapper and reducer containers are started,
mappers send different ranges of data values to different
reducers, which wait until the completion of all mappers to
start running quick-sort. All mappers are scheduled on one
node and all reducers on another. Each mapper processes
64MB of data, and each reducer processes about the same
amount. We compare the total run time of Docker Swarm,
Linux Overlay, and Particle with varying numbers of map-
pers and reducers.
Figure 9 shows the performance of burst-parallel sort on

Docker Swarm Overlay, Linux Overlay, and Particle+Linux
using 50×50, and 100×100 containers over two nodes. Par-
ticle has the shortest run time in both cases. These results
demonstrate Particle’s shorter container network setup time
has a direct improvement on application performance.

5.4 Multitenancy
Table 6 shows Particle’s performance running multiple ten-
ants on multiple nodes and compares it to a multi-node
single-tenant setting. The total number of containers per
machine is the same and we vary the number of tenants and

SoCC ’20, October 19–21, 2020, Virtual Event, USA Shelby Thomas, Lixiang Ao, Geoffrey M. Voelker, and George Porter

Tenants Containers
per Tenant

Runtime
per Tenant

Variance
per Tenant

1 100 6.93 -
2 50 6.92 0.07
5 20 7.06 0.06

Table 6: Multi-Tenancy Support: Time for a two-node
cluster to connect 200 containers with multiple ten-
ants and run the aggregation job. There is little notice-
able effect in performance and variance for tenants.

threads per tenant proportionally. For example, when one
tenant uses the machine it uses all 10 threads. When 2 ten-
ants use the machine each uses 5 threads, and with 5 tenants
each uses 2 threads. The small overhead when having more
tenants is from lock contention — like other overlays, Parti-
cle holds a lock during network creation as it must unshare
from the host net namespace to create a Particle namespace
— as well as co-location bottlenecks in Docker and in the
application.

5.5 Throughput
To verify that Particle does not have any effect on the net-
work datapath, we ran a simple test that creates an overlay
for 200 containers on two EC2 hosts. Each host runs 100 con-
tainers. We ran iPerf3 to test network throughput between
two randomly-chosen containers that are not on the same
host. We found no negative effect on throughput when com-
pared to Linux Overlay without Particle. This result confirms
our expectation, as Particle makes no changes to the actual
datapath that is responsible for packet transfer.

6 Discussion and Limitations
Multi-Node Scalability. Particle’s common use case is to
enable serverless networking for burst-parallel functions
(containers) that are distributed across multiple hosts. Mi-
crobenchmarking showed that the overlay control plane
connecting multiple hosts was not a bottleneck. This finding
led us to focus on optimizing bottlenecks on each node, and
evaluating the effect in a multi-node setting throughmultiple
experiments (§2.2).

As the number of namespaces on a single node increases,
namespace setup time increases proportionally. Particle solves
both of these problems by reducing namespace setup time
regardless of the number of namespaces. For jobs spanning
multiple hosts, Particle reduces setup time on each host on
which the job runs. Particle enables serverless providers to
increase the number of containers per machine without com-
promising application latency. If we need to interconnect 100
containers for a burst parallel job, the spectrum is 100 con-
tainers on 1 machine or 1 container on 100 machines. The

choice represents a trade-off between monetary cost and
performance. Particle closes the gap between these options
and enables a trade-off that improves performance without
sacrificing cost.

Application to General Serverless Workloads. Con-
tainers are often started on different hosts to reduce load and
improve the availability of the serverless functions. Particle
is an optimization using overlay networks to address this
multi-node case. Figure 2 shows the six steps necessary to
setup an overlay network. A management container is not
necessary to set up a network between containers on a single
host, a bridge will suffice. The advantage of Particle is that it
enables users to write programs as if they are still using a
bridge, but the containers are available across multiple nodes.
Particle is primarily optimized for this multi-node use case.
This paper shows that container overlays are one way

that a serverless cloud provider can implement serverless
networking. Unfortunately, overlay networks today are not
optimized for this use case. With Particle, overlay networks
can be created with a negligible amount of overhead on
multiple nodes with thousands of serverless functions.
While Particle was motivated by burst-parallel applica-

tions, the lessons learned are not limited to it. The experi-
ments show that the network namespace itself is a source of
inefficiency in serverless, and a design like Particle can ad-
dress this issue, achieving the greatest benefits if the VETH
and/or namespace can be consolidated. If they cannot, the
network namespace may be reused across multiple calls (also
reducing cold start at the cost of higher memory usage).

Jobs and Network Namespace Sharing. In this paper
we define a job as a single invocation of a computation run
by one user. As a Particle namespace is cheap to create, the
isolation level can be modified without loss of performance.
On one extreme, a Particle namespace can be created for
each tenant. In this case jobs that a tenant runs would not be
isolated (Figure 5). At the other, every job can have its own
Particle namespace that exists just for the job. The design
enables providers to choose what isolation model in this
spectrum is most appropriate for their use case.

Particle chooses to only relax the isolation of the network
namespace to ensure that, if a single function fails, it does
not cause a domino effect that corrupts other parts of the
system (e.g., the file system)which in turn could cause further
function failure.

7 Related Work

Container Orchestrators. Kubernetes and Amazon Elas-
tic Containers use shared namespaces to simplify service
management between shared jobs in a pod or task group.
However, employing this method alone does not appreciably
change startup latency, as discussed in §2.4 and §3.1.

Particle: Ephemeral Endpoints for Serverless Networking SoCC ’20, October 19–21, 2020, Virtual Event, USA

Communication Alternatives. Pocket [20] is an interme-
diate storage layer for burst parallelism that employs multi-
ple storage media (e.g., a Redis key-value store, AWS S3, etc.)
to accommodate different workloads in a cost-efficient way.
Locus [27] focuses on shuffle performance in burst-parallel
applications. It uses a performance model to select the ap-
propriate storage medium in the cloud. SAND [2] proposes a
message queue approach for inter-container communication.
While these systems improve on existing communication
mechanisms, they incur extra infrastructure costs and lack
the generality of a direct communication mechanism. Shred-
der [34] takes a completely different approach by performing
compute directly inside storage nodes.
Alternative Virtualization Layers. Particle focuses on op-
timizing network startup for container-based serverless sys-
tems since containers are a dominant virtualization plat-
form. However, Kata [19] and Firecracker [1] have proposed
an alternate serverless virtualization architecture using mi-
croVMs. These microVMs employ TUN-TAP devices to build
an overlay network rather than network namespaces, and
therefore represent an entirely different approach to net-
working. As a result, evaluating and optimizing network
startup and configuration in these architectures is an inter-
esting open question.
Container Network Setup. Mohan et al. [23] identify that
network creation and initialization account for the majority
of latency in bursty container creation. They extend the idea
of Pause containers [21] to pre-create network namespaces
that can later be attached to new containers. This technique
is effective but it introduces security issues in a multi-tenant
setting as new containers are reusing cached network names-
paces. Additionally, the caching overhead is linear with the
number of namespaces, i.e., memory usage increases with
more containers attached to the network. Particle only needs
to create a single network namespace for a group of con-
tainers, making it faster and more memory efficient than the
caching technique.

8 Conclusion
As serverless evolves to accommodate next generation ap-
plications such as burst-parallel, we need to reconsider long
held notions about serverless design patterns. We take for
granted that a long-running application will amortize costs
for certain one-time operations, such as setting up infras-
tructure but in serverless burst-parallel, these one-time op-
erations are repeated hundreds of times and the cost is paid
on each invocation. In this paper we focused on a key bot-
tleneck for burst-parallel applications, network startup time.
We found that provisioning the network can be a signifi-
cant portion of execution time. We closely examined the
overheads in establishing connectivity among containers in
overlay networks and designed a system, Particle, to address

these issues. Particle maintains serverless application re-
quirements of generality, versatility, and multitenancy while
providing near constant network startup time on single and
multi-node deployments. We show that in these scenarios
Particle improves total application runtime by at least a fac-
tor of two over existing solutions. Particle shows that it is
possible to enable serverless networking in multi-node de-
ployments without compromising speed.

9 Acknowledgements
This work is supported by the National Science Foundation
through grants CNS-1564185, CNS-1629973, CNS-1553490,
and CNS-1763260 as well as a generous gift from Google,
Inc. We would like to thank Tim Wagner for advice on this
work as well as the anonymous SoCC reviewers for their
useful feedback. We are also very grateful to Cindy Moore
for managing software and systems used in this project.

References
[1] Alexandru Agache, Marc Brooker, Andreea Florescu, Alexandra Ior-

dache, Anthony Liguori, Rolf Neugebauer, Phil Piwonka, and Diana-
Maria Popa. Firecracker: Lightweight Virtualization for Serverless
Applications. In 17th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 20), Santa Clara, CA, February 2020.
USENIX Association.

[2] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel Stein, Klaus
Satzke, Andre Beck, Paarijaat Aditya, and Volker Hilt. SAND: Towards
High-performance Serverless Computing. In Proceedings of the 2018
USENIX Annual Technical Conference, USENIX ATC’18, pages 923–935,
Berkeley, CA, USA, 2018. USENIX Association.

[3] Amazon Web Services. Amazon Elastic Container Service. https:
//aws.amazon.com/ecs/, 2020.

[4] Lixiang Ao, Liz Izhikevich, Geoffrey M. Voelker, and George Porter.
Sprocket: A Serverless Video Processing Framework. In Proceedings
of the ACM Symposium on Cloud Computing, SoCC’18, pages 263–274.
ACM, 2018.

[5] ARM. Quagga Routing Suite. https://www.nongnu.org/quagga/, 2018.
[6] Calico. Calico. https://www.projectcalico.org/, 2019.
[7] CoreOS. Flannel. https://coreos.com/flannel, 2019.
[8] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data

Processing on Large Clusters. Communications of the ACM, 51(1):107–
113, January 2008.

[9] Docker. Docker. https://www.docker.com/, 2017.
[10] Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li, Shuvo Chatterjee,

Christos Kozyrakis, Matei Zaharia, and Keith Winstein. From Laptop
to Lambda: Outsourcing Everyday Jobs to Thousands of Transient
Functional Containers. In Proceedings of the 2019 USENIX Annual
Technical Conference, USENIX ATC’19, pages 475–488, 2019.

[11] Sadjad Fouladi, Riad S Wahby, Brennan Shacklett, Karthikeyan Vasuki
Balasubramaniam, William Zeng, Rahul Bhalerao, Anirudh Sivara-
man, George Porter, and Keith Winstein. Encoding, Fast and Slow:
Low-Latency Video Processing using Thousands of Tiny Threads. In
Proceedings of the 14th USENIX Symposium on Networked Systems De-
sign and Implementation, NSDI’17, pages 363–376, 2017.

[12] Richard L Graham, Timothy S Woodall, and Jeffrey M Squyres. Open
MPI: A Flexible High Performance MPI. In Proceedings of the 6th
International Conference on Parallel Processing and AppliedMathematics,
PPAM’05, pages 228–239. Springer, 2005.

https://aws.amazon.com/ecs/
https://aws.amazon.com/ecs/
https://www.nongnu.org/quagga/
https://www.projectcalico.org/
https://coreos.com/flannel
https://www.docker.com/

SoCC ’20, October 19–21, 2020, Virtual Event, USA Shelby Thomas, Lixiang Ao, Geoffrey M. Voelker, and George Porter

[13] IBM. OpenWhisk Github. https://github.com/apache/openwhisk, 2020.
[14] iproute2. Iproute2 routing commands. https://git.kernel.org/pub/scm/

network/iproute2/iproute2.git, 2019.
[15] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis

Fetterly. Dryad: Distributed Data-parallel Programs from Sequential
Building Blocks. In Proceedings of the 2nd ACM European Conference
on Computer Systems, EuroSys 07, pages 59–72, Lisbon, Portugal, 2007.
ACM.

[16] Jake Edge. A seccomp overview. https://lwn.net/Articles/656307/,
2015.

[17] Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Stoica, and Ben-
jamin Recht. Occupy the Cloud: Distributed Computing for the 99%.
In Proceedings of the 2017 Symposium on Cloud Computing, SoCC’17,
pages 445–451, New York, NY, USA, 2017. ACM.

[18] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai,
Anurag Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Carreira, Karl
Krauth, Neeraja Yadwadkar, et al. Cloud Programming Simpli-
fied: A Berkeley View on Serverless Computing. arXiv preprint
arXiv:1902.03383, 2019.

[19] Kata Containers. Kata Containers. https://katacontainers.io/, 2020.
[20] Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh Trivedi, Jonas

Pfefferle, and Christos Kozyrakis. Pocket: Elastic Ephemeral Storage
for Serverless Analytics. In Proceedings of the 13th USENIX Symposium
on Operating Systems Design and Implementation, OSDI 18, pages 427–
444, 2018.

[21] Ian Lewis. The Almighty Pause Container. https://www.ianlewis.org/
en/almighty-pause- container, October 2017.

[22] Matt Fleming. A thorough introduction to eBPF. https://lwn.net/
Articles/740157/, 2017.

[23] Anup Mohan, Harshad Sane, Kshitij Doshi, Saikrishna Edupuganti,
Naren Nayak, and Vadim Sukhomlinov. Agile Cold Starts for Scalable
Serverless. In Proceedings of the 11th USENIX Workshop on Hot Topics
in Cloud Computing, HotCloud’19, 2019.

[24] Derek G. Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul
Barham, and Martín Abadi. Naiad: A Timely Dataflow System. In Pro-
ceedings of the Twenty-Fourth ACM Symposium on Operating Systems
Principles, SOSP’13, pages 439–455, New York, NY, USA, 2013. ACM.

[25] Official Kubernetes. Pod Overview. https://kubernetes.io/docs/
concepts/workloads/pods/pod-overview/, 2020.

[26] Diego Ongaro and John Ousterhout. In Search of an Understandable
Consensus Algorithm. In Proceedings of the 2014 USENIX Annual
Technical Conference, USENIX ATC’14, pages 305–320, Berkeley, CA,
USA, 2014. USENIX Association.

[27] Qifan Pu, Shivaram Venkataraman, and Ion Stoica. Shuffling, Fast
and Slow: Scalable Analytics on Serverless Infrastructure. In Proceed-
ings of the 16th USENIX Symposium on Networked Systems Design and
Implementation, NSDI 19, pages 193–206, 2019.

[28] Alexander Rasmussen, George Porter, Michael Conley, Harsha V. Mad-
hyastha, Radhika Niranjan Mysore, Alexander Pucher, and Amin Vah-
dat. TritonSort: A Balanced Large-scale Sorting System. In Proceedings
of the 8th USENIX Conference on Networked Systems Design and Imple-
mentation, NSDI’11, pages 29–42, Berkeley, CA, USA, 2011. USENIX
Association.

[29] Josep Sampé, Gil Vernik, Marc Sánchez-Artigas, and Pedro García-
López. Serverless Data Analytics in the IBM Cloud. In Proceedings of
the 19th International Middleware Conference Industry, Middleware ’18,
pages 1–8, New York, NY, USA, 2018. ACM.

[30] Apache Spark. http://spark.apache.org/.
[31] Tim Wagner. Serverless Networking is the next step in the evolution

of serverless. https://bit.ly/30kFoY9, 2019.
[32] Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart, and

Michael Swift. Peeking Behind the Curtains of Serverless Platforms. In

Proceedings of the 2018 USENIX Annual Technical Conference, USENIX
ATC’18, pages 133–145, Boston, MA, July 2018. USENIX Association.

[33] Simple, resilient multi-host containers networking and more. https:
//github.com/weaveworks/weave.

[34] Tian Zhang, Dong Xie, Feifei Li, and Ryan Stutsman. Narrowing
the gap between serverless and its state with storage functions. In
Proceedings of the ACM Symposium on Cloud Computing, SoCC ’19,
page 1–12, New York, NY, USA, 2019. Association for Computing
Machinery.

https://github.com/apache/openwhisk
https://git.kernel.org/pub/scm/network/iproute2/iproute2.git
https://git.kernel.org/pub/scm/network/iproute2/iproute2.git
https://lwn.net/Articles/656307/
https://katacontainers.io/
https://www.ianlewis.org/en/almighty-pause-
https://www.ianlewis.org/en/almighty-pause-
container
https://lwn.net/Articles/740157/
https://lwn.net/Articles/740157/
https://kubernetes.io/docs/concepts/workloads/pods/pod-overview/
https://kubernetes.io/docs/concepts/workloads/pods/pod-overview/
http://spark.apache.org/
https://bit.ly/30kFoY9
https://github.com/weaveworks/weave
https://github.com/weaveworks/weave

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Overlay Data and Control Planes
	2.2 Performance Bottlenecks
	2.3 The Role of Network Namespaces
	2.4 Challenges of Existing Approaches

	3 Particle Design
	3.1 Design Space Exploration
	3.2 Isolation and Application Interface

	4 Implementation
	5 Evaluation
	5.1 Serverless Communication Patterns
	5.2 Burst-Parallel Video Processing
	5.3 Burst-Parallel Sort
	5.4 Multitenancy
	5.5 Throughput

	6 Discussion and Limitations
	7 Related Work
	8 Conclusion
	9 Acknowledgements
	References

