
Malicious Browser Extensions at Scale:
Bridging the Observability Gap between Web Site and Browser

Louis F. DeKoven1, Stefan Savage1, Geoffrey M. Voelker1, and Nektarios Leontiadis2

1University of California, San Diego 2Facebook

Abstract
Browser extensions enhance the user experience in a va-
riety of ways. However, to support these expanded ser-
vices, extensions are provided with elevated privileges
that have made them an attractive vector for attackers
seeking to exploit Internet services. Such attacks are par-
ticularly vexing for the sites being abused because there
is no standard mechanism for identifying which exten-
sions are running on a user’s browser, nor is there an es-
tablished mechanism for limiting the distribution of ma-
licious extensions even when identified.

In this paper we describe an approach used at Face-
book for dealing with this problem. We present a
methodology whereby users exhibiting suspicious online
behaviors are scanned (with permission) to identify the
set of extensions in their browser, and those extensions
are in turn labelled based on the threat indicators they
contain. We have employed this methodology at Face-
book for six weeks, identifying more than 1700 lexically
distinct malicious extensions. We use this labelling to
drive user device clean-up efforts as well to report to anti-
malware and browser vendors.

1 Introduction
Today, Web browsers encapsulate dynamic code, interact
with users and are implicated in virtually every activity
performed on computers from e-mail to game playing.
While some of these activities have been made possible
by enhancements to the standard languages and capabil-
ities supported by the browsers themselves, many oth-
ers are made possible via browser extensions designed to
augment this baseline functionality.

Notably, browser extensions enable customization not
only with respect to visual appearance (e.g., by chang-
ing the look and feel of the browser), but also on a deep
behavioral level (i.e., in the way the browser interacts
with Web sites). Browsers enable the latter functional-
ity by allowing extensions to use a set of permissions
that Web sites do not normally have. For example, ex-
tensions are capable of modifying HTTP headers, by-
passing the Content Security Policy (CSP) [13] set by
Web site owners and hiding the results of any actions by
rewriting Web site content before it is displayed. These

capabilities allow extensions to offer complex and rich
modifications to the user experience and support the im-
plementation of services that would otherwise be impos-
sible to implement. However, these same capabilities can
provide a powerful vehicle for performing malicious at-
tacks [3]. Unsurprisingly, this problem has evolved from
one of abstract potential into a concrete threat, and today
the problem of Malicious Browser Extensions (MBE) is
widely understood to be real and growing [3,7,8,10,11].
We consider MBEs to be extensions that take actions on
behalf of a user without their consent, or replace Face-
book’s key functionality or content.

Unfortunately, detecting MBEs is challenging because
the malicious nature of a given extension can manifest
dynamically and the online targets of its abuse have no
natural way to attribute those behaviors back to partic-
ular extensions. More concretely, while a browser ven-
dor or extension marketplace is in a position to inspect
extension code, inferring malicious intent may not be
possible from that vantage point. In addition to the tra-
ditional challenges with such code analysis approaches
(e.g., polymorphic encoding), extensions routinely fetch
resources from third-party sites and, as a result, an exten-
sion may only exhibit malicious actions at certain times
or when certain Web services are visited. Conversely,
from the vantage point of a targeted Web service, abu-
sive actions may be clear, but the source of those actions
can be murky. Extensions frequently hide by emulating
a normal user’s interactions and there are no standard
mechanisms to link browser actions back to a particular
extension (or even to enumerate the extensions present
on a user’s browser). Indeed, because the viewpoint of
the Web service provider is limited to the Document Ob-
ject Model (DOM) there is no shared language by which
they can crisply share threat intelligence with browser
vendors or extension marketplaces.

In this paper, we have started to bridge this gap be-
tween the Web site and browser vantage points, which we
believe will enable more effective interventions against
the threat of MBEs. In particular, we examine MBEs
from the perspective of Facebook — which, among oth-
ers, is extensively targeted by such extensions (e.g. [7]).
We describe our approach for automatically collecting

browser extensions of interest, detecting the malicious
ones (within seconds of reaching Facebook’s infrastruc-
ture) and then working to remove such extensions from
our customer ecosystem. In particular, this paper de-
scribes the following contributions:

• A methodology for collecting browser extensions
from devices suspected of malware compromise.

• A methodology for automated labeling of malicious
extensions using indicators we extract from the col-
lected samples and threat indicators previously as-
sociated with abusive behavior.

• Deploying this methodology at Facebook, we iden-
tify more than 1700 malicious Chrome and Fire-
fox extensions1 out of a total of more than 34000
scanned extensions during a 6-week period span-
ning late 2016 into 2017.

• We show that existing anti-malware and anti-abuse
mechanisms only offer limited effectiveness against
MBEs, addressing a small fraction of the samples
we detect (and with far greater delay when they do).

The remainder of this paper is organized as follows:
Section 2 provides an overview of browser extensions
and related work; Section 3 outlines Facebook’s ap-
proach for detecting compromised user accounts, and
collecting and analyzing browser extensions; Section 4
describes the automated extension labeling system, and
Section 5 evaluates it, characterizing the volume of ex-
tensions Facebook deals with and system behavior over
time; Section 6 motivates the need for the new labeling
system; and Section 7 concludes.

2 Background
Browser authors have tried to provide as dynamic and
programmable experience as possible, but inevitably
some applications have required capabilities beyond
those provided via standard Web programming inter-
faces. To address this need, virtually all major browsers
support extension interfaces. Extensions written to these
interfaces are allowed to execute code, interact with the
browser core and initiate network calls — all indepen-
dent of particular Web pages being viewed. While exten-
sions can use a variety of technologies and languages, for
this paper we will be focusing on HTML and JavaScript
(JS) which are used predominantly in the development of
Chrome and Firefox extensions.

Because browser extensions are given permission to
interact with the browser in manners that would other-
wise be classified as “high-risk” [9], there is a range of

1While most recent browsers support extensions (e.g. Safari, Opera,
Internet Explorer, etc.), we focus on Chrome and Firefox since visitors
using these two browsers constitute 54% and 13% of browser traffic
respectively seen per day at Facebook.

opportunities to enable malicious behavior. For example,
extensions can violate typical cross-site request forgery
(CSRF) or cross-site scripting (XSS) protections, inject
arbitrary code in a page’s DOM, rewrite its content, and
access Web traffic as a page is being loaded (including all
cookies and POST parameters). Indeed, the permissions
available are sufficiently powerful that they can even pre-
vent the user from removing an extension once loaded.

Users frequently load browser extensions via online
marketplaces (e.g., the Chrome Web store), which try to
vet both code and authors, and remove extensions that are
clearly abusive. However, browsers also allow a range of
alternate “sideloading” options including manual instal-
lation, operating system administrative policies, and na-
tive binaries. While browser vendors are actively reduc-
ing such sideloading opportunities, attackers have shown
great creativity in bypassing ad hoc limits. Moreover,
even when the browser is configured to prevent sideload-
ing, we have observed one class of malware (BePush)
enabling sideloading by simply installing an older ver-
sion of the browser that lacks such protections.

These issues have been understood for some time, with
Dhawan and Ganapathy identifying early malicious ex-
tensions in 2009 and proposing techniques to protect
against them [3]. Researchers have shown similar prob-
lems exist in modern browsers [2, 5, 9, 12] and large-
scale empirical measurements [8] and operational expe-
rience [7] show that malicious browser extensions are a
widespread problem. Much of the existing research in
this space has focused on how to either better harden the
browser [4, 6, 9, 10] or to provide a better mechanism for
vetting code in extension marketplaces [1].

Our work builds on ideas from these prior efforts. Our
approach is data driven, like the work of Jagpal et al. [7]
and Kapravelos et al. [8], but is based on static analy-
sis using Facebook’s own contemporaneous threat indi-
cator data (e.g., abusive domains / URLs) to label exten-
sions. This allows our approach to be browser-agnostic
and adapt quickly to changes in the kinds of abuse be-
ing perpetrated on Facebook. Of course, Rice’s theorem
says there is no way to figure out whether a piece of code
will be malicious, so there is no way to make a promise to
catch every MBE. We further describe a soup-to-nuts op-
erational workflow — including how we obtain samples,
process and label them, and remediate affected users.

3 Collecting browser malware
Facebook has collected more than 1 700 unique mali-
cious samples over the 6-week analysis period.2 Natu-
rally, manual analysis of extensions at this scale is in-
feasible, so Facebook has developed new techniques to
automate the collection and analysis of samples.

2Uniqueness is based on MD5 hashes of extension contents.

Logged in

user

Clustering

&

Classifiers

 User action

Non-malicious

Enroll in

scanMalicious action

Should

Scan?

Logout

userNo, Log in

Malware

Cleanup

Yes

Malware

 Scan

Logged out

user

Login attempt

2. Scanner dl, run

1. User consent

3. Upload MD5

Fetch MD5 status

New

sample?
Yes, go to 5

Store Unpack Indicator Extraction
5. Upload sample

Store indicators

(go to 4)

S3.1

S3.3

S3.2

4. No, remove if bad

Figure 1: An overview of our system highlighting the detection, malware scanner, and static analysis steps. The dashed
arrows describe normal user interaction, and solid arrows are transitions within the described system.

In this section we describe some of the ways Facebook
detects malware-compromised user accounts. We further
outline what happens after detecting such accounts and,
specifically, how we collect and analyze the responsible
malware samples from malware victims’ computers via a
custom malware scanner. Finally, we report on the initial
analysis we perform on the collected extensions.

3.1 Detecting compromised user accounts
The process of acquiring new malware samples starts by
detecting user accounts suspected of being compromised
with malware. At a high level, this process is guided
by the clustering and classification systems (shown in
Figure 1) using as input (i) signals of abnormal ac-
tivity, (ii) client-side third-party injected code in Face-
book’s DOM, (iii) and user-reported objectionable con-
tent. While the detailed process of detecting malware-
compromised accounts is mainly beyond the scope of
this work, in the following paragraphs we present some
examples of related signals.

Negative Feedback. In the event a user account is
compromised with malware, the malware may attempt
to either use the compromised account for monetization
— e.g. by posting links that redirect to ad-filled pages
— or to spread the infection by posting links to malware.
The latter usually happens via clickbait. In either case,
Facebook users have the ability to report the content as
objectionable (e.g. abusive, malicious, etc.), and links to
such content may eventually get blacklisted.

Spiking Content. Facebook’s real-time abuse detec-
tion systems monitor the time series of user activity to
detect anomalies based on diurnal patterns of normal ac-
tivity. Such anomalies fall into two high-level categories:

anomalies that can be remediated automatically, and ones
that need an analyst to examine and take action.

An example of the latter case would be auto-generated
objectionable content being shared on Facebook (e.g.
adult content) with similar characteristics, e.g. direct-
ing viewers to the same external domain that results in
a drive-by malware infection. In such a case, the ana-
lyst would typically add the related domains to a blacklist
and enqueue the users participating in such activity into
a malware cleanup flow. Anomalies that can be auto-
remediated are either simple anomalies that make use
of other high quality signals (e.g. spiking negative feed-
back) or anomalies that have been previously seen and
the responses are already codified.

DOM-based indicators. Facebook uses client-side
code to self-inspect its own rendered DOM for injected
third-party code. One challenge with client-side code is
that a MBE may attempt to prevent such code from run-
ning. In the event third-party code is discovered, code-
specific features are analyzed by Facebook’s clustering
and classification systems. When features related to mal-
ware are identified, users’ devices containing such fea-
tures may get enrolled into a malware cleanup flow.

3.2 Malware scanner and cleanup
Once Facebook identifies an account suspected of hav-
ing been compromised by malware, the account may be
enrolled in a process that is capable of detecting and re-
mediating malware via an online scan session.3 This pro-
cess is shown in Figure 1 under “Malware Cleanup”. Fol-
lowing user consent (see Figure 2), the user downloads
a one-time malware scanner that runs on the potentially

3If the account was recently enrolled, it may not be re-enrolled.

Figure 2: The user consent prompt explaining actions
the Facebook scanner will take if the user agrees. In this
instance the scanner is paired with a third party scanner
responsible for removing other types of infections.

compromised system. If user consent is not provided, the
user can continue to access their account using other de-
vices. After a cool-down period the potentially-infected
device is allowed to access Facebook again.

Once the scanner process starts, it inspects locations
on the file system known to hold Firefox and Chrome
extensions. For each observed sample, the scanner com-
municates the file hash with Facebook’s infrastructure,
which in turn provides a verdict on whether Facebook
believes the sample is malicious. Suspicious extensions
or files that have not been seen before (e.g. based on their
extension ID) are uploaded to Facebook’s infrastructure
for real-time analysis. When Facebook’s server-side in-
frastructure indicates to the scanner that a sample is mali-
cious, the scanner attempts to start a cleanup routine that
removes the offending sample.

3.3 Static analysis
After the we collect and store samples on ThreatEx-
change4 – Facebook’s threat intelligence infrastructure
– and while the malware scanner is still running on the
user’s device, we initiate a static analysis pipeline that
extracts threat intelligence from the samples.

Our decision for using a static versus a dynamic anal-
ysis is based on the understanding that the specific ma-
licious extensions being analyzed are already exhibit-
ing their malicious behavior at collection time. Conse-
quently, we do not have to overcome issues of, e.g., time-
gating that a dynamic analysis would be helpful for [7].
Although we execute several distinct analysis functions,
the following three are relevant to this paper.

Unpacking. We start by unpacking the sample. Then,
we recursively schedule analysis for any files contained
within the extracted object. This function can be unsafe
in the case where the archive is compressed and has ma-
licious intent, which we handle via sanity checks, such
as a limited recursion depth.

4https://developers.facebook.com/products/
threat-exchange

Indicator extraction. We attempt to extract threat
indicators from each potential malware sample without
parsing binaries or code. Instead, we treat each file as a
plain text document. This approach, although naive, still
generates actionable intelligence from each sample.

We use a series of regular expressions to extract Uni-
form Resource Locators (URLs), IP addresses, domain
names, cryptographic hashes, browser extension IDs,
and email addresses. In addition, we attempt to deob-
fuscate, decompress, decode, and otherwise clean up the
code contained in the extensions we analyze. We also
make reasonable effort to repair broken URLs and other
malformed data. Once we have the set of initially ex-
tracted indicators, we make a second pass, but this time
on the extracted data. During this pass we attempt to find
more indicators using the type of the original indicator
as a clue. For example, for URL indicators that contain
API keys, the first pass extracts the URL and the second
pass extracts the API key from the URL.

External sharing. We share the full collected sam-
ples with ThreatExchange and VirusTotal only if either
of the following two conditions are met: (i) the number
of users having the specific sample are beyond a specific
threshold, or (ii) in the case of Chrome extensions, if the
extension is live on the Chrome store. We are able to de-
tect the latter by constructing and accessing a URL that
points to the extension on the Chrome Web store.

4 Browser extension labeling
In this section we describe our methodology for labeling
browser extensions. Labels represent a status of mali-
ciousness, and we assign extensions one of two values in
decreasing order of severity:

• MALICIOUS samples are those deemed with high
confidence to be malicious. The malware scanner
described in Section 3.2 will subsequently remove
them when users agree to an anti-virus scan.

• UNKNOWN is the default status for all samples for
which we do not have a definitive opinion.

We describe the rules our system uses to propagate
labels from individual indicators all the way to en-
tire extensions, and also how changing labels propagate
through the system. While the system automatically ex-
tracts indicators and propagates labels, there are some
situations where traditional manual analysis still plays a
role and we end by discussing how the system incorpo-
rates input from analysts.

4.1 Automated extension labeling
We start by assigning high-quality labels to individual
threat indicators (e.g. URLs). These indicators come pri-
marily from the system responsible for identifying spam

https://developers.facebook.com/products/threat-exchange
https://developers.facebook.com/products/threat-exchange

activity, as described in Section 3.1, which the labeling
system assumes to be ground truth. In essence, the mal-
ware labeling process is designed to apply these vetted
threat labels onto the indicators extracted from samples
via the static analysis pipeline (Section 3.3).

All indicators receive an initial label, but Facebook
also maintains a feedback process to flag and re-evaluate
them over time if it learns new information. As a result, a
URL erroneously marked as MALICIOUS, for example,
will be appropriately re-labeled. This update will then
automatically propagate to the relevant samples, which
will subsequently be queued for re-labeling.

4.1.1 Propagating maliciousness labels
At a high level, our automated browser extension label-
ing system operates under the basic assumption that if
a text file (e.g. a JS file) contains indicators marked as
MALICIOUS in the ground truth data, then we can de-
terministically propagate this label to the containing file.
Furthermore, if a file labeled as MALICIOUS is a part
of container (e.g. a browser extension), then we can de-
terministically propagate that label to the container. For
example, if the URL http://www.example.com/
evil.php is considered MALICIOUS, and a file back-
ground.js contains this URL, then the file will be labeled
as MALICIOUS. And if a Chrome extension goats.crx
contains background.js, then the extension will also be
labeled as malicious.

In practice, there are also cases that require an explicit
policy decision on how to propagate labels. Although
the policies we have chosen may introduce noise into the
analysis, our experience has been that overall the system
has a sufficient number of strong indicators that it over-
comes that noise when it ultimately labels extensions.

Shared resources. If an indicator represents a shared
resource — e.g. an IP address used as a Network Ad-
dress Translation protocol (NAT) gateway — it can be
used by both benign and bad actors concurrently. In this
case, labeling a file that contains the named IP address as
MALICIOUS would be equivalent to erroneously mark-
ing all traffic originating from that IP as MALICIOUS.
For simplicity of implementation, our policy is to still
propagate labels even on indicators for shared resources,
rather than to try to identify and differentiate between
shared and non-shared situations.

Inactive code. Another example are inactive blocks
of code referencing MALICIOUS indicators. Indeed, the
malicious block of code is not executable, why label the
file as MALICIOUS? Our policy is to still propagate the
label from indicators on inactive code to the containing
object. We argue that, if an actor has the capability to
add any type of code into a file, then they may also have
the ability to activate previously inactive malicious code.

Gating. Finally, indicators with geographically or

temporally gated malice have the potential of erro-
neously labeling samples when the labeling action occurs
outside such boundaries. For geographic gating, our pol-
icy is to disregard the boundary and apply globally the
label of the indicators with the highest severity. If any
users experience malicious behavior, our goal is to pro-
tect all users. However, temporal gating requires more
attention, specifically for indicators that have been ma-
licious in the past, but, after re-evaluation, we can posi-
tively characterize them as not malicious.

4.1.2 Cleaning up false positives
The system needs to react quickly and automatically to
the discovery of false positives. If the system incorrectly
labels an extension as MALICIOUS, then the extension
will be removed by the malware scanner the next time
devices with the extension are scanned.

Using the same rule engine used for propagating la-
bels from indicators to files and extensions, we also
create a set of rules to automate correcting false posi-
tives. Specifically, if an indicator changes status from
MALICIOUS to a lesser severity (e.g., UNKNOWN), (i) we
identify all malware samples containing the indicator,
(ii) we filter out all samples that have any status other
than MALICIOUS, and (iii) for the remaining samples
we set their status to UNKNOWN if they do not have any
remaining MALICIOUS indicators. Similarly, when the
a MALICIOUS sample receives a new, less severe status,
we re-compute the status of its containers by applying
the same set of rules used for updating indicators.

4.1.3 Known false positives
Throughout the 6-week measurement period our system
collected over 34k unique extensions of which 124 are
known to have been incorrectly labeled as MALICIOUS.
Additionally, the median time to identify a false positive
is 18 days. As a result, in 0.8% of total scan sessions,
our system removed one or more of these 124 extensions
erroneously. After the extension is removed, the user can
re-install the extension and likely will not be re-enrolled
in the malware cleanup process described in Section 3.2.
We consider this number of false positives as small in
number and of an acceptable magnitude.

4.2 Manual labeling
While we consider our automated MBE labeling system
highly effective, there are also cases where a threat an-
alyst may need to manually examine a sample to decide
its status. Such cases include: (i) Suspicious extensions
with highly obfuscated code that circumvents the static
analysis pipeline’s ability to extract threat indicators.
(ii) Suspicious samples that may contain evolved adver-
sarial capacity to bypass our detection capabilities. Even
if the sample was correctly labeled as MALICIOUS, in

http://www.example.com/evil.php
http://www.example.com/evil.php

such cases analysts are responsible for examining the
samples and communicating their findings within Face-
book. (iii) Malicious indicators or samples that are re-
sponsible for labeling multiple samples within a short
period of time and beyond a certain alerting threshold.
Such cases are indicative of a commonly reused, erro-
neously labeled MALICIOUS sample, and the manual
analysis step will prevent many false positives.

Any threat status manually applied by an analyst al-
ways dominates labels originating from the automated
systems. Therefore, such systems are configured to never
overwrite an analyst-originating threat label.

4.3 A real world example
To make this process more concrete, we conclude with
an end-to-end example of a botnet that targets Face-
book users to disseminate malicious content. A user’s
browser becomes infected when the MBE5 is installed
via the Chrome Web Store (it is unknown if installa-
tion is a result of user choice, or through another attack
vector). Once installed, the extension monitors all Web
content that the user accesses by sending the URLs to
a command-and-control (C&C) server. Additionally, the
extension periodically requests from a C&C server re-
mote resources that are executed in the user’s browser.
Most of the time, the resources do nothing, allowing the
MBE to appear benign until the botnet operator initiates
an attack. This behavior helps explain why VirusTotal’s
57 anti-virus engines consider the extension to be non-
malicious, and why it was on the Chrome Web Store.

When active, the MBE manipulates Facebook’s DOM
with side effects that are detectable both by the DOM
scanner, as well as by users themselves (who subse-
quently reported issues to Facebook). As a result, when
the botnet began executing malicious payloads, these
side effects provided the first signals of its existence to
our system, which resulted in automated classification of
the sample as MALICIOUS.

Figure 3 shows the detection and remediation of this
MBE over time. The x-axis shows the number of days
after the MBE was first detected by Facebook. The y-
axis, normalized by the number of devices scanned daily,
shows both the proportion of scanned devices detected
as being infected, and the proportion of devices with the
MBE cleaned from their system. The lag from when an
indicator is detected on a device, and when the device
performs malware cleanup, is due to the two processes
being independent. In less than a week it peaks while
Facebook’s malware scanner actively cleaned infected
devices. After two weeks, almost all extensions had been
removed from the browsers of Facebook’s users.

5e.g. MD5 a369ecc2e8ca5924ddf1639993ffa3aa

5 10 15

1e−04

2e−04

3e−04

4e−04

5e−04

6e−04

7e−04

Botnet DOM−based detection

Days after first detection

P
ro

po
rt

io
n

of
 d

ev
ic

es
/a

ll
de

vi
ce

s Devices with indicator
Devices cleaned

Figure 3: Daily proportion of user devices detected with
a DOM-based indicator of the botnet, and the proportion
of user devices that have the botnet remediated.

5 System evaluation
We now evaluate our system for automatically labeling
malicious browser extensions using extension data col-
lected over a period of six weeks, spanning the end of
2016 through early 2017. We start by characterizing
the volume of data our infrastructure processes, focusing
on Chrome and Firefox extensions. The volume under-
scores the need for an automated system. We then show
the system in operation and its behavior over time.

5.1 Extensions collected
Table 1 shows a high-level breakdown of the browser ex-
tensions we collected over the six-week period. Overall,
Facebook’s malware scanner collected a total of 34559
distinct browser extensions from 741k distinct scan ses-
sions. We uniquely identify a browser extension by its
XPI identifier for Firefox extensions, and by its CRX
identifier for Chrome extensions. Extensions are more
popular among Chrome users as the majority of collected
distinct extensions (67.6%) came from Chrome.

As shown in Table 1, throughout the six-week period
our system extracted more than 85000 unique HTML
and JS files, with 79.5% of them originating from
Chrome extensions. Note that a small number of JS files
(454 in total) appear both in Chrome and Firefox exten-
sions, and are cases of libraries like jQuery commonly
shared among JS-based applications. Additionally, three
HTML files appear in both Chrome and Firefox exten-
sions, and are related to the Potentially Unwanted Pro-
gram (PUP) Conduit.A.

Among the collected extensions, our infrastructure ex-
tracted a total of 73281 unique indicators. Most of these
indicators (90%) were embedded in samples extracted
from Chrome extensions. As with the JS files, 9398 in-
dicators overlap across the two types of extensions due
to common references to certain resources like domains,
URLs, and email addresses.

For Chrome extensions, we find 2200 (9.4%) of the

All extensions Malicious extensions Extension contents Extracted indicators Scan sessions
% # % of total JS HTML Total # Malicious (#/%) # %

Chrome extensions 23 376 67.6 1 697 7.3 67 380 720 66 134 1 559 (2.4%) 718 497 96.9
Firefox extensions 11 183 32.4 88 0.8 17 979 16 19 004 609 (3.2%) 257 164 34.7
Total unique 34 559 100.0 1 785 5.2 84 905 733 73 281 1 516 (2.1%) 741 276 100.0

Table 1: Collected browser extensions broken down by browser name, status, contained samples and indicators, and
by number of scan sessions reporting a specific type of extension. A scan session may collect both Firefox and Chrome
extensions if both browsers are present on a given machine, and thus these percentages add up to more than 100%.

23376 total extensions to have been on Google’s Web
Store at least once. The high proportion of extensions
likely installed via sideloading (90.6%) is not surpris-
ing as Facebook’s malware scanner runs on devices sus-
pected of being infected, and Google removes extensions
they consider malicious from the Web Store.

5.2 Malicious extensions detected
We now consider the methodology for automated MBE
labeling we presented in Section 4.1, and examine its ap-
plication to the extensions we collected and the files we
extracted during the six-week measurement period.

Of the 34559 extensions from this period, we classi-
fied 5.2% of them as malicious. As expected, attack-
ers clearly target Chrome more often. From the 11183
Firefox extensions, only 0.8% of them are labeled mali-
cious. Yet, of the 23376 Chrome extensions, 7.3% are
malicious. This bias naturally reflects browser market
share, as Facebook sees predominantly more traffic from
Chrome and attackers concentrate on the platform most
popular with users. Of the malicious Chrome extensions
identified, 24.9% have been accessible on the Web Store
at least one time throughout the measurement period.

The small portion of extracted threat indicators labeled
malicious in Table 1 (2.1% of all extracted indicators)
highlights the effectiveness of our labeling methodology
in trickling up known badness. The malicious indicators
used to label MBE are primarily domains and URIs, with
the exception of a single email address that resulted in
labeling one Chrome extension as malicious.

Figure 4 shows the behavior of the automated labeling
system over time as it detects and labels MBEs. Each
point represents the number of new extensions labeled
as malicious on a given day (x-axis), even if the exten-
sion was first seen on different day. The spike spanning
days 32–35 is linearly correlated with the fluctuation in
the number of users clearing the malware checkpoint at
the same period. On an average day the system labels
39.5 (median: 37) Chrome extensions and 2 (median: 1)
Firefox extensions as malicious.

In general, identifying new malicious extensions is im-
mediate: for over 90% of newly-collected browser ex-
tensions, the system labels them as MALICIOUS with
a median time of 21 seconds after collection. However,

0 10 20 30 40

0

50

100

150

Extensions automatically marked as malicious by labeling time

Days

of
 m

al
ic

io
us

 e
xt

en
si

on
s

Chrome extensions
Firefox extensions

Figure 4: The number of unique extensions labeled as
malicious each day of the six-week measurement period.

some extensions are initially labeled benign and are only
later discovered to be malicious when their embedded
indicators are associated with abusive behavior. In our
measurement period, we only found 143 (8.0%) exten-
sions that are eventually labeled MALICIOUS more than
1 day after they are first collected, and these extensions
are found on ≈ 9% of all users cleaned during the mea-
surement period. Delayed discovery is expected with an
indicator-based labeling system as the status of an indi-
cator can change over time, and we consider the number
to be acceptably low for an operational system.

6 Evaluating alternatives

The system evaluation shows that Facebook’s MBE la-
beling is effective at detecting, labeling, and cleaning
malicious extensions. A related question is whether it
is necessary to create a new system to perform this task.
Next we evaluate alternatives to underscore the need for
developing a new system to protect Facebook and its
users from large-scale abuse via browser extensions. For
this evaluation, we focus on Chrome extensions since
they dominate what we encounter on user’s devices. In
particular, 2200 extensions once available as “public” or
“unlisted” on the Chrome Web Store, of which Facebook
labeled 422 (19.2%) as malicious, and 1778 (80.8%) as
unknown. Recall that these are extensions from users
that exhibited suspicious activity on Facebook and trig-
gered an anti-virus scan, so we would expect a greater
concentration of malicious extensions in this smaller set.

6.1 VirusTotal
We first use VirusTotal to evaluate whether Facebook can
use general databases of malware to detect malicious ex-
tensions. VirusTotal is a popular online system owned
by Google that analyzes malware files using a suite of
57 anti-virus products, and reports which A/V products
label a file as malicious (if any).

We initially use the set of new extensions publicly
available on the Chrome Web Store overlapping with
our measurement period. The authors of the Hulk sys-
tem [8] kindly shared these extensions with us, and they
total 9172 unique CRXs. As a baseline we submitted the
shared public extensions their system collected to Virus-
Total. VirusTotal was aware of only 73 (0.8%) of them,
and considered only 5 (0.1%) as malicious.

Additionally, out of the 422 MALICIOUS extensions
as labeled by Facebook, only 22.7% are identified as ma-
licious by one or more anti-virus engines. We conclude
that a general malware database like VirusTotal is insuf-
ficient for detecting MBEs for sites like Facebook.

6.2 Chrome Web Store
Google also has a vested interest in maintaining the
health of the Chrome extension ecosystem, and therefore
also actively removes extensions that it determines to be
malicious. Since another option for Facebook would be
to rely upon Google’s efforts, as a final step we quan-
tify the benefits that Facebook’s MBE labeling system
is able to provide by focusing on just its service beyond
what Google provides to all Chrome users.

When an extension is removed from the Chrome store,
we conservatively assume that the extension was re-
moved because Google considered it malicious. Since
extensions may be removed for other reasons (e.g., de-
velopers removing their own extensions), this represents
an upper bound of Google’s detection capability. By
the end of the measurement period, Google removed
367 of the 9 172 extensions from the Chrome store (70
MALICIOUS and 297 UNKNOWN based to our labels).

In addition to cleaning up the malicious extensions,
another goal of our MBE labeling system is to reduce
the time that they are active and profitable to attackers.
Using the public user counts listed on the Web Store we
estimate that these 70 malicious extensions have been in-
stalled 1009806 times. Of the 70 MBEs, Facebook al-
ways labels the extensions as malicious before Google
removes them, with a median difference of 67.3 hours.
Thus reducing the median monetization window of ma-
licious extensions by over 2.8 days.

7 Conclusions
Malicious extensions are a vexing problem and one that
is challenging to address from any single vantage point.

While browser vendors are in a position to restrict which
extensions are distributed and, in principal, which ex-
tensions may be installed, they have limited insight into
which extensions act abusively in the wild. Indeed, some
extension’s malicious code is only loaded at run-time and
even then may only be activated for particular sites. Con-
versely, abused sites directly experience malicious be-
haviors but they are not in a position to identify which
extensions are implicated in a given attack because this
information is not available through the Web interface.

In over six weeks of deployment at Facebook our sys-
tem has identified more than 1700 malicious Chrome
and Firefox extensions. Comparing our findings with
both contemporaneous anti-malware detections (as re-
flected in VirusTotal) and takedowns from the Chrome
Web Store, reveals a considerable detection gap in the
existing abuse ecosystem. We hope that by highlight-
ing this issue and sharing our data we can encourage
a broader and more collaborative focus on this under-
addressed attack vector 6.

References
[1] S. Bandhakavi, S. T. King, M. Parthasarathy, and M. Winslett.

Vetting Browser Extensions for Security Vulnerabilities with
VEX. In Proc. of USENIX Security, 2010.

[2] N. Carlini, A. P. Felt, and D. Wagner. An Evaluation of the
Google Chrome Extension Security Architecture. In Proc. of
USENIX Security, 2012.

[3] M. Dhawan and V. Ganapathy. Analyzing Information Flow in
JavaScript-based Browser Extensions. In Proc. of ACSAC, 2009.

[4] V. Djeric and A. Goel. Securing Script-Based Extensibility in
Web Browsers. In Proc. of USENIX Security, 2010.

[5] M. Finifter, J. Weinberger, and A. Barth. Preventing Capability
Leaks in Secure JavaScript Subsets. In Proc. of NDSS, 2010.

[6] A. Guha, M. Fredrikson, B. Livshits, and N. Swamy. Verified
Security for Browser Extensions. In Proc. of IEEE S&P, 2011.

[7] N. Jagpal, E. Dingle, J. Gravel, P. Mavrommatis, N. Provos,
M. A. Rajab, and K. Thomas. Trends and Lessons from Three
Years Fighting Malicious Extensions. In Proc. of USENIX Secu-
rity, 2015.

[8] A. Kapravelos, C. Grier, N. Chachra, C. Kruegel, G. Vigna, and
V. Paxson. Hulk: Eliciting Malicious Behavior in Browser Ex-
tensions. In Proc. of USENIX Security, 2014.

[9] L. Liu, X. Zhang, G. Yan, and S. Chen. Chrome Extensions:
Threat Analysis and Countermeasures. In Proc. of NDSS, 2012.

[10] M. T. Louw, J. S. Lim, and V.N Venkatakrishnan. Enhancing web
browser security against malware extensions. Journal in Com-
puter Virology, 2008.

[11] H. Shahriar, K. Weldemariam, T. Lutellier, and M. Zulkernine.
A Model-Based Detection of Vulnerable and Malicious Browser
Extensions. In Proc. of SERE, 2013.

[12] J. Wang, X. Li, X. Liu, X. Dong, J. Wang, Z. Liang, and Z. Feng.
An Empirical Study of Dangerous Behaviors in Firefox Exten-
sions. In Proc. of ICISC, 2012.

[13] M. West, A. Barth, and D. Veditz. Content Security Policy Level
3. W3C, 2016.

6MD5 hashes of the 422 identified Chrome MBE available
in VirusTotal and ThreatExchange: https://pastebin.com/
nzVGPLnr

https://pastebin.com/nzVGPLnr
https://pastebin.com/nzVGPLnr

	Introduction
	Background
	Collecting browser malware
	Detecting compromised user accounts
	Malware scanner and cleanup
	Static analysis

	Browser extension labeling
	Automated extension labeling
	Propagating maliciousness labels
	Cleaning up false positives
	Known false positives

	Manual labeling
	A real world example

	System evaluation
	Extensions collected
	Malicious extensions detected

	Evaluating alternatives
	VirusTotal
	Chrome Web Store

	Conclusions

