
FaaSnap: FaaS Made Fast Using Snapshot-based VMs

Lixiang Ao
UC San Diego

liao@cs.ucsd.edu

George Porter
UC San Diego

gmporter@cs.ucsd.edu

Geoffrey M. Voelker
UC San Diego

voelker@cs.ucsd.edu

Abstract

FaaSnap is a VM snapshot-based platform that uses a set of

complementary optimizations to improve function cold-start

performance for Function-as-a-Service (FaaS) applications.

Compact loading set files take better advantage of prefetch-

ing. Per-region memory mapping tailors page fault handling

depending on the contents of different guest VM memory

regions. Hierarchical overlapping memory-mapped regions

simplify the mapping process. Concurrent paging allows

the guest VM to start execution immediately, rather than

pausing until the working set is loaded. Altogether, FaaSnap

significantly reduces guest VM page fault handling time on

the critical path and improves overall function loading per-

formance. Experiments on serverless benchmarks show that

it reduces end-to-end function execution by up to 3.5x com-

pared to state-of-the-art, and on average is only 3.5% slower

than snapshots cached in memory. Moreover, we show that

FaaSnap is resilient to changes of working set and remains

efficient under bursty workloads and when snapshots are

located in remote storage.

CCSConcepts: •Computer systems organization→Cloud

computing; • Software and its engineering → Virtual

machines.

Keywords: cloud computing, serverless, FaaS, virtualization,

snapshots, cold starts, caching

ACM Reference Format:

Lixiang Ao, George Porter, and Geoffrey M. Voelker. 2022. FaaS-

nap: FaaS Made Fast Using Snapshot-based VMs. In Seventeenth

European Conference on Computer Systems (EuroSys ’22), April 5–

8, 2022, RENNES, France. ACM, New York, NY, USA, 17 pages.

https://doi.org/10.1145/3492321.3524270

1 Introduction

As an emerging cloud computing offering, Function-as-a-

Service, or FaaS, has gained popularity for applications in-

cluding IoT and API backends [19, 35], machine learning [5],

EuroSys ’22, April 5–8, 2022, RENNES, France

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9162-7/22/04.

https://doi.org/10.1145/3492321.3524270

and data analytics [3, 12, 13, 27]. Its simple “function” in-

terface, minimal management, considerable scalability, and

fine-grained pay-as-you-go billing model are attractive fea-

tures to users. Users only need to focus on the application

code itself while the burdens of managing servers and net-

works, provisioning capacity, and reclaiming resources are

shifted to the cloud provider.

Since function invocations are often short compared to

long-running servers in virtual machine instances, the per-

formance overhead of creating the execution environments

for functions can be a significant component of overall exe-

cution time. In particular cold starts, during which the cloud

provider prepares the isolation sandboxes (either VMs or con-

tainers) and runtime environments required by the FaaS ap-

plications, have received significant attention. Both academia

and industry have explored cold start mitigations using tech-

niques like lightweight sandboxing [1, 22, 30], sharing of re-

sources among instances [2, 10, 32], or cloning pre-initialized

environments in memory [4, 24, 34].

Virtual machine snapshots are a recent method developed

to mitigate cold starts by restoring the guest VM to an ex-

isting warm initialized state to avoid the time-consuming

steps of cold start like initializing runtimes and loading li-

braries [11]. Existing VM snapshot methods apply lazy load-

ing of guest memory to avoid loading the whole guest mem-

ory when starting guest VMs. The memory pages are loaded

from disk on-demand when accessed by the guest. However,

the guest page accesses exhibit low spacial locality, leading

to many major page faults and scattered disk reads that add

significant overhead and slow down function execution [33].

Focusing on the active memory working set at the time

when a snapshot is taken is a promising direction for im-

proving performance. By prefetching the working set when

restoring a snapshot for a function invocation, slow major

page faults and disk reads can be avoided during execution.

Zhang et al. [37] explore this approach in the context of tra-

ditional virtual machine environments, scanning the access

bits of page table entries to determine the recent working

set of a guest VM at checkpoint time to reduce page faults

after restoring. REAP [33] is the state-of-the-art for using

working sets to accelerate snapshot restoring for FaaS. REAP

assumes memory access is stable across function invocations

and prefetches a compact representation of the working set

of previous invocations when serving new ones. However,

as we show, this assumption does not hold when the input

data differs significantly from previous invocations, leading

to page accesses outside of the working set that slow down

730

EuroSys ’22, April 5–8, 2022, RENNES, France Ao, et al.

the invocation. In addition, the guest VM has to wait until

the entire working set has been restored to start, a problem

especially troublesome for functions with large working sets.

Analyzing the snapshot behavior of FaaS functions, we

present several notable observations on guest VM snapshots

for FaaS. First, there is substantial differences in performance

between major page faults and minor page faults, and the

host OS page cache can be used to reduce the cost of major

page faults. Second, due to the variance of function inputs

and execution flows, theworking set can change dramatically.

Pages used by previous invocations should be treated as a

reference for future invocations, and restoring a snapshot

should efficiently handle invocations whose working set

substantially differs. Third, a semantic gap between host

pages and guest pages leads to unnecessary disk reads that

slow down functions.

Based on these observations we propose FaaSnap, an effi-

cient VM snapshot loading method that integrates several

new techniques to reduce the cost of restoring guest VM

snapshots and thereby improve overall FaaS invocation per-

formance. Concurrent paging and working set groups avoid

blocking function invocations while loading the working

set, and opportunistically prevent slow disk reads by taking

advantage of the host OS page cache. Host page recording

relaxes the working set criteria to better tolerate variance

in pages used by future invocations. Per-region mapping

bridges the semantic gap between the host and the guest by

handling memory pages differently based on their types. Fi-

nally, FaaSnap uses loading sets, a more compact working set

definition, and an efficient layout of the loading set file that

improves working set prefetching by removing unnecessary

pages and consolidating disk reads.

We implement FaaSnap based on Firecracker, a lightweight

VM tailored for serverless workloads. FaaSnap improves

function execution by up to 3.5× compared to REAP snap-

shots. It is on average only 3.5% slower than snapshots cached

in memory across a wide range of FaaS functions. FaaSnap is

resilient to changes of working set across invocations, and re-

mains efficient under bursty workloads and when snapshots

are located in remote storage.

FaaSnap is open-source software and is accessible at https:

//github.com/ucsdsysnet/faasnap.

2 Background and Related Work

Function-as-a-Service, or FaaS, is a form of serverless com-

puting. FaaS provides a high-level “function” abstraction—

request handler code—so that users do not need to explicitly

manage resources like servers and networks. Because of

its popularity, it is sometimes simply referred to as server-

less computing and, in this paper, we use the terms FaaS

and serverless interchangeably. AWS Lambda, Azure Func-

tions, and Google Cloud Functions are examples of popular

FaaS commercial offerings. Several open-source projects are

also gaining popularity, including OpenWhisk [26], Open-

FaaS [25], and Knative [17].

Compared to traditional cloud offerings like IaaS, FaaS

provides more convenient computing resources. Users sim-

ply provide the function code for handling requests, and the

service ensures that the code will be invoked when a request

arrives. FaaS applications depend on underlying computing

and networking resources including isolation sandboxes, vir-

tual networks, operating systems and runtimes, which are

all managed and provided by the cloud provider.

2.1 Cold start problem

If the environment for a FaaS application does not exist when

a function is invoked, the FaaS platform needs to initialize

the environment for invoking the function, a process called

cold start. The initialization steps include creating the vir-

tual network, booting the isolation sandbox (usually a VM

or a container), installing the function code, initializing the

runtime, etc. The initialization steps take from several sec-

onds up to minutes. A cold start is especially costly for FaaS

since more than 50% of all invocations are less than 1 second,

and 75% are less than 3 seconds [29]. The long cold start

process can negatively impact both the performance of FaaS

applications and system capacity. Therefore, many platforms

keep the environment alive after an invocation finishes using

an optimization called warm start. The warm state of the

environment, including the runtime, loaded libraries, and

accessed files, are kept in memory or in the page cache. In

subsequent invocations, the environment and warm state

are reused to accelerate function invocation.

However, there is a cost for keeping warm resources alive.

Too many idle environments consume memory, reducing

overall system capacity and throughput for invoking func-

tions. Moreover, experience from large providers, such as

the real-world traces from Azure [29], reveals that only a

small portion of functions are invoked frequently. Less than

half of the functions are invoked every hour, and less than

10% are invoked every minute. Cloud providers only keep

the environment alive for a short period of time after an

invocation is finished to minimize wasting resources; AWS

Lambda keeps functions warm for 15-60 minutes [14]. As a

result, invocations of hot functions are likely to have warm

starts, while less frequent functions are prone to cold starts.

The cold start overheads can be generally divided into

two parts, booting and initializing state. Booting a VM takes

at least several seconds. Initializing memory state includes

starting runtime, installing function code, loading libraries,

etc., which can take seconds to minutes.

2.2 Booting time mitigation

Containers [7, 20, 31] are a more lightweight isolation mech-

anism than virtual machines. Containers use kernel abstrac-

tions like cgroups and namespaces to provide isolation among

731

FaaSnap: FaaS Made Fast Using Snapshot-based VMs EuroSys ’22, April 5–8, 2022, RENNES, France

instances. The overhead of starting a container can be the

same order of magnitude as starting a process.

However, in multi-tenant clouds like AWS and Azure, VMs

are used as the sandboxing mechanism. VMs have a simpler,

more stable guest-host interface than container’s syscall

interface and is considered more secure [22]. The downside

is that VMs are traditionally designed for general-purpose

guests. Full-fledged heavyweight VMs lead to long booting

times for cold starts.

Unikernels have been explored to accelerate VM booting

time [21]. Unikernels trim the guest kernel by customizing

it for the application and eliminate the kernel-application

boundary. LightVM [22] reduces the booting time to less than

10 ms by using a unikernel and a Xen VMM specialized for

serverless computing. Faasm [30] uses lightweight language-

based isolation to avoid the cost of virtualization.

Firecracker [1] is an open-source virtual machine monitor

from Amazon and is used by AWS Lambda and other cloud

services as a security sandbox. It uses a lightweight design

that is tailored to serverless computing. The device emulation

is minimized and BIOS is excluded to improve performance

and reduce resource consumption. Firecracker can boot an

unmodified Linux kernel in 125 ms.

2.3 Preparing memory state

In FaaS, not only does the isolation sandbox need to be cre-

ated, the initialization of the OS, runtime, and libraries also

takes significant time. Du et al. [9] report that the majority

of cold start time in Google’s gVisor is spent on the initial-

ization of runtimes.

Copying existing memory state that has already been ini-

tialized is amethod to skip the initialization step. Potemkin [34]

proposed flash VM cloning and copy-on-write delta virtual-

ization to quicklymake copies of existing VMs. Snowflock [18]

enables the cloning of VMs to remote hosts, lazily transfer-

ring guest pages to remote hosts when handling guest page

faults. SOCK [24] is a container-based isolation system that

creates copies of existing processes that have already ini-

tialized runtimes and libraries to skip the initialization step.

SEUSS [4] takes in-memory snapshots of a unikernel guest

and removes redundant execution paths, including initializ-

ing runtime and importing libraries, by serving invocations

from the memory snapshots.

These systems require an existing VM or container for the

function to exist in memory. This requirement is not always

feasible in FaaS due to its memory resource consumption,

especially for less frequently invoked functions.

2.4 Snapshots

Snapshot and restore is another method for avoiding boot-

ing and initialization overheads. The VM or container in-

memory state can be saved to a file, and later the state can

be restored from the file, skipping the initialization steps.

gVisor [15], a sandboxed container runtime by Google,

supports checkpoint and restore. The latency of restoring a

gVisor container can be a few hundreds of milliseconds due

to the loading of guest memory and recovering guest kernel

state. Catalyzer [9] uses optimizations including lazy mem-

ory loading and restoring some kernel state out of the critical

path. The memory pages are read on-demand, reducing the

initial wait time.

Firecracker recently introduced a snapshot and restore

feature [11]. A Firecracker snapshot can be restored in a

few milliseconds, a drastic reduction from typical cold start

latencies. A Firecracker snapshot includes a snapshot file

that stores the state of the VM like virtual devices and CPU

registers as well as a memory file, which is the copy of the

entire guest physical memory.

When Firecracker restores a snapshot, it loads and restores

the VM state and maps the guest memory file to the VMM

memory region that is provided to KVM (the virtual machine

monitor in the host system) as the guest memory. Similar to

Catalyzer, the guest memory pages are then loaded by the

host on-demand when guest page faults happen.

While this approach to snapshot and restore improves per-

formance, the cold start problem is still not entirely solved.

Although the VM state can be restored and guest memory ini-

tialized in just milliseconds, to do any useful work, the guest

needs to access at least a few thousand memory pages. Lazy

restore only loads pages when the guest VM accesses them

and creates page faults. As motivated by REAP [33], and our

experiments also show in Section 3, a simple hello-world
function takes more than 200 ms to execute using Firecracker

snapshots, compared to a warm VM which finishes within

4 ms. Guest page faults are slow because the pages need to

be read from disk, and the reads are small and scattered.

2.5 Working sets

Zhang et al. [37] proposed accelerating the lazy restore of

VMs by eagerly prefetching working set pages. The work-

ing set is estimated by detecting which pages have been

accessed recently before a snapshot. Their approach con-

tinuously scans the access bits in the page table to obtain

the working set. When creating a snapshot, the working

set pages are stored in a separate file. In the restore step,

the working set pages are loaded sequentially and copied

to the guest memory before the guest VM starts. This op-

timization decreases the number of future guest VM page

faults. Halite [36] merges pages that are accessed together

into locality groups. During restoring of the VM, when any

page in the group is accessed, the whole group is prefetched.

REAP [33] is the state-of-the-art in optimizing server-

less performance using working sets. Their observation is

that serverless functions tend to access a stable set of pages

across invocations. The idea is to prefetch pages accessed

from previous invocations when an invocation starts. REAP

uses userfaultfd, a kernel feature that allows user-level

732

EuroSys ’22, April 5–8, 2022, RENNES, France Ao, et al.

hello-world image image-diff read-list mmap

200

400

600

800

1000

1200

1400

tim
e

(m
s)

4 45 92 40

262229
313

403

1294
1202

65 99 151

460
630

62 117

481

743

1034

Warm
Firecracker
Cached
REAP
Setup time

Figure 1. Time breakdown of function invocations. Primary

color bars are function invocations. Gray bars are for VM

setup, including starting the VMM, connecting virtual de-

vices, restoring VM CPU state, etc.

programs to handle page faults. It records the pages accessed

in the first invocation into a working set file. In subsequent

invocations, the working set pages are prefetched and in-

stalled in the guest memory, reducing the number of later

page faults and disk reads. The working set pages are saved

to a compact working set file and can be fetched in a single

batch read, avoiding the cost of scattered page reads.

REAP works well for some workloads. However, as we

show in Section 3, its performance is sensitive to changes

in the working set. Invocation performance decreases when

the working set differs significantly from the previous in-

vocations because of change of input data, or when large

amounts of anonymous pages are allocated in the guest. Both

cases are common in real-world serverless functions.

3 Snapshot Analysis

To understand the overheads and challenges in snapshot-

based function invocations, we measure several aspects of

snapshot restoring of Firecracker VMs and REAP. We con-

duct our experiments using our FaaSnap platform, which we

describe in more detail in Section 4.1.

3.1 Measurements

We measure the invocation of the following functions: a triv-

ial hello-world function that replies with a “hello” string; a

read-list function that reads every page of a large (512MB)

existing Python list; an mmap function that memory maps

a large (512 MB) anonymous memory region and writes to

every page of the region; an image function from Function-

Bench [16], a comprehensive FaaS benchmark, that processes

a JPEG image. image-diff is the same as image except it

uses different inputs across invocations. In real-world deploy-

ments, inputs are most likely different across invocations.

We measure each function under four settings. Warm

executes a function using a warm VM cached in memory that

101

102

103

of

 p
ag

e
fa

ul
ts

Warm Firecracker

0.5 1 2 4 8 16 32 64 128256512
page fault handling time (μs)

101

102

103

of

 p
ag

e
fa

ul
ts

Cached

0.5 1 2 4 8 16 32 64 128256512
page fault handling time (μs)

REAP

Figure 2. Distributions of page fault handling time for

image-diff under different settings. Both axes are log-scale.

served a previous invocation. Firecracker executes a function

by restoring a VM from a standard Firecracker snapshot

memory file that was recorded and saved after a VM served

a previous invocation. Cached executes a function similarly

to Firecracker, but the snapshotmemory file is loaded into the

page cache so that there is no disk read overhead. While not

practical in real-world deployments, it is a useful reference

point for comparing snapshotting systems. We integrated

REAP into our platform as an optional setting. REAP executes

a function using a snapshot memory file together with a

working set file created from a previous invocation, and it

loads the entire working set file into memory immediately

before executing the function.

For the time breakdown tests, we measure the time of the

setup and execution steps for all functions. For additional in-

sight, we also measure the time the guest VM spent handling

page faults (kvm_mmu_page_fault kernel function) specifi-
cally for the image-diff function. We use bpftrace [28], a

tracing tool based on eBPF, for the page fault measurements.

The host is an AWS EC2 c5d.metal instance with an

Ubuntu Linux kernel version of 5.4.0. The disk is an NVMe

SSD with measured maximum throughput of 1589 MB/s and

285,000 IOPS. The guest VM is configured with 2 GB of

memory and 1 VCPU. Guest VMs use Debian Linux with a

4.14 kernel.

3.2 Time breakdowns

The time breakdown results are shown in Figure 1. The gray

bars show the time taken to set up the VM, including starting

the VMM, restoring virtual devices and CPU states, and

for REAP, loading working sets. The primary color bars

show the time to invoke the functions. As expected, Warm

outperforms all other settings. The hello-world function

completes in 4 ms, much faster than all other settings. Warm

is so fast because it does not have the overheads of restoring

and setting up the VM, and it already has most of the guest

VM state in physical memory.

733

FaaSnap: FaaS Made Fast Using Snapshot-based VMs EuroSys ’22, April 5–8, 2022, RENNES, France

Among the snapshot-based systems, Firecracker is the

slowest. Firecracker uses OS on-demand paging, and a page

is only read when accessed by the guest or prefetched when

nearby pages are accessed. Small reads on the disk are slow

(relative to memory) even on high performance NVMe SSDs.

Cached has the best performance for all the functions ex-

cept hello-world. Its contrast with Firecracker highlights

the importance of avoiding costly disk reads in page fault

handling. The function invocation times of Cached for the

image and image-diff functions are close to that of Warm.

For the read-list and mmap functions, however, Cached is

significantly slower because, although Cached avoids all the

major page faults that read from disk, minor page faults are

still needed to install the page table entries for the pages in

the host OS page cache.

REAP performs well for the hello-world and image func-
tions, where the function is supplied with the same input

data as the previous invocation. The invocation time is sim-

ilar to that of Cached and Warm. However, in image-diff
where the input data differs for the second invocation, its

performance degrades. REAP relies on the VM using a stable

set of pages across invocations. When the pages used are

significantly different, it handles the pages that are not in

the working set file at user level, reducing performance. The

read-list and mmap functions have a large working set. As

a result, the setup step takes a long time to load and install

the working set. Once installed, though, invocation becomes

fast. The read-list and mmap invocation steps are faster for

REAP than Cached because the pages are installed into the

host page table by REAP’s userfaultfd handler.

The mmap function allocates anonymous memory in the

guest. However, because the whole guest memory is mapped

to the host memory file, the host does not know the guest is

allocating anonymous memory. As a result, allocating guest

memory causes disk reads on the host, which is much slower

than allocating from anonymous memory on the host.

3.3 Page fault behavior

The distribution of page fault handling times is shown in

Figure 2. We test the image-diff function invoked on the

four systems. The 𝑥 ticks represent times spent handling a

page fault, and each bar between ticks counts the number

of page faults whose time falls into that interval. Note that

both axes are in log scale.

Warm has around 4,000 page faults, while all the snapshot-

based systems have around 9,000. Warm VMs have many of

their pages already loaded into physical memory, and the

page faults are caused by accessing new pages not touched

in the first invocation. Since warm VMs are booted from

VM images, and the guest memory region is mapped to

host anonymous memory, the warm page faults are quickly

handled using anonymous memory, which is faster than file-

backed mappings that go through the page cache layer. The

average time is 2.5 microseconds, and more than 90% of the

warm page faults take less than 4 microseconds. The total

time of handling all the page faults is 12 ms.

Cached handles more than 90% of the page faults in less

than 8 microseconds, and the average time is 3.7 microsec-

onds. All the Cached page faults are minor page faults that

are served by the page cache. The time to handle page faults

for Cached takes slightly longer than that of Warm because

it has to access the page cache layer. The total page fault

handling time is 35 ms.

Firecracker is the slowest among the four systems, with

an average page fault time of 13.3 microseconds. Nearly 9%

of the page faults take more than 32 microseconds, which are

slow major page faults that read from disk. When handling a

page fault from disk, the readahead mechanism in the host

kernel fetches pages near the faulting page into the page

cache to reduce future disk reads. The page faults shorter

than 32 microseconds are mostly minor page faults served

from the page cache, and they show a distribution similar to

that of Cached. The total page fault handling time is 120 ms.

REAP page faults have an interesting distribution. Pages

from the working set file are installed into the host page

table by userfaultfd at the beginning of the invocation.

Page faults on these pages are processed in less than 4 mi-

croseconds since the host page table entries already exist.

Page faults outside of the working set causes the userspace

userfaultfd process to read from the original memory file.

Depending on whether the page in the memory file has

been prefetched into the page cache, the handling can be

relatively fast (8–64 microseconds) or slow (>128 microsec-

onds). Userspace userfaultfd adds an overhead of several

microseconds to each page fault outside of the working set.

The average page fault time is 6.7 microseconds, and the

total page fault handling time is 56 ms. Although REAP

handles pages faults faster than Firecracker, its execution

time is longer than Firecracker. With REAP, the guest cannot

immediately resume after a page fault is handled, causing

context switches that slow down guest execution.

3.4 Summary

We make several observations from these experiments: (1)

The performance difference between Firecracker and Cached,

and the time difference between handling minor and ma-

jor page faults, highlight the benefits of caching pages in

memory. The OS page cache can play an important role in

accelerating VM page faults; (2) The working set of a func-

tion can change dramatically due to changes in input data

or function execution flow. Therefore the page accesses in

previous invocations should be treated as a reference, and

restoring a snapshot should efficiently handle invocations

whose working set substantially differs; (3) The anonymous

page allocation in the guest memory is translated to un-

necessary file-backed page fault on the host because of the

semantic gap between the guest and the host.

734

EuroSys ’22, April 5–8, 2022, RENNES, France Ao, et al.

Figure 3. High level system architecture. Blue elements are

FaaSnap components, and gray elements are existing Fire-

cracker components. Dashed components are expected to

interact with the FaaSnap daemon in real-world FaaS deploy-

ments, but are not needed in our use of FaaSnap.

4 FaaSnap

Based on the observations from Section 3, we propose FaaS-

nap, a snapshot loading mechanism that handles real-world

FaaS snapshot paging more efficiently. We introduce several

techniques and optimizations to improve various aspects of

snapshot loading. We first describe the system design, and

then detail each of the optimization techniques in turn.

4.1 System design

Figure 3 shows a system diagram of FaaSnap. The blue ele-

ments are FaaSnap components and the gray elements are ex-

isting Firecracker components. The dashed components are

expected to interact with the FaaSnap daemon in real-world

FaaS deployments, but are not needed in our experimental

use of FaaSnap.

The FaaSnap daemon is the core system component of

FaaSnap. It communicates with the Firecracker VMM and

manages related resources, and it forwards invocation re-

quests to the VMs. It is similar to the “MicroManager” com-

ponent in Firecracker deployments in AWS [1]. The FaaSnap

daemon manages local VM images, guest kernels, snapshot

memory and working set files, active VMs, and network re-

sources like namespaces and virtual network devices. All

of the techniques described in this section are implemented

in the FaaSnap daemon except for the provisioning of the

guest memory. FaaSnap also exposes an API to allow remote

clients to control resources and send invocation requests. In

real-world deployed FaaS systems, the remote clients would

be load balancers that route invocation requests and cluster-

level resource managers that control the VM lifecycles.

We modify the Firecracker VMM for the provisioning of

FaaSnap guest memory.

4.2 Concurrent paging

As shown in Section 3, default on-demand paging is costly

becausemany slowVMpage faults that need disk reads occur

during an invocation. REAP, on the other hand, prefetches

all of the previously accessed pages to avoid page faults

during an invocation. The downside of this approach is that it

results in a long initial loading step that blocks the invocation

process. The problem is even more pronounced when the

working set is large (Figure 1).

Instead of blocking the VM while waiting for the prefetch

to complete, the FaaSnap daemon starts the VM immediately

after setup, similar to the original Firecracker implementa-

tion. Once the daemon receives an invocation request, it

starts a loader thread to prefetch the pages from the working

set recorded in earlier invocations. FaaSnap starts the loader

as a thread in the daemon instead of a thread in the Fire-

cracker VMM so that it can start prefetching immediately

when the daemon receives the invocation request, and does

not need to wait for the VMM to start executing.

Thus FaaSnap supports concurrent page faults from both

the VM and the FaaSnap loader. If a page is first accessed by

the loader, the page fault handler will read and install the

page into the page cache. When the page is later accessed

by the VM, the page will be served from the page cache,

resulting in a faster minor page fault instead of a blocking

major page fault. Pages first accessed by the VM cause a

blocking major page fault. Although it cannot guarantee

that all the working set pages are first read by the FaaSnap

loader, we show in Section 6 that concurrent paging reduces

a significant portion of major VM page faults while removing

the need for a long initial read step that blocks VM execution.

4.3 Working set group

To move disk reads out of the critical path of VM page fault

handling, the daemon loader needs to prefetch pages before

the VM accesses them. Ideally, the loader should access the

pages in an order similar to that of the VM so that the loader

has a higher chance of prefetching a page before the VM. A

straightforward idea is to record the order of page accesses

in the first invocation, and let the loader access the pages

in the same exact order. However, loading the pages using

the previous access order exhibits poor locality, leaving the

Linux readahead mechanism ineffective in its prefetching.

For the image-diff function execution, for instance, reading
by access order takes the loader 100 ms longer than sequen-

tial address order, which slows down populating the page

cache with prefetched pages.

Instead, FaaSnap uses an approximate order for loading.

It divides the working set pages into several working set

groups by their access order: e.g., the first N accessed pages

are assigned group 1, the next N accessed pages are assigned

group 2, etc. The loader reads groups in increasing group

number, and reads pages within a group sequentially. In

this way, the loader is more likely to access a page earlier

than the guest while preserving disk access locality when

loading. From our experiments, we find N = 1024 works well

across the function benchmarks and use this value in our

evaluations. Note that the working set group is different

from Halite [36], where locality groups are used to predict

clustering of pages instead of ordering of accesses.

735

FaaSnap: FaaS Made Fast Using Snapshot-based VMs EuroSys ’22, April 5–8, 2022, RENNES, France

4.4 Host page recording

To determine the working set of the guest VM, in previous

work Zhang et al. [37] scanned the access bits of the page

table entries and REAP used userfaultfd to record the ad-

dress of every faulting guest page. In both methods, the

working set obtained is limited to the faulting guest pages.

However, the host kernel readahead mechanism fetches

extra pages on each page fault that are not tracked with

userfaultfd or access bits. While tracking only the fault-

ing pages is a natural design decision, we find that, when

handling invocations with different inputs, it improves per-

formance if the working set includes not only the faulting

guest pages but also the host pages cached by readahead. The
reason is the pages touched by readahead can be accessed in
future invocations when function inputs are different and the

working set changes. In other words, readahead can “pre-

dict” some future guest memory accesses even if the pages

are not touched in previous invocations.

Instead, FaaSnap uses the mincore syscall to construct

the working set file. mincore scans the present bits in the

page table entries to determine if pages in a memory range

are present in memory. In our case, it detects if guest pages

are in the host page cache. By calling mincore repeatedly,

FaaSnap records the new pages loaded since the last mincore
call. It assigns a working set group number to pages using

the order they appear in the mincore scans. As an added

benefit, mincore has lower overhead than userfaultfd for

recording working set pages since it does not need to invoke

a user-level process to handle and record a page fault. By

including present pages instead of just accessed pages in

the working set, FaaSnap is more tolerant of changes in the

working set.

4.5 Per-region memory mapping

The Firecracker snapshot implementation maps the entire

guest memory to the guest memory file. As a result, all guest

page faults, including anonymous page faults, are translated

into more costly file-backed page faults on the host, which

degrades performance as shown in Section 3.

In the guest kernel, an anonymous page is initially at-

tached to a read-only all-zero page. Any write to the anony-

mous page traps to the guest’s copy-on-write page fault

handler, which copies the zero page into a newly allocated

guest physical page. This page copy traps into the file-backed

page fault handler in the host kernel, which issues a disk

read request. However, the read is unnecessary since the

page is being overwritten with zeros.

The nature of the problem is a semantic gap between the

host and the guest. The host kernel does not know the cause

of the guest page fault. If the host kernel knows the guest

is trying to access a newly allocated page, it can happily

serve the page in the anonymous region. One solution to

the problem is to use a paravirtualized kernel to explicitly

provide the host kernel the cause of the page fault so that

the host can handle it accordingly.

We choose a simpler approach. Instead ofmemory-mapping

the entire guest memory file, FaaSnap only maps the pages

that are non-zero to the guest memory file. Zero pages are

instead mmap’d to anonymous host memory. Although guest

zero pages are not necessarily anonymous pages in the guest,

using anonymous memory in the host still guarantees that

the pages are initialized to zero, thus providing correct se-

mantics. When an invocation is finished, FaaSnap scans the

guest memory file, merging consecutive zero pages into zero

regions and non-zero pages into non-zero regions. A region

is also assigned a group number, which is the lowest group

number of any page in the region. During an invocation, our

modifications to the Firecracker VMM mmaps zero regions to

anonymous memory, and non-zero regions to the memory

file. In this way, a page fault on the guest zero page will be

handled by host anonymous memory instead of triggering a

slow disk read.

Another optimization is the handling of freed pages. If

the guest kernel frees a guest physical page, its contents

no longer matter and it will be overwritten to zero when

allocated again. However, Linux does not actively clear the

contents of a freed page. The host has no way to know if a

page has been freed and no longer needed. We modify the

guest kernel so that it always sanitizes freed pages, writing

zeroes to the page. As a result, FaaSnap excludes the freed

pages from the set of non-zero pages, and future accesses to

the freed pages will be fast anonymous page faults.

4.6 Loading set

As discussed above, the FaaSnap daemon uses mincore to

determine the working set of a function invocation during

the record phase. Since the working set often includes zero

regions, which FaaSnap maps to anonymous memory, the

loader does not need to prefetch the zero regions during the

restore. We define the loading set as the working set pages

excluding the zero pages. The group numbers of the loading

set regions are derived from the working set. As a result, the

loader only needs to prefetch the loading set regions.

The VMM needs to mmap every loading set region when

setting up the VM for an invocation. Even for a simple

hello-world function, there can be more than 1000 load-

ing set regions, and the overhead to create large numbers

of mappings is not negligible. However, we find that many

loading set regions adjacent in the guest address space are

only separated by a few non-loading set pages (i.e., either

zero pages or non-working set pages). FaaSnap merges these

adjacent regions by including the pages in between them.

This relaxation greatly reduces the number of regions that

need to be separately mapped, while only adding a small

amount of additional data read. The distance threshold for

merging two regions is empirically set to 32 pages, a value

that reduces the number of regions to small enough while

736

EuroSys ’22, April 5–8, 2022, RENNES, France Ao, et al.

Type Non-zero Working set Mapping

Loading set Y Y loading set file

Cold set Y N memory file

Released set N Y
anonymous

Unused set N N

Table 1. Types of pages and their mapping in FaaSnap.

not adding too many unneeded pages. For hello-world,
merging regions reduces the number of regions to less than

100, while total amount of data increases by only 5%.

4.7 Loading set file

Our experience is that, across a variety of functions, the

loading set pages tend to be scattered throughout the guest

physical address space. Scattered reads, though, usually lead

to lower disk performance. Similar to REAP, FaaSnap stores

the loading set into a compact file that only contains the

loading set pages so that the loader reads it more efficiently.

In contrast to REAP, though, FaaSnap sorts the loading set

regions first by their group numbers, then by their addresses.

The file offsets and sizes of the regions are cached in the

FaaSnap daemon. When a function is invoked, the FaaSnap

daemon tells the VMM to mmap the loading set regions using
the recorded file offsets and lengths. The loader then reads

the loading set file in sequential order, caching the pages

that are scattered in the guest address space. When the guest

VM accesses those pages, they result in a minor page fault

that installs the page in the guest. Furthermore, as described

in Section 4.2, FaaSnap supports concurrent paging so that

reading the loading set file does not block function execution.

4.8 Summary

Table 1 summarizes the four types of pages in the guest VM

memory. The loading set pages (i.e., non-zero pages in the

working set) are mapped to the loading set file using offsets

recorded when the loading set file was created and used

by the loader in the daemon during subsequent function

invocations. The cold set are non-zero pages not accessed

during the first invocation. These pages are usually more

than 100 MB in size, and most of them are pages used in the

guest booting process. The cold set aremapped to the original

memory file using the same offset as in the guest memory.

They are less likely to be accessed during the next invocation,

so they are not included in the loading set file, but they still

need to be mapped to the original memory file to ensure

memory integrity in case they are accessed. The released

set are zero pages touched in the first invocation, and are

primarily pages freed by the guest kernel. The unused set

are zero pages that are never touched. Both the released and

unused sets can be safely mapped to anonymous memory.

Figure 4. VMM guest memory mappings and backing files.

Mappings are created from the bottom layer to the top layer

using the overlapping semantics of the kernel, where upper

layers override the pages of lower layers. Zero regions are

mapped to anonymous pages (white bar). The cold set (non-

zero regions not in the working set) is mapped to thememory

file (gray bar). The loading set is mapped to the loading set

file. The numbers in the loading set denote group numbers,

lower group numbers are stored in earlier locations in the

loading set file. The loading set file is read in sequential order.

One way to map these regions is to make non-overlapping

mmap calls for each individual region. However, we can re-

duce the number of mmap calls by mapping smaller regions

on top of existing ones in a hierarchy. First, an anonymous

region for the entire guest address space is mapped. Then

non-zero regions are mapped to the same offset in the mem-

ory file. Finally, the loading set regions are mapped to pre-

recorded offsets in the loading set file. Figure 4 shows the

VMMmemory structure and the corresponding mapped files.

FaaSnap combines all the techniques described above, and

Figure 5 shows a flow chart for the steps. In the first invo-

cation, or record phase, the VM is started from restoring a

“clean” snapshot. FaaSnap obtains the working set groups us-

ing repeated mincore syscalls to the memory file. After the

invocation, a new snapshot is created to store the warm state.

FaaSnap then scans the new memory file to find non-zero

pages. The loading set is the intersection between the work-

ing set and non-zero pages. Adjacent loading set regions are

merged to reduce the number of regions. The loading set is

then stored into a compact loading set file in the order of

group numbers and the region offsets are recorded.

In a subsequent invocation, or test phase, FaaSnap will use

the new memory file and loading set file. Concurrent paging

uses the host OS page cache to reduce guest major page

faults. Per-region memory mapping allows different sets to

be handled separately to improve performance. Overlapping

mmap calls are used to simplify the mapping process. With all

the optimizations combined, FaaSnap significantly reduces

the guest VM’s page fault handling time on the critical path.

5 Implementation

The majority of FaaSnap is implemented in the daemon with

minor parts implemented in the Firecracker VMM for the

737

FaaSnap: FaaS Made Fast Using Snapshot-based VMs EuroSys ’22, April 5–8, 2022, RENNES, France

Figure 5. Flow chart of FaaSnap snapshot and restore.

per-region mapping technique. FaaSnap consists of ∼2,500

lines of Go code (not including REAP integration) and ∼200

lines of Rust code in the Firecracker VMM.

Code for functions is installed as Python files in the guest

VM. We built a Flask-based server that runs in the guest and

waits for HTTP invocation requests and invokes function

code. The FaaSnap daemon supports operations like creating

functions using installed images and kernels, booting VMs

for a function, invoking functions on the booted VM, taking

snapshots of a VM, restoring snapshots, etc. FaaS applica-

tions rely on external storage to store state, including input,

output, and intermediate data, that persists beyond the life-

time of a function invocation. We run an in-memory Redis

data store on the host for external storage for functions.

The daemon starts and manages the Firecracker VMM

upon receiving user requests through an API. It communi-

cates with Firecracker using HTTP via Firecracker’s Unix

sockets. Once the guest VM is started, it uses the guest IP

address to connect to the Flask server (running in the guest)

for invoking functions.

In the record phase, the daemon calls mincore on the

mapped memory repeatedly to check for newly accessed

pages to implement host page recording. Since the daemon

only needs to record the 1024 recently accessed pages in a

group, it waits for the guest to allocate enough new pages

before calling mincore. The daemon polls procfs for the

resident set size (RSS) of the guest. Once the RSS has more

than 1024 new pages, it calls mincore to record them.

We extend the API call between the daemon and Fire-

cracker VMM with additional arguments that specify the

locations of non-zero regions and loading set regions. The

daemon first allocates an anonymous region. It then uses

the MAP_FIXED flag to place the overlapping non-zero and

loading set regions onto the exact offsets of the anonymous

region. The daemon then provides the whole memory region

to KVM to use as the guest memory by issuing an ioctl call.
Wemodify the free_pages_prepare function in the guest

kernel to sanitize freed pages. Sanitizing pages imposes over-

head for the guest kernel (around 10% of execution time).

Since sanitizing freed pages is only necessary during the

record phase, we disable page sanitizing in the test phase.

At the end of the record phase and before creating the snap-

shot, the FaaSnap daemon sends an HTTP request to the

Description Input A Input B
Working

Set A

Working

Set B

Hello-

world
a minimal function n/a n/a 11.8 MB 11.8 MB

Read-list
read an 512 MB

Python list
n/a n/a 526 MB 526 MB

Mmap
allocate anonymous

memory
512 MB 512 MB 536 MB 536 MB

Image rotate a JPEG image 101 KB JPEG 103 KB JPEG 20.6 MB 32.6 MB

Json
deserialize and

serialize json
13 KB json 148 KB json 12.7 MB 14.4 MB

Pyaes AES encryption string of 20k string of 22k 12.6 MB 13.2 MB

Chameleon render HTML table table size 30k table size 40k 22.9 MB 25.1 MB

Matmul matrix multiplication
matrix size

2000

matrix size

2200
113 MB 133 MB

FFmpeg apply grayscale filter
1-sec 480p

video, 338KB

1-sec 480p

video, 381KB
179 MB 178 MB

Compression file compression 13 KB file 148 KB file 15.3 MB 15.8 MB

Recognition
PyTorch ResNet

image recognition

ResNet-50 cnn,

101 KB JPEG

ResNet-50 cnn,

103 KB JPEG
230 MB 234 MB

PageRank igraph PageRank graph size 90k graph size 100k 104 MB 114 MB

Table 2. Functions used in the evaluation. Different inputs

are used in the record and test phases to get realistic results.

guest daemon, which signals the guest kernel to disable page

sanitizing via the procfs interface.

The REAP developers generously support their system

as an open-source project, and we integrated REAP as an

optional mode for evaluation purposes. When receiving an

invocation, the FaaSnap daemon registers the snapshot with

REAP and activates REAP in a goroutine, which waits to

receive the userfaultfd file descriptor through which it

handles guest VM page faults on behalf of the kernel.

6 Evaluation

We evaluate the performance of FaaSnap, including function

execution time, input size sensitivity, execution breakdown,

the contributions of different optimizations to performance,

and performance under bursty workloads and remote disks.

6.1 Methodology

Table 2 lists the functions we use for evaluation. The first

three are synthetic, and the rest are from FunctionBench [16],

SeBS [8], and Sprocket [3]. The functions cover a wide range

of applications including web requests, multimedia, scien-

tific computing, machine learning, and graph processing. To

reflect the expected scenario where the same function will

have different inputs in different invocations, we prepare

two sets of inputs. For functions with variable inputs, input

A is smaller than input B. There are two phases in a test, a

738

EuroSys ’22, April 5–8, 2022, RENNES, France Ao, et al.

json
compressionpyaes

chameleon
image

recognition
pagerank

matmul
ffmpeg

Record phase input A, test phase input B

250

500

750

1000

1250

1500

1750

tim
e

(m
s)

Firecracker
REAP
FaaSnap
Cached

json
compressionpyaes

chameleon
image

recognition
pagerank

matmul
ffmpeg

Record phase input B, test phase input A

Figure 6. Execution time of the benchmark functions. Standard deviations are shown in error bars. Cached is used as a

reference. FaaSnap shows similar results to Cached: most of the VM page faults are minor page faults, and the slow disk reads

are taken out of the VM page fault critical path.

hello-world mmap read-list
0

200

400

600

800

1000

1200

tim
e

(m
s)

189

1040
935

70

1108

733

70

596 609

67

651

469

Firecracker
REAP
FaaSnap
Cached

Figure 7. Execution time of the three synthetic functions.

record phase and a test phase. The first invocation happens

in the record phase, whose warm state in the guest memory

is stored in the snapshot or the working set/loading set file.

The test phase is the actual test. We use input A in the record

phase, input B in the test phase, and vice versa to evaluate

the expected scenario where the input size grows or shrinks.

We drop the page cache of all the relevant files, including

the snapshot memory file and the working set file, before

each test to ensure we measure performance when the pages

are actually read from disk.

Ourmeasurement platform is an AWS c5d.metal instance
with a 96 vCPU Intel Xeon Platinum 8275CL CPU running

at 3.00 GHz, 192 GB of memory, and 25 Gbps network band-

width. It runs Ubuntu Linux with a 5.4.0 kernel. Each guest

VM has 2GB of memory and 2 vCPUs, a typical configuration

in real-world FaaS systems like AWS Lambda. The guest uses

Debian Linux with a 4.14 kernel. The disk is an NVMe SSD

with measured maximum read throughput of 1589 MB/s and

IOPS of 285,000.

6.2 Execution time

We first evaluate overall function execution time for different

snapshot methods, which includes both guest VM setup and

function invocation time. We measure the time to execute

the functions listed in Table 2 using Firecracker, Cached,

REAP, and FaaSnap snapshots. Cached snapshots preload

the snapshot memory file into the page cache before execu-

tion. While not practical, we use it as a reference for other

systems. We run each test five times and show the average

and standard deviation.

Figure 6 shows average execution time and standard devi-

ation for the benchmark functions. The left subfigure uses

input A in the record phase and input B in test phase, and

the right subfigure reverses the inputs. Figure 7 shows the

results of the three synthetic functions. These functions have

the same input (or no input) for the record and test phases,

and therefore are shown separately.

FaaSnap has the shortest execution time for all the func-

tions compared to Firecracker and REAP snapshots. On av-

erage, it improves upon Firecracker by 2.0× and it improves

upon REAP by 1.4×. Note that for the benchmark functions,

FaaSnap’s speedup over REAP is higher when the test phase

uses larger input B (1.55x) than when the test phase uses

smaller input A (1.16x). The reason is that larger inputs in

the test phase trigger more page faults outside of REAP’s

working set file (which was created with a smaller input),

and these page faults are handled with more overhead at user

level via REAP’s use of userfaultfd. FaaSnap’s per-region
memory mapping, loading set, and host page recording tech-

niques help it handle the workloads not captured by the

working sets more efficiently. FaaSnap’s concurrent paging

also prevents the initial long blocking of functions with large

working sets.

Moreover, the performance of FaaSnap is close to Cached

snapshots for most functions. FaaSnap loads most of the

loading set pages to the host OS page cache before they are

accessed by the guest VM. Performance with FaaSnap can

sometimes even be faster than Cached because the per-region

memorymapping technique allows page faults for zero pages

739

FaaSnap: FaaS Made Fast Using Snapshot-based VMs EuroSys ’22, April 5–8, 2022, RENNES, France

Firecracker
REAP
FaaSnap
Cached

0.0

0.1

0.2

0.3
json

0.0

0.2

0.4
compression

0.0

0.2

0.4

0.6

pyaes

0.0

0.5

1.0

1.5

chameleon

1/4 1/2 1 2 4
input size ratio

0.0

0.5

1.0

1.5
image

1/4 1/2 1 2 4
input size ratio

0.0

0.5

1.0
recognition

1/4 1/2 1 2 4
input size ratio

0

5

10

pagerank

1/4 1/2 1 2 4
input size ratio

0

2

4

6

matmul

1/4 1/2 1 2 4
input size ratio

0

1

2

ffmpeg

Figure 8. Execution time under varying input size ratios. All 𝑦-axes are in seconds. FaaSnap performs similarly to Cached for

most functions, indicated by the orange solid line overlapping well with the yellow dotted line. REAP performance degrades

when input size ratios are larger, shown by the steeper lines than others when the ratio > 1.

to be handled in anonymous memory, which is faster than

faulting from the page cache (Section 3). Cached snapshots

outperform FaaSnap in the read-list and recognition
functions because of their access patterns. These functions

read existing pages aggressively, and the FaaSnap loader

cannot always keep pace with the page faults created by the

guest. On average FaaSnap snapshots are only 3.5% slower

than Cached snapshots: FaaSnap provides performance using

an SSD nearly equal to that of the in-memory page cache.

6.3 Input size sensitivity

To further evaluate the sensitivity of the snapshot methods

to input variation, we perform another series of experiments.

For each of the functions in Figure 6, we use inputs of the

same sizes as input A in the record phase, and then vary

the sizes of the inputs in the test phase (whose contents are

also entirely different). In particular, we use inputs in the

test phase whose sizes are 1/4× to 4× the size of the input

in the record phase. We run each test three times and report

averages and standard deviations.

Figure 8 shows the results of this experiment. Each graph

shows the results for one of the nine functions that take

variable inputs. Each curve in the graph corresponds to a

different snapshot technique. Each point on a curve shows

the execution time of a function for a particular ratio of input

sizes in the test and record phases. In the graph for ffmpeg,
for example, the point on the blue dashed line at 𝑥 = 4 shows

the execution time of ffmpeg using Firecracker when the

size of the input video for the test phase is 4× the size of the

input video used in the record phase to take the snapshot.

These results show that FaaSnap snapshots provide per-

formance benefits across the range of input size ratios. As

with the results in Figure 6, FaaSnap outperforms Firecracker

and REAP for all of the functions, and performs similarly to

Cached except for recognition. In contrast, for many func-

tions REAP execution time significantly increases when the

input size is larger than that of the record phase, especially

for chameleon, image, and pagerank. At these larger input
sizes, REAP performs worse than Firecracker for many of

the functions.

FaaSnap, on the other hand, handles changing input sizes

well and its benefits are resilient to changes in working set.

Relative to Firecracker, the benefit of FaaSnap snapshots is

roughly constant across differences in input sizes, effectively

providing the performance of having the pages that benefit

the test phase prefetched into the cache. Note that the impact

of this benefit on overall execution time does decrease for

larger input size ratios. As function execution time becomes

dominated by the input itself, working set optimizations

including FaaSnap are going to provide diminishing returns.

For these situations, the goal of a system taking advantage

of working sets is to help when it can but otherwise avoid

degrading function execution time, which FaaSnap achieves

but unfortunately REAP does not.

6.4 Performance analysis

To provide more insight into the performance differences be-

tween FaaSnap and REAP, we examine the execution break-

down of the ffmpeg and image functions inmore detail. They

show different behaviors under the two systems, and are rep-

resentative of other functions. We collect metrics including

total execution time, working set fetch time, working set

fetch size, guest page fault size, and page fault waiting time.

The page fault waiting time includes both the page fault ser-

vice time (kvm_mmu_page_fault) and the time KVM waits

for the guest CPU to be ready to run (kvm_vcpu_block). We

collect the numbers using bpftrace [28] and perf and report

them in Table 3.

740

EuroSys ’22, April 5–8, 2022, RENNES, France Ao, et al.

Total time Fetch time Fetch size
Guest

pagefault size

Page fault

waiting time

REAP, ffmpeg 1408 ms 257 ms 201 M 20 M 780 ms

FaaSnap, ffmpeg 1070 ms 107 ms 146 M 32 M 866 ms

REAP, image 480 ms 51 ms 22 M 31 M 342 ms

FaaSnap, image 136 ms 55 ms 88 M 7.2 M 109 ms

Table 3. Performance analysis.

While FaaSnap outperforms REAP when executing both

functions, it does so for different reasons. For ffmpeg, the
benefit with FaaSnap mostly comes from a shorter fetch time.

REAP’s fetching process includes not only synchronously

reading the working set, but also installing the pages via

userfaultfd, which slows down execution. FaaSnap starts

the function concurrently with fetching, avoiding the initial

fetching delay.

For image, FaaSnap fetching is slower than REAP. image
with FaaSnap has a larger relative working set size, which

is caused by the sparse access pattern of image resulting in

more pages being recorded in its loading set under FaaSnap

than in the working set under REAP. Despite faster working

set fetching, though, REAP is much slower when running

the function because of a much longer page fault waiting

time: when serving each page fault, KVM blocks to wait

for the guest CPU to be ready, resulting in extra context

switches that increase waiting time. In contrast, FaaSnap

has far fewer page faults and handles them in the kernel.

This benefit, together with concurrent paging, makes image
perform 3.5× faster on FaaSnap.

6.5 Optimization steps

To understand how the different optimizations contribute

to the overall performance improvements of FaaSnap, we

selectively measure incremental contributions of the opti-

mizations. Starting with Firecracker as the baseline, we also

measure FaaSnap using just concurrent paging (Section 4.2),

then the combined optimizations that together support per-

region mapping (Sections 4.2 to 4.5), and finally all FaaSnap

optimizations combined. We focus on the image benchmark

and measure the execution times as well as the number of

page faults, total page fault handling time, and the number

of disk read requests caused by VM page faults. We collect

the data using the bpftrace [28] tool.

Figure 9 shows the results. The daemon loader uses con-

current paging to prefetch pages concurrently with the exe-

cution of the guest VM, which reduces the number of major

page faults, total page fault time, and number of block read

requests from the guest VM. Per-region mapping, however,

has more major page faults and fewer block requests and

a lower page fault handling time. These seemly conflicting

numbers are the result of different paging orders. In concur-

rent paging, the FaaSnap loader reads the working set pages

in the address space order, which does not correspond to the

Firecracker
con-paging

per-region
FaaSnap

0

200

400

in
vo

ca
tio

n
tim

e
(m

s)

Firecracker
con-paging

per-region
FaaSnap

0

200

400

600

of

 m
aj

or
 p

ag
e

fa
ul

ts

Firecracker
con-paging

per-region
FaaSnap

0

50

100

pa
ge

 fa
ul

t t
im

e
(m

s)

Firecracker
con-paging

per-region
FaaSnap

0

250

500

750

of

 b
lo

ck
 re

qu
es

ts

Figure 9. Optimization steps and their effects.

exact guest VM page access order. When the guest VM has

a major page fault, it usually causes a disk read. Therefore,

the average time of serving a page fault with just concurrent

paging is high.

In comparison, with per-regionmapping the daemon loader

prefetches the pages in approximately the same order as the

guest VM because of its use of working set groups. When

a guest VM major page fault happens, it is more likely that

the faulting page is being installed to the page cache from

the disk by the daemon loader and does not cause another

disk read. Therefore, the VM page fault handling time is

shorter in per-region mapping, making the VM execution

faster. Per-region mapping creates more major page faults

since it is able to progress faster, but its major page faults are

less “harmful” than major page faults in concurrent paging.

FaaSnap further reduces the loader’s read time using the

loading set and loading set file optimizations. The loader can

prefetch most of the pages before the guest accesses them,

leading to the fewest number of major page faults, fewest

number of block read requests, shortest page fault time, and

shortest invocation time.

6.6 Bursty workloads

Burst-parallelism is an increasingly common invocation pat-

tern in serverless computing [29]. Real-world events like IoT

events and data analytics frameworks can create a large num-

ber of parallel invocations in a short time window, and it is

important for platforms to be able to efficiently handle such

workload patterns. We evaluate two kinds of bursty work-

loads, the burst of VMs from the same snapshot and from

different snapshots: same snapshot represents bursty work-

loads from the same application while different snapshots

represent those from different applications.

We evaluate bursty workloads using Firecracker, REAP,

and FaaSnap. For the same snapshot, Firecracker and FaaS-

nap take advantage of the host OS page cache to avoid redun-

dant disk reads when servicing page faults from the guest

741

FaaSnap: FaaS Made Fast Using Snapshot-based VMs EuroSys ’22, April 5–8, 2022, RENNES, France

1 4 16 64
0.0

0.2

0.4

0.6

tim
e

(s
)

hello-world, same snapshot
Firecracker
REAP
FaaSnap

1 4 16 64
0.0

0.2

0.4

0.6

tim
e

(s
)

json, same snapshot

1 4 16 64
0

1

2

tim
e

(s
)

hello-world, diff snapshots

1 4 16 64
0

1

2

tim
e

(s
)

json, diff snapshots

Figure 10. Performance with bursty workloads. Tests are

performed using two functions, and using the same snapshot

or different snapshots for each instance.

VMs. REAP bypasses the page cache to maximize read band-

width. The FaaSnap loader uses a lock to ensure the loading

set is accessed exactly once to avoid redundant accesses.

We measure workloads running 1–64 invocations of the

hello-world and json functions at the same time. Figure 10

shows their average execution times and standard deviations.

When using the same snapshot, both REAP and FaaSnap

outperform Firecracker when parallelism is less than 64. Un-

der higher parallelism, Firecracker benefits from the page

cache when multiple guests access the same set of pages. The

guests are in effect loading the cache for each other. FaaSnap

is faster than REAP in all tests since REAP bypasses the page

cache, missing the caching opportunity. When parallelism

reaches 64, the CPU becomes the bottleneck and all settings

take longer to execute and have higher variance.

When using different snapshots, Firecracker performance

degrades quickly because the disk overheads from on-demand

reading of all of the different snapshots increase quickly. Both

REAP and FaaSnap run much faster than Firecracker with

more efficient disk reads. REAP performs similarly to the

case when it uses the same snapshot because it does not take

advantage of the page cache. FaaSnap outperforms REAP,

especially for json whose working set has more variance.

Overall FaaSnap handles parallel guest page accesses more

efficiently than Firecracker and REAP, better supporting

bursty workloads.

6.7 Remote storage

In disaggregated storage environments, machines do not

have local disks and attach remote block storage. To evaluate

performance in such cases, we measure the invocation time

while snapshots and related files are stored on remote block

storage.We use an AWS Elastic Block Store (EBS) io2 volume

with 64K maximum IOPS and 1 GB/s maximum throughput.

We measure the execution time of all the functions in Table 2

hello-world
mmap

read-list json

compressio
n

pyaes

chameleon
image

recognitio
n

pagerank
matmul

ffm
peg

0

500

1000

1500

2000

tim
e

(m
s)

Firecracker
REAP
FaaSnap

Figure 11. Performance using remote storage for snapshots

and related files.

using Firecracker, REAP, and FaaSnap snapshots. We con-

duct the test three times and report the mean and standard

deviations of execution time.

Figure 11 shows the results. Baseline Firecracker snapshot

performance using remote EBS is on average 33% slower than

using the local NVMe SSD, reflecting the effects of increased

latency and lower bandwidth from remote disks. Both REAP

and FaaSnap significantly outperform Firecracker for most

functions. FaaSnap is faster than REAP in most functions, ex-

cept recognition, read-list, and hello-world. In these

functions, the working set is very stable, making REAP’s

blocking working set fetching more efficient. On average,

while FaaSnap performance using EBS is 28% slower than

using a local NVMe SSD, it is 2.06x faster than Firecracker

and 1.20x faster than REAP.

The feasibility of FaaSnap on remote storage enables it to

be deployed on any machine, not just those with high-speed

local SSDs, thereby extending its deployment flexibility.

7 Discussion

7.1 Warm starts vs. snapshots vs. cold starts

A FaaS function invocation can be served in a warm VM, if

a warm environment exists, using a snapshot, if there are

existing snapshots, or by booting a cold VM if neither exists.

The Azure Function traces [29] show that less than half of

the functions are invoked every hour, and less than 10% are

invoked every minute. For the most frequent functions, keep-

ing warm VMs alive and using warm starts is the best choice.

Snapshots are useful for less frequently executed functions

where keeping warm VMs has more overhead than benefit.

Snapshots are also useful for applications with large vari-

ance in workloads, such as applications with sudden bursts

of workloads. In this case, keeping warm VMs reduces re-

source utilization while cold starts have high latency. As

shown in Section 6.6, FaaSnap can serve bursts of function

invocations efficiently. For very cold functions that are rarely

742

EuroSys ’22, April 5–8, 2022, RENNES, France Ao, et al.

invoked, snapshots are likely not worth the storage and man-

agement costs. Therefore, snapshots can be used to replace

cold starts for functions invoked less frequently than those

that benefit from warm VMs, and replace warm VMs when

their utilization is low (e.g., on eviction).

7.2 Storage costs

While snapshots can improve performance, they do incur a

real cost for cloud providers for storing and managing the

snapshot files. Two factors that determine the storage cost

are snapshot file sizes and storage location.

In general, the sizes of snapshot memory files are the same

as the guest memory size since the snapshot is a full copy of

the guest memory. These sizes are typically a few hundred

MB to a few GB, which are comparable to function image

sizes. In practice, since guest memory often contains zero

pages, snapshot files can be saved as sparse files to reduce

their sizes. In effect, though, snapshots increase the storage

requirements for functions that use them. As a result, for

very infrequent functions, providers can choose to not take

snapshots at all to reduce overall storage requirements.

Snapshot files can be stored on local SSDs, remote block

storage like EBS, or remote object storage like AWS S3. Stor-

ing snapshots on local SSDs provides the best performance,

but it is a relatively limited and expensive resource. Remote

storage for snapshots is cheaper and much more plentiful,

but has higher latency for serving snapshots.

As a result, deploying snapshots represents a tradeoff

for providers. While most of our experiments, as well as

those performed by other snapshot optimization systems like

REAP [33] and Catalyzer [9], measure performance using

local SSDs, such results represent an upper bound in perfor-

mance and should be interpreted in that light. The best case

is if providers selectively use local SSDs for snapshot storage

for functions invoked frequently, but not frequently enough

to be served from warm VMs cached in memory (e.g., warm

VMs can be evicted from memory via snapshot to local disk).

Though using network storage does introduce additional

latency, it is still a viable alternative. Section 6.7 shows that

when using EBS, FaaSnap snapshots still provide perfor-

mance benefits. Snapshots for functions further down the

invocation frequency distribution can be stored in the slow-

est tier object storage such as S3. Providers can also access

snapshots in a hierarchical caching scheme. FaaSnap pro-

vides an even more fine-grained option for them since it

divides guest memory into memory sets and loading set

groups. In the future we plan to explore storing relatively

small loading set files on local SSD and larger memory files

on remote storage to reduce storage costs while satisfying

the performance requirements of reading loading sets.

7.3 Memory footprints

When the working set estimate is a good match for subse-

quent invocations, such as the experiments in Section 6.2,

the memory footprints of FaaSnap are similar to that of

Firecracker snapshots. In those experiments, on average it

consumes 6% more memory than Firecracker (anonymous

and page cache combined), although not always (FaaSnap

consumes less memory than Firecracker in 3 of the 12 func-

tions). Prefetching the working set into the page cache does

not significantly increase the memory footprint because the

working set is likely going to be loaded on-demand in Fire-

cracker snapshots. When the working set estimate is largely

inaccurate and large portions of the loaded working set are

not used by the guest VM, the memory footprint can increase

for working set optimizations like REAP and FaaSnap.

7.4 Snapshot security

Reusing a snapshot for VMs has two security concerns. The

first is the inherent risks when reusing an environment in-

cluding in-memory state that persists across invocations.

This situation for snapshots is similar to using warm VMs,

and is considered acceptable in FaaS. The second is unique

to restoring multiple VMs from the same snapshot. The re-

stored instances will have the same initial states. Specifically,

pseudo-random number generators (PRNGs) with identical

states can lead to a security vulnerability for cryptography.

Several solutions have been proposed including using a new

madvise flag to wipe memory locations with high-value se-

crets when taking a snapshot [6], and using a special device

to provide unique VM IDs to the restored VMs [23].

8 Conclusion

On-disk snapshots are a promising way to prevent the over-

head of cold starts in serverless computing. Existing snapshot

and restore approaches have inefficiencies like long initial

blocking, sensitivity to working set changes, and a host-guest

memory semantic gap. In this paper we propose FaaSnap,

which develops several techniques and optimizations such

as concurrent paging and per-region mapping to reduce the

costs of guest VM major page faults. Experimental results

show that FaaSnap improves function execution by up to

3.5x than the state-of-the-art, and it is only 3.5% slower than

snapshots cached in memory.

Acknowledgments

We thank our anonymous reviewers and our shepherd, Adam

Belay, for their insightful and constructive suggestions and

feedback. We would like to thank Dmitrii Ustiugov for help-

ing us integrate REAP as a mode into FaaSnap. We also thank

Zachary Blanco for helping us set up the development en-

vironment. Funding for this work was provided in part by

National Science Foundation grants CNS-1629973 and CNS-

1763260, generous support from Google, and operational

support from the UCSD Center for Networked Systems.

743

FaaSnap: FaaS Made Fast Using Snapshot-based VMs EuroSys ’22, April 5–8, 2022, RENNES, France

References
[1] Alexandru Agache, Marc Brooker, Andreea Florescu, Alexandra Ior-

dache, Anthony Liguori, Rolf Neugebauer, Phil Piwonka, and Diana-

Maria Popa. 2020. Firecracker: Lightweight Virtualization for Server-

less Applications. In Proceedings of the 17th USENIX Symposium on

Networked Systems Design and Implementation (NSDI’20). USENIX As-

sociation, Santa Clara, CA, 419–434.

[2] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel Stein, Klaus

Satzke, Andre Beck, Paarijaat Aditya, and Volker Hilt. 2018. SAND: To-

wards High-performance Serverless Computing. In Proceedings of the

2018 USENIX Annual Technical Conference (USENIX ATC’18). USENIX

Association, Boston, MA, USA, 923–935.

[3] Lixiang Ao, Liz Izhikevich, Geoffrey M. Voelker, and George Porter.

2018. Sprocket: A Serverless Video Processing Framework. In Pro-

ceedings of the ACM Symposium on Cloud Computing (SoCC’18). ACM,

Carlsbad, CA, 263–274.

[4] James Cadden, Thomas Unger, Yara Awad, Han Dong, Orran Krieger,

and Jonathan Appavoo. 2020. SEUSS: Skip Redundant Paths to Make

Serverless Fast. In Proceedings of the Fifteenth European Conference on

Computer Systems (EuroSys’20). ACM, Heraklion, Crete, Greece, 1–15.

[5] Joao Carreira, Pedro Fonseca, Alexey Tumanov, Andrew Zhang, and

Randy Katz. 2019. Cirrus: A Serverless Framework for End-to-end ML

Workflows. In Proceedings of the ACM Symposium on Cloud Computing

(SoCC’19). ACM, Santa Cruz, CA, USA, 13–24.

[6] Adrian Costin Catangiu. 2020. Introduce MADV_WIPEONSUSPEND.

https://lwn.net/Articles/825230/.

[7] containerd. 2021. An industry-standard container runtime with an

emphasis on simplicity, robustness and portability. https://containerd.

io/.

[8] Marcin Copik, Grzegorz Kwasniewski, Maciej Besta, Michal Pod-

stawski, and Torsten Hoefler. 2021. SeBS: A Serverless Benchmark

Suite for Function-as-a-Service Computing. In Proceedings of the 22nd

International Middleware Conference (Middleware’21). ACM, New York,

NY, USA, 64–78.

[9] Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guanglu Yan, Chenggang

Qin, Qixuan Wu, and Haibo Chen. 2020. Catalyzer: Sub-millisecond

Startup for Serverless Computing with Initialization-less Booting. In

Proceedings of the Twenty-Fifth International Conference on Architec-

tural Support for Programming Languages and Operating Systems (ASP-

LOS’20). ACM, Lausanne, Switzerland, 467–481.

[10] Vojislav Dukic, Rodrigo Bruno, Ankit Singla, and Gustavo Alonso.

2020. Photons: Lambdas on a diet. In Proceedings of the 11th ACM

Symposium on Cloud Computing (SoCC’20). ACM, New York, NY, USA,

45–59.

[11] Firecracker. 2021. Firecracker Snapshotting. https://github.com/

firecracker-microvm/firecracker/blob/main/docs/snapshotting/

snapshot-support.md/.

[12] Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li, Shuvo Chatterjee,

Christos Kozyrakis, Matei Zaharia, and Keith Winstein. 2019. From

Laptop to Lambda: Outsourcing Everyday Jobs to Thousands of Tran-

sient Functional Containers. In Proceedings of the 2019 USENIX Annual

Technical Conference (USENIX ATC’19). USENIX Association, Renton,

WA, USA, 475–488.

[13] Sadjad Fouladi, Riad S. Wahby, Brennan Shacklett, Karthikeyan Vasuki

Balasubramaniam, William Zeng, Rahul Bhalerao, Anirudh Sivaraman,

George Porter, and Keith Winstein. 2017. Encoding, Fast and Slow:

Low-Latency Video Processing Using Thousands of Tiny Threads. In

Proceedings of the 14th ACM/USENIX Symposium on Networked Systems

Design and Implementation (NSDI’17). USENIX Association, Boston,

MA, USA, 363–376.

[14] Alexander Fuerst and Prateek Sharma. 2021. Keeping Serverless Com-

puting Alive with Greedy-Dual Caching. In Proceedings of the 26th

ACM International Conference on Architectural Support for Program-

ming Languages and Operating Systems (ASPLOS’21). ACM, New York,

NY, USA, 386–400.

[15] gVisor. 2021. gVisor. https://gvisor.dev/.

[16] Jeongchul Kim and Kyungyong Lee. 2019. FunctionBench: A Suite of

Workloads for Serverless Cloud Function Service. In 2019 IEEE 12th

International Conference on Cloud Computing (CLOUD’19). IEEE, Milan,

Italy, 502–504.

[17] Knative. 2020. Kubernetes-based platform to deploy and manage

modern serverless workloads. https://knative.dev/.

[18] Horacio Andrés Lagar-Cavilla, JosephAndrewWhitney, AdinMatthew

Scannell, Philip Patchin, Stephen M Rumble, Eyal De Lara, Michael

Brudno, and Mahadev Satyanarayanan. 2009. Snowflock: Rapid Vir-

tual Machine Cloning for Cloud Computing. In Proceedings of the 4th

ACM European Conference on Computer Systems (EuroSys’09). ACM,

Nuremberg, Germany, 1–12.

[19] Philipp Leitner, Erik Wittern, Josef Spillner, and Waldemar Hummer.

2019. A mixed-method empirical study of Function-as-a-Service soft-

ware development in industrial practice. Journal of Systems and Soft-

ware 149 (2019), 340–359.

[20] Linux Containers. 2021. Container and virtualization tools. https:

//linuxcontainers.org/.

[21] Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David

Scott, Balraj Singh, Thomas Gazagnaire, Steven Smith, Steven Hand,

and Jon Crowcroft. 2013. Unikernels: Library Operating Systems for

the Cloud. In Proceedings of the Eighteenth ACM International Confer-

ence on Architectural Support for Programming Languages and Operat-

ing Systems (ASPLOS’13). ACM, Houston, TX, USA, 461–472.

[22] Filipe Manco, Costin Lupu, Florian Schmidt, Jose Mendes, Simon Kuen-

zer, Sumit Sati, Kenichi Yasukata, Costin Raiciu, and Felipe Huici. 2017.

My VM is Lighter (and Safer) than your Container. In Proceedings of

the 26th Symposium on Operating Systems Principles (SOSP’17). ACM,

Shanghai, China, 218–233.

[23] Microsoft. 2012. Virtual Machine Generation ID. http://go.microsoft.

com/fwlink/?LinkId=260709.

[24] Edward Oakes, Leon Yang, Dennis Zhou, Kevin Houck, Tyler Harter,

Andrea Arpaci-Dusseau, and Remzi Arpaci-Dusseau. 2018. SOCK:

Rapid Task Provisioning with Serverless-Optimized Containers. In

Proceedings of the 2018 USENIX Annual Technical Conference (USENIX

ATC’18). USENIX Association, Boston, MA, USA, 57–70.

[25] OpenFaaS. 2020. Serverless Functions Made Simple. https://www.

openfaas.com/.

[26] Apache OpenWhisk. 2021. Apache OpenWhisk is a serverless, open

source cloud platform. http://openwhisk.apache.org/.

[27] Matthew Perron, Raul Castro Fernandez, David DeWitt, and Samuel

Madden. 2020. Starling: A Scalable Query Engine on Cloud Functions.

In Proceedings of the 2020 ACM International Conference onManagement

of Data (SIGMOD’20). ACM, Portland, OR, USA, 131–141.

[28] Alastair Robertson. 2021. bpftrace. https://github.com/iovisor/

bpftrace.

[29] Mohammad Shahrad, Rodrigo Fonseca, Inigo Goiri, Gohar Chaudhry,

Paul Batum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark

Russinovich, and Ricardo Bianchini. 2020. Serverless in the Wild:

Characterizing and Optimizing the Serverless Workload at a Large

Cloud Provider. In 2020 USENIX Annual Technical Conference (USENIX

ATC’20). USENIX Association, Virtual, 205–218.

[30] Simon Shillaker and Peter Pietzuch. 2020. Faasm: Lightweight Isolation

for Efficient Stateful Serverless Computing. In 2020 USENIX Annual

Technical Conference (USENIX ATC’20). USENIX Association, Virtual,

419–433.

[31] Stephen Soltesz, Herbert Pötzl, Marc E Fiuczynski, Andy Bavier, and

Larry Peterson. 2007. Container-based Operating System Virtualiza-

tion: A Scalable, High-performance Alternative to Hypervisors. In

Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference on

Computer Systems (EuroSys’07). ACM, Lisbon, Portugal, 275–287.

744

EuroSys ’22, April 5–8, 2022, RENNES, France Ao, et al.

[32] Shelby Thomas, Lixiang Ao, Geoffrey M. Voelker, and George Porter.

2020. Particle: Ephemeral Endpoints for Serverless Networking. In

Proceedings of the 11th ACM Symposium on Cloud Computing (SoCC’20).

ACM, Virtual, 16–29.

[33] Dmitrii Ustiugov, Plamen Petrov, Marios Kogias, Edouard Bugnion,

and Boris Grot. 2021. Benchmarking, Analysis, and Optimization

of Serverless Function Snapshots. In Proceedings of the 26th ACM

International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS’20). ACM, Virtual, 559–

572.

[34] Michael Vrable, Justin Ma, Jay Chen, David Moore, Erik Vandekieft,

Alex C. Snoeren, Geoffrey M. Voelker, and Stefan Savage. 2005. Scala-

bility, Fidelity, and Containment in the Potemkin Virtual Honeyfarm.

In Proceedings of the Twentieth ACM Symposium on Operating Systems

Principles. ACM, Brighton, UK, 148–162.

[35] Mengting Yan, Paul Castro, Perry Cheng, and Vatche Ishakian. 2016.

Building a Chatbot with Serverless Computing. In Proceedings of the

1st International Workshop on Mashups of Things and APIs (MOTA’16).

ACM, Trento, Italy, 1–4.

[36] Irene Zhang, Tyler Denniston, Yury Baskakov, and Alex Garthwaite.

2013. Optimizing VM Checkpointing for Restore Performance in

VMware ESXi. In 2013 USENIX Annual Technical Conference (USENIX

ATC’13). USENIX Association, San Jose, CA, USA, 1–12.

[37] Irene Zhang, Alex Garthwaite, Yury Baskakov, and Kenneth C Barr.

2011. Fast Restore of Checkpointed Memory using Working Set Esti-

mation. In Proceedings of the 7th ACM SIGPLAN/SIGOPS International

Conference on Virtual Execution Environments (VEE’11). ACM, Newport

Beach, CA, USA, 87–98.

745

FaaSnap: FaaS Made Fast Using Snapshot-based VMs EuroSys ’22, April 5–8, 2022, RENNES, France

A Artifact Appendix

A.1 Abstract

Our artifact includes the FaaSnap daemon implementation,

modified Firecracker VMM, and modified guest kernel. We

also include the testing scripts and resources used in the

evaluation.

A.2 Description & Requirements

A.2.1 How to access. The FaaSnap source code and re-

lated resources are available and maintained in the Github

repo https://github.com/ucsdsysnet/faasnap.

A.2.2 Hardware dependencies. Firecracker requires KVM

support. We used an AWS EC2 c5d.metal instance since it

has KVM capability and high performance NVMe SSDs for

fast snapshot loading. We expect machines with KVM capa-

bility and fast SSDs should suffice.

A.2.3 Software dependencies. Ubuntu 18.04.6 LTS, Docker,

Golang, go-swagger, and Python 3.10.

A.2.4 Benchmarks. We include all the benchmarks and

testing resources in the Github repo.

A.3 Set-up

README.md includes all the set-up steps, including:

• Building Firecracker and the guest kernels (vanilla and

modified).

• Starting a local Redis instance and populate Redis with

input data.

• Building the FaaSnap daemon and function rootfs.

• Configuring and preparing the environment.

A.4 Evaluation workflow

A.4.1 Major Claims.

• C1: FaaSnap achieves on average 2x better perfor-

mance than Firecracker and 1.4x than REAP for func-

tion execution time. This claim is supported by the

experiment E1 described in Section 6.2 whose results

are illustrated in Figure 6 and Figure 7.

• C2: FaaSnap achieves better execution time than Fire-

cracker and REAP when input sizes vary greatly. This

claim is supported by the experiment E2 described in

Section 6.3 whose results are illustrated in Figure 8.

• C3: FaaSnap handles bursty workloads well. This claim

is supported by the experiment E3 described in Sec-

tion 6.6 whose results are illustrated in Figure 10.

• C4: FaaSnap achieves better performance than Fire-

cracker and REAP when using remote snapshots. This

claim is supported by the experiment E4 described in

Section 6.7 whose results are illustrated in Figure 11.

A.4.2 Experiment E1.

• Preparation: Follow instructions in README.md to con-

figure test-2inputs.json.
• Execution: Run test.py test-2inputs.json with

root privilege.

• Results: The execution traces of invocations are acces-

sible on the Zipkin web page running on port 9411 of

the server. TraceIDs can be used to search traces. We

expect the results to be similar to Figure 6 and Figure 7.

A.4.3 Experiment E2.

• Preparation: Follow instructions in README.md to con-

figure test-6inputs.json.
• Execution: Run test.py test-6inputs.json with

root privilege.

• Results: The execution traces of invocations are acces-

sible on the Zipkin web page running on port 9411 of

the server. TraceIDs can be used to search traces. We

expect the results to be similar to Figure 8.

A.4.4 Experiment E3.

• Preparation: Follow instructions in README.md to con-

figure test-2inputs.json.
• Execution: Run test.py test-2inputs.json with

root privilege.

• Results: The execution traces of invocations are acces-

sible on the Zipkin web page running on port 9411 of

the server. TraceIDs can be used to search traces. We

expect the results to be similar to Figure 10.

A.4.5 Experiment E4.

• Preparation: Follow instructions in README.md to con-

figure test-2inputs.json.
• Execution: Run test.py test-2inputs.json with

root privilege.

• Results: The execution traces of invocations are acces-

sible on the Zipkin web page running on port 9411 of

the server. TraceIDs can be used to search traces. We

expect the results to be similar to Figure 11.

746

