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Abstract—Deprecation — signaling that a function is becoming
obsolete in the near future — is necessary for the web ecosystem.
However, an unsuccessful deprecation can lead to pain for both
developers and end-users. In this paper, we analyze web feature
deprecations with the goal of improving Chrome’s deprecation
process by balancing the need for deprecation and minimizing
user pain. We produce a taxonomy of reasons why developers
want to deprecate web features and a deprecation methodology
for deciding when it is safe to deprecate a web feature. We also
discuss the challenges faced during the deprecation process.

I. INTRODUCTION

A fundamental aspect of working with software is working
with APIs: either developing them or using them. Further-
more, a fundamental aspect of working with many APIs is
deprecation. Deprecation is the act of marking a feature as
obsolete, as a warning to developers that the feature will be
removed in the near future. Thus, deprecation is a signaling
mechanism to help ease the transition away from a feature and
ensure developers are notified in advance of feature removal.
Because deprecation may result in frustration for both users
and developers — developers have to adapt their code and
users will deal with any breakage — API maintainers must be
careful with deciding to deprecate a feature.

In this paper, we focus on deprecation of APIs (or API
behaviors) created by browsers, called “web features”. The
specific question we investigate is how to help browser
developers decide whether to deprecate web features. Web
feature deprecation makes a good case study subject because
of the sheer scale of how many people may be affected. New
web APIs are continuously created and then used by web
developers to create and improve millions of websites, which
are in turn utilized by billions of individual users. In 2014 there
were 91 new features implemented in the Chrome browser,
while in 2015 that number nearly doubled to 161. While these
new Web APIs spur innovation on the web, not all of them
thrive equally. Hence, web feature removal is a necessary part
of a healthy web ecosystem: feature experiments fail, security
problems arise, new and better APIs are introduced to replace
the old corpus, etc.

Unfortunately, the decentralization and scale of web deploy-
ment can make feature removal a challenge. There is neither a

straightforward mechanism to identify all the web sites using
a particular web API, nor a means to seamlessly update them.
A feature used on 100K web sites requires more developers to
respond than one used only on 100 sites. When a deprecation
is unsuccessful — when significant reliance on an obsolete
feature continues — a removal may affect the appearance and
functionality of sites across the web, leading users to become
disillusioned with the sites, the browser, or both.

A key challenge in deprecating features is balancing the
costs to developers, the impact on users, and progress on the
web. Many browsers have procedures and protocols in place
to ensure that a deprecation does not cause too much pain,
typically based on usage metrics. These procedures are not
always effective, such as when Chrome needed to postpone
deprecating a feature to autoplay videos with sound after
public outcry [1]. To keep its user base intact, a browser wants
to avoid unsuccessful deprecations.

In this paper we focus on the Chrome browser. Chrome
is a natural choice as it is a widely popular open source
browser, with public discussions about whether to deprecate
web features [2]–[4]. Furthermore, the Chrome web feature
team was interested in updating the protocol they use for
deciding when it is safe to deprecate a web feature.

We investigated why developers choose to deprecate web
features. Features that are deprecated for different reasons
might need to be treated uniquely in the deprecation process.
We classified 2.5 years of web feature deprecations in Chrome
(Table III). Via analysis, we determined that these different
categories of features should be treated differently when dep-
recating. We also examined better ways to measure user pain.
We discovered many interesting issues that arise in practice,
as well as the tradeoffs among different data sources.

The main contributions of this work are:
• The first paper investigating web feature deprecations.
• A taxonomy of reasons why developers want to deprecate

web features.
• A collection of data sources, metrics, and thresholds for

deprecating web features.
• Guidelines for deciding when it is safe to deprecate a

web feature and an accompanying tool for determining



TABLE I
POSSIBLE INTENTS IN CHROME AND A BRIEF EXPLANATION OF EACH.

Intent Explanation

Intent to Implement Add the code with a flag in Chrome
so that it is not enabled by default.

Intent to Experiment Run experimentation trials on Chrome
to get feedback from developers.

Intent to Ship Flip the feature to default.

Intent to Deprecate Signal to developers that the feature
will be removed in a future release.

Intent to Remove Remove code from Chrome; pages rel-
iant on feature may not render correctly.

whether a web feature meets these guidelines.
• A methodology for approaching the question of whether

to deprecate an API.

As mentioned above, web features are a particularly interest-
ing topic for a case study because they affect a vast number
of both developers and end users. However, the deprecation
methodology we propose in this paper could be used for other
domains, such as language level feature deprecations, since
the fundamental question of how to decide when a feature is
safe to deprecate transcends the case of web features.

II. BACKGROUND

Web browsers have become much more intricate and com-
plex since they were first introduced in the 1990s. A browser
typically has a rendering engine, which parses the HTML
and CSS for a specific URL into a graphic display that
is more easily read by humans. In this paper, we broadly
define a web feature as any browser behavior available to the
developer of a web page; we consider Javascript functions,
CSS properties and HTML elements as examples of web
features. Many web features are standardized by committees
of developers and practitioners, such as the W3C and the
WHATWG, and then browsers implement these specifications.
This standardization process ensures that a feature on Chrome
behaves roughly the same on Firefox, Safari, and other popular
browsers. Standardization reduces friction for both developers
and end users: website developers do not need to worry about
implementing different versions of their web page for different
browsers, and end-users receive a similar experience for a
specific webpage regardless of their browser choice.

Browsers each have their own protocol for implementing
and deprecating web features; we focus on the Chrome
browser in this paper. A standard does not need to be finalized
to be implemented in a browser, and implementation and
experimentation is typically encouraged by browsers. To add
or remove a feature from Chrome, a developer will email
blink-dev@chromium.org with their Intent for the fea-
ture [5]. This Intent process is entirely public to provide

TABLE II
NUMBER OF FEATURES IMPLEMENTED AND DEPRECATED EACH YEAR IN

CHROME SINCE 2014.

Year Implemented Deprecated

2014 91 65
2015 161 42
2016 216 40
2017 174 49
2018 (up to July) 100 23

transparency on web feature decisions, and Table I shows how
each Intent directly maps to a specific action within Chrome.

The two Intents we focus on in this paper are Intent to
Deprecate and Intent to Remove. Although deprecation is
required in almost all removal cases, they are still treated as
two independent steps: a developer must deprecate a feature
before they can remove it. A successful deprecation is one
that is silent for end-users, and does not invoke a strong
negative reaction from web developers, while still leading to
the removal of the feature. A vocal minority might express
dissent, but the deprecation is still a good choice for the web.

To date in Chrome, a developer will typically gather one or
two usage metrics on the feature to get a sense of potential user
or developer pain if the feature were removed today. If those
metrics fall below thresholds that have been set via anecdotal
experience, then the feature can probably be deprecated and
subsequently removed [6]. If the metrics do not fall below the
threshold, then the developer can perform outreach to try and
lower the use of the website; for example, a developer might
individually reach out to large companies whose websites still
use the feature in an attempt to understand why. While an
established protocol exists, much of the deprecation process
is based on intuition and past experiences.

Implementing and shipping new features are important for
the growth of the Internet, but so is deprecation and removal.
Deprecations are necessary for a variety of reasons, such as ex-
perimental features that never become standardized, changing
standards, or when a security problem emerges with a specific
web feature. Table II shows the number of implementations
and deprecations in Chrome since 2014, to give a sense of
the balance between these two separate functions. While the
number of features implemented since 2014 has increased, the
number of features deprecated has remained constant.

The difference between the number of features implemented
and deprecated may seem disparate, but it can be attributed to
browser developers attempting to avoid unsuccessful or unpop-
ular deprecations. The first principle in the Blink principles of
web compatibility — a document that dictates what factors
to consider when avoiding breaking changes on Chrome —
is “minimizing end-user impact” [7]. Given the ripple effects,
browsers are more conservative when deprecating a feature
than implementing a feature. An unsuccessful deprecation can
turn users away from the browser.

For example, in 2017 Chrome decided to disallow videos
from autoplaying with audio on web pages [8]. The main



intention behind this change was to stop advertisements that
would autoplay when a user was visiting a website [1].
However, this change also affected Internet-based games that
relied on the autoplay functionality to work and as a result
broke such games. In fact, the impact was so severe that
Chrome delayed removing this feature to a later version, and
as a result the initial deprecation was unsuccessful.

Autofill completion is another example of an unsuccess-
ful deprecation. Again in 2017, Chrome deprecated “auto-
complete=off”, which means that Chrome would ignore that
attribute when present on a web page [9]. This behavior
complies with the specification for the autofill web feature
and is the result of a decision that Chrome made to en-
hance the overall use of the autocomplete feature for their
users [10], [11]. However, Chrome received a significant
backlash, including a highly-rated post on hacker news and
two bugs that received numerous complaints (164 and 234
posts, respectively) [9], [10], [12]. In this case, the end-user
might not have faced much friction, but web developers were
unhappy with the change in default behavior and placed the
blame on Chrome.

III. OVERVIEW OF METHODOLOGY

The methodology we followed consisted of three main
steps:

1) We determined deprecation categories based on the
history of why features have been deprecated in the past.
We first classified more than 100 previous Chrome web feature
deprecations to identify specific categories. Our rationale was
that if web features were deprecated for different reasons, then
those different categories may also have different thresholds
for deprecation metrics. The categories for web feature dep-
recations we discovered are discussed in Section IV.

2) We determined data sources, metrics, and thresholds
to measure both user and developer pain. We analyzed
a variety of different datasets, both internal and public, to
determine appropriate metrics. Moreover, we also retroactively
analyzed metrics data to provide guidance on establishing
thresholds. The data sources and metrics we decided on and
the thresholds we use are discussed in Section V.

3) We determined deprecation guidelines based on API
developer goals and constraints. Our final step was to create
a set of guidelines; metrics and thresholds are not as useful
without a set of instructions to assist in interpreting them. We
used the thresholds as ground truth, and then used other data
sources, where we did not have historical data, as auxiliary
datasets in the decision-making process. The guidelines we
have provided to the Chrome team are outlined in Section VI.

Although we focus on the particular case of deprecating
web features in Chrome in this paper, one could apply the
methodology we followed to other contexts.

IV. TAXONOMY OF WEB FEATURE DEPRECATION

Chrome currently deprecates all web features in the same
way: a web feature is approved for deprecation if certain
metrics fall below canonical thresholds. However, since web

features are deprecated for very different reasons, we argue
that features should also be deprecated according to their
nature. For example, a feature that is deprecated for security
concerns might be severe enough to warrant more lenient
thresholds for deprecation. Our first step was to determine the
different reasons why a developer would want to deprecate a
feature.

To achieve this goal, we examined 2.5 years worth of
Chrome web feature deprecations and manually catego-
rized each feature based on why it was getting depre-
cated. One author read through all 123 deprecation messages
sent to blink-dev@chromium.org (six of which were
abandoned or withdrawn for various reasons) and assigned
codes [13]. Another author verified 33 of the 117 successful
deprecation messages (roughly 30% of all messages). We cal-
culated a Cohen’s Kappa of 0.81 (“almost perfect”) indicating
a high degree of inter-rater agreement [14]. We assigned six
different categories (Table III).

We find that there are indeed different categories for why
developers deprecate web features, and examine in subsequent
sections whether these categories should be treated differently.

V. DATA SOURCES, METRICS, AND THRESHOLDING

One of our goals was to more accurately measure user and
developer pain, so browser developers can make informed
decisions about the costs of deprecation and removal. To
achieve this goal, we expanded the set of data sources and
metrics used in the deprecation decision, created a set of
thresholds via a retroactive data analysis, and created a tool
to help a Chrome browser engineer in the decision of whether
to deprecate a web feature.

A. Data sources & Metrics

In the context of web feature deprecation, we asked our-
selves the different ways to measure pain — both developer
and user pain — to get a full picture of the tradeoffs of a
deprecation and removal. Understanding how many developers
would be affected is important because the developers are
the individuals who will need to change their website to stop
using the web feature. However, user pain is equally important
because it gives a worst case scenario; if no developers
followed the deprecation, how many users would be affected
if the feature was removed? Both of these measurements of
pain are critically important.

Historically, Chrome deprecations have been driven by two
data sources: User Metrics Analysis (UMA) and the HTTP
Archive. UMA is a Chrome internal data source that provides
aggregated usage metrics and powers chromestatus.com.
The HTTP Archive is a public dataset that tracks how the
top 500K sites are implemented, which includes whether the
website uses a specific web feature. For deprecations, the key
metric that UMA provides is pageloads: for example, a user
visiting google.com counts as one pageload, and every
change in URL counts as an additional pageload. Chrome
Web Feature deprecation guidelines state that the percentage



TABLE III
EACH CATEGORY OF WEB FEATURE DEPRECATION, HOW MANY FEATURES FALL INTO THAT CATEGORY, AND AN EXAMPLE FEATURE.

Category Definition Number Example Feature

Security Feature was deprecated
because of security flaw or concern 25 NotificationInsecureOrigin

Never Standardized Experimental web feature was
never standardized 19 WebDatabaseCreateDropFTS3Table

Updated Standard Feature or attribute was deprecated
because the standard was updated 12 CredentialManagerGet

Removed from Standard Feature was removed from the standard 23 MediaStreamEnded

Inconsistent Implementation Buggy or inconsistent
implementation of the feature spec 12 HTMLEmbedElementLegacyCall

Clean Experience Removing the feature provides a
less confusing experience for web developers 26 ElementCreateShadowRoot

Total 117

TABLE IV
THE DATA SOURCES WE EXAMINED AND WHAT THEY PROVIDE IN THE DEPRECATION PROCESS.

Data Source What It Provides Motivation Origin

User Metrics Analysis
(UMA)

Chrome metrics such as percentage
of pageloads and percentage of clients per feature

Browser perspective Internal, public
on chromestatus.com

URL Keyed Metrics
(UKM)

Chrome metrics such as unique percentage
of domains and percentage of clients per feature

Browser perspective Internal, backs Chrome
User Experience Report

HTTP Archive Number of domains among the most
popular 500K sites that have a web feature Feature usage on websites Public

CanIUse Whether a browser supports a web
feature and what version support went into effect

Current and historical usage
across browsers

Public

of UMA pageloads is the guiding metric for web feature
deprecation, with the number of domains from the HTTP
Archive as a backup. In addition to these two metrics, checking
cross-browser compatibility is encouraged to keep the web
ecosystem consistent. Generally, if a feature falls below 0.03%
of UMA pageloads, then the feature is eligible for deprecation;
if not and if the feature is on fewer than 0.02% of domains
from the HTTP Archive, it may be possible to deprecate.

UMA pageloads help quantify user pain (how often users
encounter a web feature), while the HTTP Archive quantifies
developer pain (how often sites use a web feature). However,
these metrics do not indicate the full extent of user pain or
provide avenues for exploration. For example, these metrics
combined will be able to tell you if the high pageload count
is due to a few popular websites; from here a browser or web
feature developer can go and contact these popular websites.
However, if there is a high pageload count and very few sites
in the HTTP Archive have this web feature, then there is not
much opportunity for actionable outreach.

To broaden our metrics, we started by determining which

additional datasets are useful in providing a more represen-
tative set of metrics. In our case, choosing the data sources
was a mix of experimentation to see what metrics they can
provide and how the metrics fit together across data sources.
We identified nine datasets from a combination of our own
exploration and asking developers who work in the web
platform space. The seven additional sources were a Chrome
internal dataset called UKM, CanIUse, WPT.FYI, Confluence,
the Microsoft API Catalog, Microsoft CSS Usage, and MDN
web docs [15]–[19].

We then selected sources based on three criteria: 1) what
metrics it provides, 2) how those metrics compare to the other
data sources available, and 3) whether it is straightforward
to parse and engineer into a tool for web feature deprecation
analysis. For example, we chose the Chrome internal URL
Keyed Metrics (UKM) data set (that backs the Chrome User
Experience Report) as a data source because it provides
insights into the number of domains from the perspective of
a browser, which is a unique perspective that would be hard
to find elsewhere [20]. We also wanted to use a source that



Fig. 1. We plot the percentage of UMA pageloads for every web feature that
has an UMA counter. We find no natural delineation in the data.

would provide cross-browser usage information and decided
on CanIUse because it listed the version where that feature was
first implemented. We also decided to continue using UMA
and HTTP Archive; these four data sources are described in
Table IV.

These four data sources provide a series of metrics, pre-
sented in Table V, that show a more comprehensive picture of
potential user pain, while also providing avenues for outreach.
For example, UKM combined with the HTTP Archive number
of unique domains indicates whether the feature is more
prevalent on popular websites or not and whether a developer
must focus their outreach efforts, such as contacting websites,
on individual sites or a much larger number of sites. We
can now also examine whether a feature is seen primarily in
certain countries. We chose metrics that could be analyzed
automatically, to reduce the load on the browser engineers
working through a deprecation. We do not use metrics such
as feature dependence because that would require significant
work and knowledge from the developer.

Privacy: In this paper, we use two Chrome internal data
sources: UMA and UKM. UMA is enabled if the user has “Au-
tomatically send usage statistics and crash reports to Google”
setting enabled. In modern Chrome, this is enabled by default
for consumer installs, but can be disabled during installation
or afterwards via a setting. UKM is enabled when the user
has both the “Automatically send usage statistics and crash
reports to Google” setting enabled, and the user is syncing all
browsing windows. UMA collects full aggregate metrics (such
as pageloads) while UKM collects a smaller set of aggregated
metrics tagged by domain. Identifying characteristics such
as age or occupation are not collected. Both metrics are
pseudonymous and tagged by separate, opaque identifiers.

B. Thresholding

Another unclear aspect of the deprecation process, in discus-
sions with browser engineers at Google, was where thresholds
should be drawn for successful deprecations. Given this, we
focused on determining the thresholds for the different metrics
that would indicate a successful deprecation.

We first attempted to find thresholds via a simple data
analysis, looking to see if characteristics in the data would

Fig. 2. When plotting all features that have a UKM domain and client counter,
we find knees at 0.01%. However, this is not indicative that this is the correct
place to draw the thresholds.

point to natural thresholds to use. We graphed all data points
for the different datasets, and also between datasets, to see
if there would be a natural knee or delineation in the data
that we could point to as the threshold for that metric. For
many of the graphs we produced, there were no defining
characteristics indicating thresholds. For example, in Figure 1
we plot all features that have UMA pageload counters and the
percent of total pageloads for each counter. Moreover, when
we compared the UMA client percentages to when the feature
was implemented in Figure 3, we did not see any trends.

However, this was not the case when we looked at UKM
data (Figure 2) where there is a knee in the data (around
0.01%). However, this natural delineation in the data could
be due to a variety of factors. While we want to base our
thresholds on ground truth, we realized that external factors
also play a role. We needed to ensure that the threshold
would not cause significant user pain, regardless of natural
delineations.

In the end, we decided to analyze past successful depreca-
tions to find thresholds. By analyzing past deprecations, we
are taking the stance that we have felt comfortable in the
past deprecating X feature, which is a part of Y category,
at Z threshold, and so under similar circumstances, the same
principles should hold today. There are two caveats to this
approach that are worth mentioning. Since past deprecations
were based on a mix of intuition and anecdotes our thresholds
could end up at exactly the same levels as they were before.
We found that exceptions and outliers to every rule and dataset
add variance in the thresholds. The second caveat is that this
type of analysis requires historical data; we only had historical



TABLE V
FOR EACH METRIC, WE STATE WHAT IT PROVIDES US AND WHO IS AFFECTED. WE OPTIMIZED OUR DATA SELECTION CHOICES TO GIVE US THE WIDEST

BREADTH OF ANALYSIS FOR WEB FEATURE USAGE.

Metric What Metric Tells Us Who Affected

UMA percent of pageloads Percent of pageloads for Chrome End User

UKM percent of unique domains Percent of domains that Chrome sees this web feature on Developer

UKM percent of clients Percent of clients that see this web feature on a domain End User

UKM Geography Percent of domains that were loaded
in a Chrome version from a specific country End User & Developer

HTTP Archive number of unique domains Percent of domains (for the top 500K) Developer

UKM Google Domains + Clients Percent of domains and clients for a
feature that come from a Google property Developer

CanIUse cross-browser support Whether a browser supports a feature
and when it started support End User & Developer

Fig. 3. For each feature that has an UMA Clients counter and an entry in
CanIUse, we plot the the version it was implemented with the current UMA
Clients counter. We find no trends when comparing these two datasets.

data for UMA pageloads and HTTP Archive domains, so we
were restricted to setting retroactive thresholds to just these
two metrics (Table VI).

Our retroactive analysis exposed variance in each category,
and each platform within the category. Our initial goal was
to develop a formula for determining thresholds that would
generalize across the different categories and platforms easily.
To collect the data, we took every feature that had been
deprecated in the past 2.5 years and labeled its category and
feature use counter name (the name with which we could look
it up in UMA and HTTP Archive). For each feature, we pulled
the date that it was sent to the blink-dev@chromium.org
mailing list and analyzed the UMA pageload percentage and
HTTP archive count for the month before, the month of, and
the two months following the date the email message was sent
to get more data points.

Frequently, feature use counters are not implemented when
a feature is implemented but instead only once the feature is
considered for deprecation — sometimes because developers
were told to do so after sending the deprecation email. This
behavior is why we focused our analysis on the few months

surrounding the deprecation email date. We did not want to
look too far past the month the deprecation was announced
because we expect the use of the feature to drop. When
choosing which month to analyze, we chose the month that
had the most data points. If there were two months that had the
same number of data points, we picked the month closest to
when the deprecation was announced. All of the thresholds,
as well as what percentile they represent, can be found in
Table VI.

Determining thresholds for the HTTP Archive was much
more straightforward than for UMA for two reasons: 1)
the HTTP Archive is not utilized as frequently as UMA in
previous deprecations and thus is not enforced as strictly, and
2) we had much fewer use counters for the HTTP Archive.
Since thresholding for HTTP Archive counts is less strictly
enforced than the UMA thresholding, we did not think it
would be helpful to find outliers. Moreover, we wanted to
pick a percentile that was representative of a high percentile
of successful deprecations, but still somewhat conservative.
With these constraints in mind, we picked the 90th percentile
of successful deprecation feature counts.

Determining thresholds for UMA pageloads was a much
more involved process, mainly due to the prevalence of
UMA in many deprecation decisions. Since UMA pageloads
thresholds have been more strictly enforced in the past, more
data points exist, which makes it easier to identify outliers.
We calculated the percentage of data points that were not
outliers and picked that percentile as the threshold for the
category/platform tuple. For example, the “Inconsistent Im-
plementation” category for Android has two outliers; since
there were 9 data points in total, 7/9 is roughly 80%, so we
picked the 80th percentile of that category/tuple pairing. If
there were no outliers, then we picked the 95th percentile;
we were more comfortable picking a higher percentile for the
UMA pageloads since there is more data and a more extensive



TABLE VI
THRESHOLDS FOR THE DIFFERENT CATEGORIES AND PLATFORMS.

Category UMA Windows HTTP Archive Windows UMA Android HTTP Archive Android

Security 0.04% (85th) 0.01% 0.08% (75th) 0.12%
Updated Spec/Standard 0.002% (95th) 0.01% 0.003% (95th) 0.01%
Never Standardized 0.02% (75th) 0.01% 0.01% (75th) 0.01%
Clean Experience 0.13% (90th) 0.13% 0.15% (90th) 0.22%
Inconsistent Implementation 0.02% (90th) 0.23% 0.07% (80th) 0.14%
Removed from Spec/Standard 0.02% (95th) 0.08% 0.04% (95th) 0.05%

Fig. 4. Flow chart of guidelines for web feature deprecation.

methodology associated with UMA pageloads.
It is worth noting some examples of outliers and why they

were still deprecated, which also explains why we exam-
ine platforms independently. We chose to examine platforms
independently after reviewing examples of deprecation out-
liers. For example, two Android features with implementa-
tion inconsistencies were allowed to be deprecated for very
different reasons. The first feature was deprecated with an
UMA Android pageloads count of 0.13% two months after
the “Intent to Deprecate” email message was sent because
the main properties using this feature were Google properties
and the developer reached out to these properties to convince
them to stop utilizing this web feature. The developer was
able to determine this situation by analyzing UKM data, which
we now recommend as a mandatory step in the deprecation
process.

The second Android web feature was deprecated because
the API owners — the browser developers who moderate
the blink-dev@chromium.org mailing list and give
approval or rejection for various Intents — looked at the
combined platform pageloads count rather than each platform
individually. While the combined pageload count for all plat-
forms fell well below the 0.03% threshold, the Android UMA
pageload count was at 0.23% two months after the deprecation
email was sent. This outlier, as well as previous work that
shows users utilize their devices differently, served as further
evidence that platforms, in addition to different categories,
should be analyzed separately [21].

VI. SHOULD I DEPRECATE?

Providing metrics and corresponding thresholds is more
helpful when accompanied by a set of guidelines to help drive
decisions Figure 4 illustrates the guidelines we provided to

Chrome developers. A Chrome developer seeking to deprecate
a feature must first determine which category the feature falls
into in order to use the threshold for that category. Next, the
developer should check that the UMA pageloads and HTTP
Archive percentages fall below the threshold for the category.
We present these analyses first because these two data sources
are something that developers in the web deprecation space
are familiar with, which makes them easier to interpret, and
because we have historical trends to draw conclusions from. If
the counts are not low enough to pass these boundaries, then
the developer will use the various analyses provided via UKM
to identify key sites to reach out to about use and deprecation
to lower use of a web feature.

Once the thresholds for UMA + HTTP archive are met, the
next step is to check the UKM domain and client counts and
verify that they are not too high. In the diagram, we label this
step as “sanity check” because we do not have thresholds to
recommend based on retroactive data. The final step is to check
cross-browser usage with CanIUse, if it is available. Being
compliant with other web browsers keeps the web platform
consistent and reduces developer pain. This check can also
ignite a discussion with other browsers about differences that
may lead to more insight about a certain feature and its role
in the web ecosystem.

A. Tooling to assist with deprecation decision

The final metrics and guidelines flow were incorporated into
a tool to give a comprehensive view of how a web feature
deprecation affects developers and users. The tool is based on
an internal pipeline to help a Chrome developer through the
process of gathering and analyzing metrics. The purpose of the
tool is to make following the guidelines as easy as possible
by automating any analysis needed.

Table VII shows an example analysis of the web feature
MixedContentVideo. “Mixed content” is when a container
page is served over valid HTTPS, but has resources, such
as a video, that are not served over valid HTTPS. Hence,
MixedContentVideo is a marker for “HTTP videos served on
HTTPS sites”. Figure 5 shows tool output for this feature for
UMA pageloads on Android and HTTP Archive URLs, and
Figure 6 shows the tool output from UKM.

It is not expected that every dataset will have data for all
specific features since the datasets are curated and handled
by different organizations. If there is a dataset that does not
have a metric, we expect that the developer using the tool



TABLE VII
AN EXAMPLE OF WHAT OUR TOOLING PROVIDES FOR THE MIXEDCONTENTVIDEO WEB FEATURE.

Metric Metric Count for MixedContentVideo

UMA pageloads 0.0421%
UKM percent of unique domains 0.0935% and Figure 6
UKM percent of clients 0.1368% and Figure 6

UKM Geography Feature seen at 1% above the average of UKM domains for MY (Malaysia);
avg. of all features seen in this country 1.24%, avg. of specified feature 2.25%

HTTP Archive number of unique domains 0.0426%
UKM Google Domains + Clients Domains: <2% and Clients: <5%
CanIUse Cross browser support Not available in CanIUse
Growth of Feature over time via UMA pageloads
and HTTP Archive number of domains Figure 5

Comparing UKM domains to HTTP Archive domains This feature is a more general feature based on the UKM
number (0.09%) and the HTTP Archive number (0.04%)

Fig. 5. We can easily examine growth over time with the tool created.

will either implement the use counter, where applicable, or
collect data by hand. For example, MixedContentVideo does
not have an indicator in CanIUse. In this case, we would expect
a developer to manually check if there is still support in other
popular browsers for mixed content videos.

The guidelines and accompanying tool are being adopted by
the Chrome team in charge of web feature deprecations. Our
hope is that the guidelines will propel successful deprecations
moving forward, and the tool will assist in easily following
the guidelines via automation of the necessary analysis.

VII. RELATED WORK

Various aspects of deprecation have been studied, mostly
at the language level across various ecosystems. There is a
breadth of work around API-breaking changes, but we focus
on related work in deprecation specifically since this paper
focuses on the deprecation process, not the removal process.

Fig. 6. We can examine the percentage of clients and percentage of domains
from a browser’s perspective now and plot it graphically to give an idea of
where the specified feature falls compared to other features.

There are a variety of studies that look at the deprecation
ecosystem. For example, Robbes et al. examined the ripple ef-
fect that occurs after an API is deprecated in the Squeak/Pharo
ecosystem [22]. They found instances where a deprecation
can have an effect on a software engineering project, but the
projects themselves might not react to the deprecation. They
also found deprecations are not always helpful, with missing
or minimal messages. Espinha et al. extended this work by
analyzing how deprecation affects programs using deprecated
web features and also if deprecation methods for popular web
APIs have any standards or best practices [23]. They found
that clients are often faced with distress when dealing with a
web API deprecation — and as a result recommend guidelines



on how to make deprecation a smoother process — and find
that even popular platforms often do not follow standards.

There are also studies that analyzed deprecation ecosystem
effects, but at a much larger scale. Sawant et al. continued
Robbes et al.’s study by mimicking the design setup; whereas
Robbes looked at one Java API, Sawant looked at twenty-
five thousand clients that used a total of five Java APIs [24].
Sawant et al. found that ripple effects are present and very
impactful, but only a small fraction of projects will react to
a deprecation, opting to delete the call instead of replacing
it with the recommended change. Zhou et al. examined how
deprecation has been used by analyzing 26 open-sourced Java
frameworks and libraries, and created a tool that indicates
when a code snippet uses a deprecated API [25]. They find that
deprecation methods in the examined frameworks are sporadic
and treated inconsistently in both an individual system and
across systems.

Also important is the variety of studies around deprecation
signage. Ko et al. examined 260 deprecated APIs of eight
Java libraries and the corresponding documentation and found
that, while 61% of deprecations provide replacement APIs,
rationales and concrete examples are rarely ever given [26].
However, for APIs that provided alternate calls, 62% of usages
resolved that deprecated API, while only 49% of deprecated
calls were replaced when there was no alternate calls produced.
Raemaekers et al. examined the policy of deprecation in
the Maven Central project, specifically analyzing deprecation
tags and indicators, and found that some features with a
deprecation tag are never removed, while features without
deprecation tags are removed; in short, deprecation tags are
used inconsistently [27]. Kapur et al. found a similar result
in their study, where they examined HTML-Unit, JDOM,
and log4j and their library migrations, and in the process
discovered that deprecated entities are not always deleted and,
perhaps more harmfully, deleted entities are not always dep-
recated [28]. Brito et al. examined over 600 Java communities
and their deprecation policies and found that while over 60%
of all deprecations linked to a replacement API, there is no
significant effort to improve deprecation warnings over time,
and communities that deprecated APIs in a consistent manner
are significantly different than those that do not [29].

Most recently, Sawant et al. analyzed why language dep-
recations occur and how developers expect clients to respond
to them [30]. To address their shortcomings, the authors also
propose new steps to take, such as including removal dates,
severity indicators, and generic warning mechanisms.

Web feature usage has been less studied. Snyder et al.
previously studied the prevalence of certain web features and
related metrics, such as age of a browser feature compared
to its usage, as well as how many of these features would be
blocked by anti-ad and anti-tracking extensions [31].

VIII. DISCUSSION AND FUTURE WORK

User pain is universal across domains. As such, an interest-
ing question is whether this framework — determining differ-
ent categories, analyzing metrics, and setting thresholds and

guidelines — can generalize to other domains that also handle
feature deprecations. For example, if a developer or researcher
was developing a process for language-level deprecation, they
could start by categorizing why previously deprecated features
for that language had been deprecated. To determine the
amount of developer pain, one could use API usage counts
gleaned from analyzing Github and publicwww.com, as
well as the popularity of Github projects that use those features
as a proxy for end-user pain. Finally, one could retroactively
analyze available data on successful deprecations to help
determine thresholds, and use the retroactive data as well
as any other non-historical data that is available to them to
determine a set of guidelines.

Of course, the web and language domains differ. For exam-
ple, language deprecations are less immediately detrimental
than browser deprecations. Github projects may simply stay
on an older API, while a web feature deprecation can have
an immediate effect on websites. Applying this methodology
elsewhere remains an open area of future work.

We could also extend this deprecation analysis to web
protocols that do not fit the definition of “web feature”.
Transport Layer Security (TLS) is a network protocol that
provides confidentiality, authenticity, and integrity. Although
TLS deprecations are not web feature deprecations, they still
have a significant effect on the web platform ecosystem. When
a TLS protocol or cipher suite is deprecated, or a Certificate
Authority is untrusted, the ripple effects can be huge. An open
question is how deprecations in TLS-related features compare
and contrast with deprecations of web features.

IX. CONCLUSION

In this paper we analyzed web feature deprecation via the
lens of the Chrome browser. We categorized 2.5 years worth of
deprecations in Chrome and found six reasons why a developer
would want to deprecate a web feature. We expanded the set
of metrics to measure user and developer pain caused by a web
feature deprecation, and used historical data to set thresholds
and create a set of guidelines for deprecation. Finally, we
created a tool for browser engineers to determine whether a
web feature meets these guidelines. The new guidelines and
tool are in the process of being adopted by the Chrome team
handling web feature deprecations.
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