
Dark Packets and the end of Network Scaling
Shelby Thomas

UC San Diego
shelbyt@ucsd.edu

Rob McGuinness
UC San Diego

jrmcguin@eng.ucsd.edu

Geoffrey M. Voelker
UC San Diego

voelker@cs.ucsd.edu

George Porter
UC San Diego

gmporter@cs.ucsd.edu

ABSTRACT
Today 100GbE network interfaces are commercially avail-
able, with 400GbE proposals already in the standardization
process. In this environment, a major bottleneck is DRAM
latency, which has stagnated at 100ns per access. Beyond
100GbE, all packet sizes will arrive faster than main memory
can accommodate, resulting packet drops due to the latency
incurred by the memory hierarchy.
We call these losses caused by the gap between cache

and DRAM, Dark Packets. We observe that for link rates
of 100GbE an application making a single memory access
causes a high number of packet drops. Today, this problem
can be overcome by increasing the physical core count (not
scalable), increasing packet sizes (not generalizable), or by
building specialized hardware (high cost).
In this work, we measure the impact of the dark packet

phenomenon and propose CacheBuilder, an API to carve out
bespoke hardware caches from existing ones through simple
user level APIs. CacheBuilder allows for explicit control over
processor cache memory and cache-to-main memory copies
by creating application-specific caches that result in higher
overall performance and reduce dark packets. Our results
show that for NFVs operating with small packet sizes at
40GbE we reduce dark packets from 35% to 0% and only
require half the amount of cores to achieve line rates.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ANCS ’18, July 23–24, 2018, Ithaca, NY, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-5902-3/18/07. . . $15.00
https://doi.org/10.1145/3230718.3230727

CCS CONCEPTS
• Networks → Network performance analysis; • Com-
puter systems organization→ Cloud computing; • Com-
puting methodologies → Distributed algorithms;

ACM Reference Format:
Shelby Thomas, Rob McGuinness, Geoffrey M. Voelker, and George
Porter. 2018. Dark Packets and the end of Network Scaling. In ANCS
’18: Symposium on Architectures for Networking and Communications
Systems, July 23–24, 2018, Ithaca, NY, USA. ACM, New York, NY,
USA, 14 pages. https://doi.org/10.1145/3230718.3230727

1 INTRODUCTION
The demands placed on enterprise, cluster, and datacenter
networks by users and operators are increasing at a rapid
pace. Today, network fabrics must carry out a myriad of
packet-handling functionalities besides simple forwarding
and routing. Software-defined networking enables a richer
and more programmable control plane, while network func-
tion virtualization (NFV) enables near arbitrary processing
on packets flowing through the dataplane. In endhosts, in-
creasing levels of performance is critical to meeting the strin-
gent deadlines needed to build large-scale applications such
as online search, commerce, scientific computing, and ma-
chine learning-based data processing. As the overall data
sizes of these applications grow, the network, endhost net-
work stacks, and applications must likewise scale their per-
formance to meet this challenge [34].

Today’s datacenters commonly deploy 10GbE and 40GbE
to each host [9, 39], with 100GbE already commercially avail-
able and 400GbE only a few years out [2]. This increase in
raw network bandwidth will inevitably affect the design of
server hardware and software. Increases in network speeds
have precipitated a wide range of changes to operating sys-
tem and application design. Polling network drivers replaced
interrupt-driven designs for ultra-low latency applications.
New system calls such as sendfile() avoided unnecessary
memory copies across kernel boundaries. Likewise, support-
ing higher bandwidths has required changes to hardware as
well. 10 and 40GbE network interface cards (NICs) widely
rely on TCP segmentation offloading (TSO) to maintain high

https://doi.org/10.1145/3230718.3230727
https://doi.org/10.1145/3230718.3230727

ANCS ’18, July 23–24, 2018, Ithaca, NY, USA Shelby Thomas, Rob McGuinness, Geoffrey M. Voelker, and George Porter

Packet Sizes

D
ev

ic
e

La
te

n
cy

 (
ns

)

1

10

100

1000

$

$

$

Figure 1: Evolution of Ethernet link speeds and interpacket gaps compared to CPU memory hierarchy latencies.
As link speeds improve, the interpacket gap decreases. 40GbE represents the first time where several small packet
sizes are just below DRAM latency. At 100GbE almost all packet sizes are under the latency line. This represents a
new regime for the future where bottleneck is now the memory and cache hierarchy. If a system takes longer to
service a DRAMmiss than it does to obtain a new packet packets will drop. This forces network operators to run
next generation NICs at current generation speeds and increases system cost as the only way around this problem
is to increase core count.

packet transmission rates. Scientific [28, 40] and datacen-
ter [11] applications have begun to rely on RDMA to reduce
latency and increase throughput to remote memory. Intel
has introduced DDIO-support in servers which side-steps
packet delivery to main memory, and instead shortcuts it
directly to a CPU’s L3 cache. In summary, improvements
in network performance have exposed new endhost bottle-
necks, which has necessitated the introduction of explicit
and implicit mechanisms to conceal the problem.

High-performance networked servicesmust carefullyman-
age data placement to ensure good performance and rely on
main memory for critical data structures [33]. At 100GbE
and beyond, even main memory will not provide sufficient
performance to support high-speed applications and tech-
nologies that reduce copies between the NIC andDRAMhave
already been introduced [19]. We argue that, in effect, pro-
cessor cache memory is “the new RAM”. Critical application
data structures must be kept within the processor’s on-chip
SRAM to handle the stringent performance requirements of
modern and future networks.
To put these requirements into perspective, a commer-

cially available 100GbE NIC receives minimum-sized pack-
ets every 5.6 nanoseconds. Yet latency to main memory is
more than an order of magnitude higher. Unless data is care-
fully restricted to the cache, it will be impossible to ensure

application-level performance metrics, leading to poor appli-
cation performance and dropped packets due to processing
exceeding proscribed deadlines. We call dropped and expired
packets that result from excessive delay waiting for main
memory Dark Packets.
We address the open challenge of designing applications

that can scale to next-generation network speeds by har-
nessing cache memory. The memory hierarchies in today’s
systems provides referential transparency, meaning that data
migrates automatically between the processor’s L1, L2, and
last-level caches (LLC or L3 Cache) within the processor, and
between the L3 cache and main memory. The lack of explicit
and deterministic control over this cache placement policy
leaves application developers unable to precisely control
key application datastructures. Even if developers program
endhost applications with highly-optimized packet handling
frameworks like DPDK [10] and BESS [12], the inability to
precisely control placement of data across the memory hier-
archy can lead to poor performance and Dark Packets.

In this work, we seek to understand the sources of perfor-
mance bottlenecks in existing systems at 10, 40, and 100GbE.
We show the impact that the memory hierarchy has on two
classes of application: in-network NFVs and atomic coun-
ters. For both cases, we describe CacheBuilder, an API to
explicitly manage cache and main memory using modern

Dark Packets and the end of Network Scaling ANCS ’18, July 23–24, 2018, Ithaca, NY, USA

x86 instructions on a general-purpose server class processor.

2 SYSTEM EVOLUTION OF INCREASING
NETWORK SPEEDS

The structure of endhost network stacks reflects a balance
between the speed of the network and the speed of internal
host components. When the relative speed of the machine
is fast compared to the network (e.g., communicating over
analog modems), network stacks are optimized to let the host
focus its resources on other tasks during the lengthy time
between servicing network IO events. As the network gets
faster relative to the host, new designs are needed to keep up
with network demands. In this section, we briefly describe
this evolution across a number of technology regimes we
refer to as (1) Disk, (2) DRAM, and (3) Cache Regimes.

2.1 Disk Regime
At 1-Gb/s, the network is able to source and sink data to
a host at the equivalent of 125 MB/s, equivalent to widely
deployed commercial disk technology. Indeed, although disk
capacities have grown dramatically over the past several
decades, disk throughput and latency have only experienced
modest improvements. In this regime, network IO is suffi-
ciently infrequent that network stacks are organized to be
interrupt-driven, enabling the CPU to fill cycles waiting for
additional network traffic with other operations, systems
calls, and general purpose computations.

2.2 DRAM Regime
At 10-Gb/s, the network can support a throughput of 1.25
GB/s, significantly higher than individual disks and many
multi-disk arrays. Besides the challenges to keeping up with
this level of throughput, the inter-packet gap of 10-Gb/s
links considering MTU-sized packets is 1.2 µs. This latency
is much faster than disks, driving system designers to move
all critical-path data structures and state into memory [33].
For MTU-sized frames, the CPU could tend to other tasks
between packet arrival events, however for minimum-sized
packets, the inter-packet gap is only about 50 nanoseconds.
This led to the development of NAPI network device drivers,
which alternate between interrupt-driven operation for low
levels of network utilization, and polling-mode operation
during bursts of packet arrival events. Polling-based drivers
focus CPU resources on implementing packet handling func-
tions trading off CPU effort for throughput and latency.
Research has long observed inefficiencies in the kernel

network stack due to high system call and context switching
overhead that exceed latencies for small packets a 10-Gb/s
and 40-Gb/s. In recent years user space network stacks such
as PF_RING [32], Netmap [38], and Intel DPDK [10] have

addressed this issue by replacing traditional kernel based
interrupt mechanisms with a combination of kernel-bypass,
zero copy, and polling mechanisms. Without these mecha-
nisms NICs beyond 10-Gb/s would only be able to utilize a
fraction of the total bandwidth for applications. While the
disk regime tried to pack computation between interrupts,
the DRAM regime treats the network as a first-class citizen,
reversing the traditional paradigm of the CPU waiting on
the network.

2.3 Cache Regime
The Cache Regime represents another fundamental jump
in hardware capabilities that will drive network to couple
even closer to the processor. Cache-line sized packets at
100-Gb/s arrive every 5.56ns, which is half the latency of
an L3 cache access (which is approximately 12ns). Figure 1
shows the impact of this phenomenon across both packet
sizes and link speeds. As the size of the packet increases so
does the interpacket-gap, however small sizes at 40G and
almost all packets at 100G are under the DRAM latency line.
For distributed systems protocols and NFV applications, this
means that even a few memory accesses on their critical
path risks dropping packets due to these excessive delays
in waiting for main memory. In the next section we explore
application behavior in the cache regime and provide amodel
for Dark Packet behavior.

3 THE END OF NETWORK SCALING
3.1 Analytical Observations
Figure 2 shows a simplified model of the cross-stack interac-
tion between the network and the processor for a high speed
network using DPDK to perform a KV-store access. We omit
advanced architectural features such as hardware prefetch-
ing, parallel memory lanes, SSE, and DDIO for illustration
purposes. We find this approach to be an accurate heuristic
to determine how many Dark Packet can be expected.
In this model, time is normalized to the inter-packet gap

for 100GbE NICs, i.e. each time slice is 5.12ns. The packet
first arrives at the hardware queue in the NIC at time t=0.
The packet is DMA’d directly to the L3 cache using Intel
DDIO [19]. When the packet is copied to the L3 cache a user
level network driver populates a ring buffer with pointers to
the data.

Once the data has been made available to the application
an RPC call begins to lookup a piece of data. The applica-
tion starts by traversing the memory hierarchy L1, L2, and
L3 cache to find the data finally missing and has to go off
chip. This off-chip access will take 100ns or 15 time slices, to
complete. At time t=1 another transfer begins independent
of the application state and follows the same pattern as time
t=1. It also needs to make a memory access but it is stalled

ANCS ’18, July 23–24, 2018, Ithaca, NY, USA Shelby Thomas, Rob McGuinness, Geoffrey M. Voelker, and George Porter

t=1 t=15t=7

P1

P2

P3 P1

P2

P3P1

N
I
C

U
s
e
r
-
l
e
v
e
l

D
r
i
v
e
r

M
e
m
o
r
y

N
e
t
w
o
r
k

rx_kvs_lookup(P1) rx_kvs_lookup(P1)

rx_kvs_lookup(P2)

rx_kvs_lookup(P1)
rx_kvs_lookup(P2)

rx_kvs_lookup(P3)

rx_kvs_lookup(P1)
rx_kvs_lookup(P2)

rx_kvs_lookup(P3)

H
a
r
d
w
a
r
e

F
u
n
c
t
i
o
n

RX-Q

t=0

S
o
f
t
w
a
r
e

Time

P1

P2

L3$

DRAM

P10

P11

P9P8 P14

P13P12

P8 P15

H
i
e
r
a
r
c
h
y

P1 P4P2 P5 P6 P7 P4 P5 P6 P7

P2P1

E
A

B D

C F

I

H

J

G
P1 P2

Figure 2: DarkPackets - Timenormalized to a single packet inter-packet gap (64B): A Data isDMA’d using a direct-
cache accessmechanismwhich places packet data into the L3 cache. B P1 is copied from the NIC hardware queue
into the userspace driver’s software queue. C The application performs a look-up. Data stays in the ring until
it has been transmitted. D Problems begin if the request misses in the L3 cache. E A 100ns transaction begins
to access the data from DRAM. F At the application level, packets are filling the ring buffer but the application
cannot begin operating on the next packet. H At t=7 both the hardware and software buffers are full. This is
the beginning of the dark packet regime as packet P8 gets dropped. I After 100ns the transfer that began at t=0
completes. J 7 Dark Packets have been incurred filling a single request.

waiting for the memory access from packet P1 to complete.
As subsequent packets come in from t=2 to t=6 the software
and hardware buffer fill up until at time t=7 the next packet
that comes in, packet P8, arrives at a queue that is completely
full. Packet P8 is dropped.
The NIC continues to initiate transfers oblivious to the

state of the software or the processor and continues to drop
packets until at time t=15 the memory access that began
at time t=0 finally completes. At this time packet P1 can
resolve but now P2 needs to complete its transfer and the
cycle begins once more. This results in a processed : dropped
ratio of 1:7 due to the memory hierarchy, resulting in the
system having 87% Dark Packets. In the cache regime of
networking, the number of memory accesses an application

makes directly translates into Dark Packet drops due to the
latency of DRAM accesses.

Some of this latency can be hidden by striping the packets
across multiple cores to increase the interpacket-gap by the
number of dedicated cores e.g. in Figure 1 each line would
be shifted up by core count. To obtain line rate for the RPC
example 12 physical cores need to be dedicated to this appli-
cation. However, increasing physical cores is not a scalable
solution. Line rate packet processing at 400-Gb/s with a sin-
gle DRAM access takes 79 physical cores and at 100-Gb/s 20
cores are required.

Dark Packets and the end of Network Scaling ANCS ’18, July 23–24, 2018, Ithaca, NY, USA

(a) (b)

Figure 3: Measuring the number of packet drops due to memory access latency. The number of Dark Packets in a
network increase as the memory accesses per packet go up. At 10G speeds this effect is observable but at higher
link speeds and smaller sizes the problem manifests itself in an increasing number of packet drops.

Parameter Description Default
L Link Speed (Gb/s) varies
N Number of Cores varies
P Packet Size (Bytes) varies
tD DRAM Access time (ns) 100
MD Number of Memory Accesses varies
Table 1: Parameters for Dark Packet Potential

Interpacket gap︷ ︸︸ ︷
P

(L/8)
· N ≤

DRAM accesses︷ ︸︸ ︷
(MD · tD)︸ ︷︷ ︸

Dark Packet Potential

(1)

Figure 4: Simplified equation for the potential of Dark
Packets in a system. As long as the interpacket gap
stays under the DRAM access latency Dark Packets
are avoided. With user-level network stacks such as
DPDK the interpacket gap is no longer dependent on
clock speeds [23]. The new bottleneck for high speed
links is memory latency.

3.2 Empirical Observations
In a real system several mechanisms exist to ensure that the
network can achieve high throughput, including processing
packets in batches at every level of the hardware-software
stack. At high packet rates, a burst of packets are DMA’d
from the NIC through the PCIe bus directly into the L3 cache

using DDIO to avoid ping-ponging between DRAM and the
CPU by placing the data in the L3 cache.

In the software stack packets are also processed in bursts
and often with streaming single-instruction-multiple-data
or SSE instructions which process packets in DPDK four
packets at a time. Additionally, contemporary processors
include architectural features that enable memory-latency
hiding. These include software and hardware prefetching
from DRAM, independent memory controllers and multiple
hardware threads per core to perform outstanding opera-
tions when stalled on memory (hyperthreads). While these
architectural features and software techniques work well for
slower link speeds, higher link speeds are more sensitive to
off-chip access and this latency cannot be hidden — even
with the architecturally optimized core DPDK libraries and
high-end Xeon processors.
Figure 3 shows our empirical observations of the Dark

Packet problem with a simple pointer chasing benchmark
written in DPDK that forces a deterministic number of mem-
ory accesses per-packet. The client is a DPDK-based packet
generator that sends 64B UDP packets to a server that per-
forms a specified number of memory operations and then
drops the packet. To measure the number of dropped pack-
ets, we use a hardware counter in the NIC that reports a
drop when the NIC queue is full (similar to Figure 2). To
ensure that the application is not dropping packets because
it is CPU bound, we use the recommended number of cores
from the NIC vendors to run the cards at line rate. For Intel
82599ES 10GbE NICs, this number is 1 core, for the Intel
XL 710 it is 2 cores [16], and for the Mellanox ConnectX-5

ANCS ’18, July 23–24, 2018, Ithaca, NY, USA Shelby Thomas, Rob McGuinness, Geoffrey M. Voelker, and George Porter

100GbE it is 4 cores [31]. (Full configuration details can be
found in Table 3.) Receive side scaling (RSS) is turned on for
both the 40GbE and 100GbE NICs to ensure that packets are
evenly partitioned across cores. Due to the nature of RSS we
also generate packets with random source, destination, and
port values such that the 5-tuple hash needed by the NIC to
perform RSS is evenly distributed. Due to bus limitations of
the PCI-e x8 Intel XL710s, these NICs forward packets at a
maximum rate of 42MPPS, the maximum capability of the
card [16]. Similarly, it is not possible to forward 64B packets
at line rates for 100GbE, and the card peaks at a packet rate
of just under 80MPPS.

Figures 3a and 3b show the results of this experiment for
64B and 750B packets, respectively. At minimum-sized pack-
ets for 100GbE cards, making just a few accesses to memory
results in more than half of the packets being dropped. This
problem also manifests at 40GbE at minimized-sized packets
with four memory accesses. In contrast, this problem is not
observable at 10GbE unless there are 8 memory accesses
per packet. Figure 3b at 750B mirrors the theoretical results
shown in Figure 1. With 750B packets, 10GbE and 40GbE are
well above the DRAM line and packet drops are essentially
non-existent until there are many DRAM accesses at 40GbE.
At 100GbE the situation is correspondingly worse at 750B, as
drops manifest when using 4 cores and 8 memory accesses
per packet. As network speeds continue to scale from 40GbE
to 400GbE and beyond the number of dark packets will scale
proportionally for applications ported to systems with higher
speeds. Holding other things constant, Dark Packets increase
with network speeds.

4 CACHEBUILDER DESIGN
4.1 Requirements and Goals
Modern CPU and memory architectures are highly sophisti-
cated, relying on a range of explicit controls as well as a num-
ber of implicit heuristics to improve performance. Even man-
aging the performance-critical memory hierarchy is largely
outside of users’ control, since the architecture automatically
handles the promotion and demotion of data to/from caches
and main memory. For performance-critical networked ap-
plications, we argue that the management of this memory
hierarchy should be made explicit to applications. Further-
more, the manner in which a single application uses this
hierarchy also has strong effects on performance and the
existence of dark packets, and so fine-grained memory con-
trol and data placement policies are necessary even when
considering a single application.

We set three high-level constraints for this framework to
ensure that usability and performance metrics are met:

(1) Generalizability: The mechanisms should not be tied
to any specific NIC, programming language, or archi-
tecture. It must integrate with existing network frame-
works, such as DPDK, Netmap, PF_RING, or Snabb,
with little to no additional dependencies.

(2) Clarity: Developers must be able to reason about how
key data structures will be accessed without having to
worry about the internals of themachine and the cache.
The granularity that the framework provides should be
a boon rather than a burden for the programmer. The
burden to the programmer is simply to decide which
data structures should be prioritized.

(3) Dark Packet minimization: Both application-level
and system-level mechanisms must not interfere with
each other to minimize dark packets. Unpredictable
system environments, noisy applications, and third-
party applications must also be accounted for and
gated if applications are incurring a high number of
dark packets.

4.2 Why Cache Control Now?
Surveying contemporary ISAs, over the last two years there
has been a significant shift to provide control over low-level
cache structures. There has been an explosion of ISA exten-
sions for Intel [14] andARM [3] exposing control over several
low-level policies, including those for cache management.
Intel processors include instructions for memory prefetching
PREFETCHW, optimized cache flush CFLUSHOPT, cache parti-
tioning CAT, and cache line write-back CLWB. ARM provides
instructions such as data cache invalidate by set/way DC
ISC and data cache clean by set/way DC CSW. In addition,
there has been recent pushes in the architecture community
for improving determinism in general-purpose memory hi-
erarchies [30]. Previously, server-class SRAMs have been
implicitly controlled through proprietary caching policies
hidden to the programmer. While these policies are effective
in the general sense, they are agnostic to which application
are latency critical, CPU-bound, or network intensive.

As the speed of IO devices continues to increase, abstrac-
tions over new instructions in ARM and Intel processors
can provide hints to the hardware about the performance
considerations of each application.

4.3 Design Considerations
Inter and Intra application noise: Dark packets are a func-
tion of both system-level and application-level issues. At a
system level, even if an application is highly optimized to
minimize memory accesses, cross-talk can still induce mem-
ory accesses such that data structures that fit in the cache in
isolation can still be evicted. At the same time, applications
can also interfere with themselves. If a critical data structure
is contending with an infrequently used one it will cause

Dark Packets and the end of Network Scaling ANCS ’18, July 23–24, 2018, Ithaca, NY, USA

User Level API Description
CB_slab(slab_size) Slab allocator object cache
CB_slab_e(slab_size,numa_domain) Extended remote NUMA domain association
CB_malloc(cache_size,slab_ptr) Requires pointer to associated slab and cache size to use
CB_malloc_e(cache_size,slab_ptr,core,cache_way,numa_domain) Extended remote NUMA domain association and cache way

Table 2: User level API format for basic and extended usage

cache misses. This second kind of self-interference is what
we focus on with CacheBuilder.

Cache Way Based Allocators: While allocating a certain
size for the L3 cache is useful for application data to stay in
the cache, modern caches and applications have more com-
plex attributes such as the memory access patterns and the
number of cache ways. In the Intel x86 ISA, the smallest unit
of operation that the ISA provides is a single cache way. For
a 20-way set associative 30MB L3 cache, the smallest amount
of data that can be allocated is 1.5MB. When 1.5MB is allo-
cated using a cache partitioning library, the set associativity
for this 1.5MB cache is 1-way or a direct mapped cache.
We consider the benefits for using a way-based alloca-

tor for our cache. On one hand it increases complexity for
the application programmer, but it also provides a greater
level of fine-grain control over the kind of cache built for
the application. Albonesi et. al notes that for some appli-
cation classes the move from a direct mapped cache to a
2-way set associative cache is enough to provide 90% of the
performance benefits compared to a 4-way set-associative
cache [1]. While high size and cache-way allocation seem
like the obvious choice for most application, we note in our
evaluations that reducing the set-associativity of the cache
while increasing the size of the packet can provide equal
benefits to increasing set associativity and cache size. Ad-
ditionally, with 400GbE networks and beyond the latency
of the L3 cache may become an issue in itself. In this realm,
increasing set associativity to the highest degree may in-
crease access time to the cached data as the address must be
compared with more entries before access.

4.4 Implementation
The current implementation of the CacheBuilder API has
been written in C and assembly and compiles against the
Intel x86 platform. CacheBuilder leverages Intel Cache Allo-
cation Tool APIs [18] along with newer memory primitives
for flushing and write-back. The Intel tool provides a user-
level API that is accessibl after loading MSR registers and
writing to them with sudo access. The API for CacheBuilder
supports four operations, as shown in Table 2. The first set
of operators is a slab allocator CB_slab which serves as an
object cache similar to [6]. The slab allocator can either take
a simple parameter of memory size or an extended parameter
that allocates based on size and NUMA domains. For most

user-space network drivers such as DPDK this slab based
allocation is a necessity as applications are run on multiple
logical cores or lcores with rx and tx queues associated with
each. Additionally, applications such as packet forwarding
create tables on each lcores which other applications, such
as atomic counters, may only use one global array across all
lcores. The flexibility that the standard and extended opera-
tions provide allows users to choose what style of allocation
scheme best works for their workload.

The second set of operations are the CB_malloc operators,
which take a pointer to the slab and a size parameter that the
application needs from the slab. The CB_slab operation is
responsible for bringing application data into the cache. We
restrict ourselves to these two higher-level memory prim-
itives which can be extended to support other operations
in the future. We believe that this design choice provides
clarity and completeness without loss of performance as we
abstract away finer-grain details.

Under the hood: Internally CacheBuilder works by using
a custom memory allocator that mallocs a continuous block
of memory using Write Back and Invalidate Cache calls,
MADVISE, and hugepages which are then associated with
a NUMA domain. This operation returns a pointer to the
memory region.While we could use the rte_malloc call that
DPDK provides we choose not to tie ourselves to any specific
implementation when possible. Internally, CB_malloc takes
this pointer and first starts by determining the maximum
number of cache ways needed for the operation based on the
input size parameter. For the extended operation CB_malloc
can also allocate cache on remote NUMA domains. Then
these cache lines are temporarily reserved by writing to
model-specific registers (MSRs) and allowing the application
brief control over the cache.
After this time, data is removed from all caches using

WBINVD to ensure that the cache coherency protocol does not
request this data from unknown sources such as a remote
memory or another L1 or L2 cache from when the data was
initially malloc’ed. After this, the data is repeatedly read
sequentially from the starting memory address of the slab
allocator end address of the required size of the CB malloc.
This step ensures that the data has been placed successfully
into the cache.

A Case Study: Algorithms 1 and 2 show different use cases
for the extended API and the short API for two different

ANCS ’18, July 23–24, 2018, Ithaca, NY, USA Shelby Thomas, Rob McGuinness, Geoffrey M. Voelker, and George Porter

Algorithm 1: CacheBuilder: Atomic Counter
1 Function initialize():
2 slab = CB_slab(2MB)
3 atomic_array = CB_malloc(slab, 2MB)
4 CB_launch_app(slab)
5 return
6

7 Function CB_launch_app():
8 for (;;) do
9 rte_rx_burst(pkt_buf)

10 for pkt in pkt_buf do
11 counter = lookup_ctr(atomic_array,pkt)
12 atomic_incr(counter)
13 rewrite_pkt(pkt,counter)
14 end
15 rte_tx_burst(pkt_buf)
16 end
17 return

DPDK-based applications. The first is a DPDK-based atomic
counter, which models high-throughput sequencers in fault-
tolerant distributed systems [4]. During the main core initial-
ization phase a single global slab is allocated and the malloc
call uses the slab to create a 2MB cache by partitioning it
from the L3 cache. Under the hood, the slab allocator has
determined the current NUMA domain and core and has
created a slab of memory. Next, a pointer to this memory
region is taken with another parameter for the desired size.
In this example, the slab allocator and the malloc call are
redundant because there is only one global array that keeps
track of the counter and the rest of the application is memory
independent so no other caches need to be built from the
slab. After this, the application is launched with a pointer to
the atomic array.
This pattern is in contrast to the NFV-based application

which performs a lookup based on IP address and forwards
out to a corresponding port. In this case the slab allocator
is more useful. A slab is allocated in the same way, but the
launching function changes slightly. For DPDK-based L3
forwarding, applications memory is allocated per lcore and
for each lcore a CB_Malloc call is used to build a 2-way set
associative cache associated with a core ID of the launching
thread and appropriate NUMA node. In both these applica-
tions the changes to the application are minimal. Applica-
tions need only replace their memory calls with the cache
malloc ones and the only DPDK-specific application code
that needs to change is the lcore launcher.

Algorithm 2: CacheBuilder: NFV
1 Function initialize():
2 slab = CB_slab(60MB)
3 CB_launch_app(slab)
4 return
5

6 Function CB_launch_app(slab):
7 lookup_table =

CB_malloc(2MB,slab,core_id,2way,0)
8 for (;;) do
9 rte_rx_burst(pkt_buf)

10 for pkt in pkt_buf do
11 port = lookup_port(pkt,fwd_table)
12 rewrite_pkt(pkt,port)
13 end
14 rte_tx_burst(pkt_buf)
15 end
16 return

5 EVALUATION
We evaluate the benefit of CacheBuilder using two applica-
tions. The first is a simple networked “atomic counter” which
provides a lower-bound on performance gains. The second
is a more realistic layer-3 forwarding NFV that demonstrates
a complete application.

5.1 Application Setup
Atomic Counter: Atomic counters are a core operation for
distributed systems used for serialization, consensus, and
fault tolerance. Systems such as ZooKeeper [15], Cassan-
dra [25], DynamoDB [8], and CORFU [4] require atomic
counters for coordinating and synchronization. Due to the
small state needed for these coordination services, in the
order of tens of megabytes, the array, counters, and logs
trivially fit in today’s last level caches [41].

NFV: Most stateful NFVs today require a lookup in a data
structure such as an LPM trie, hash table, or exact-match
table. As the number of lookups to these data structures in-
creases, the number of packets that can be forwarded drops
precipitously. Furthermore, when looking at the performance
from between 1 and 8 memory access per packet, the pro-
cessing rate of a simple NF that performs a random lookup
decreases by 50% [34]. Reducing the latency of this operation
by more than an order of magnitude can retain the benefits
of specialized hardware while providing the programming
model available to general purpose machines.

Dark Packets and the end of Network Scaling ANCS ’18, July 23–24, 2018, Ithaca, NY, USA

Hardware Specification
Machine 0 and 1 Xeon E5-2650v4 @ 2.20GHz
Cores (48) 24 Physical, 24 Logical
L1i Cache 32KB 8-way
L1d Cache 32KB 8-way
L2 Cache 256KB 8-way
Last level Cache 30MB 20-way
Memory 256GB
10G NIC Intel 82599ES 10GbE
40G NIC Intel XL710 40GbE
100G NIC Mellanox ConnectX-5 100GbE
Host OS Ubuntu 16.04 Desktop
DPDK v.17.08

Table 3: Hardware Setup. All hardware measurements
use the Intel Processor Counter Monitor (PCM) [17]
on a separate socket to avoid cache interference.

5.2 Application Considerations
We begin with running the DPDK-based atomic counter
and l3fwd application included with the base DPDK library
for the highest level of performance and include all hardware
optimizations. To simulate intra-application interference,
applications spawn six threads that perform sequential array
accesses. For both applications the client runs pktgen-dpdk
to generate random UDP packets at line rate over one of
the two links to the server. For l3fwd we vary the number
of exact match forwarding rules and ensure that for each
possible IP sent from the client that there is exactly one
forwarding rule installed. The server forwards half of the
possible IPs out of each port, such that the traffic is split
evenly when returning to the client.

We do not run our experiments at 100GbE due to port lim-
itations of these links. We find that 40GbE links are sufficient
to expose the Dark Packet phenomenon at small packet sizes
based on our theoretical analysis in Figure 1, empirical analy-
sis in Figure 5, and following experimental analysis on other
packet sizes and working set sizes. We allocate cores based
on industry recommendations [16] i.e. for all network speeds,
we use 2 cores total for receive and transmit queues unless
otherwise specified. The l3fwd application has a working
set size of 20MB, which is below the capacity of the 30MB
cache, while the atomic counter has a working set of 2MB.

In our initial experiments we find that the atomic counter
is cache insensitive, only dropping 41,000 packets out of
100,000,000 when there is intra-application interference. This
is because of the relatively low overhead execution pattern -
accessing and incrementing a 4 byte counter. In the context
of total packets this accounts for a 0.00% drop rate and we
focus the rest of our experiments on the l3fwd application.

Packet Drop
Rate (%)

LLC Hit Ratio

P
ac

ke
t D

ro
p

R
at

e

L3 C
ache H

it R
atio

l3fwd Working Set (MB)

Figure 5: At 40Gb/s with 192B packets with intra-
application noise the working set is directly propor-
tional to cache hit rate. This results in a high number
of drops due to memory accesses. Below 40Gb/s with
MTU sized packets (not shown) there are no drops.

5.3 A Baseline for Intra-application Noise
Figure 5 establishes the relationship between the percent of
packet drops, working set, and cache behavior. The memory
accesses that the noisy threads make evict the forwarding
table from the L3 cache as the processor cannot cache the
table data. This causes unnecessary memory lookups as there
is no way to distinguish critical data structures from non-
critical ones. As a result the L3 hit rate decreases and the low
interpacket gap for a 40G network forwarding 192B packets
results in a high rate of dark packets, even if the size of the
working set is below the L3 size.

We use three different sets of working set sizes in this
experiment. The first set are small sizes that use a small
amount of the 30MB available cache. Most of this data should
fit in the L3 cache even if we consider other data structures
that the kernel or user space network stack may cache. The
second set hits the limits of the cache with a 20 and 32MB
working set that completely fill or barely fall out of range of
the cache. The last set clearly falls outside the capability of
the cache with table sizes 4-5x larger than the cache. These
large sizes have a very low hit rate due to the size of the
table making it difficult to cache a small pattern and less
than 50% of the data hits in the L3 cache. For the medium
sizes that are at the size of the cache, the hit rate improves
from 51% to 56%. This is due to a far smaller piece of data
that needs to be cached and improvement due to L2 caching.
Small sizes show the most improvement in behavior when

ANCS ’18, July 23–24, 2018, Ithaca, NY, USA Shelby Thomas, Rob McGuinness, Geoffrey M. Voelker, and George Porter

Packet Drop
Rate (%)

Misses Per
Kilo Instruction

P
ac

ke
t D

ro
p

R
at

e
P

ac
ke

t D
ro

p
R

at
e

P
ac

ke
t D

ro
p

R
at

e

M
P

K
I

M
P

K
I

M
P

K
I

P
ac

ke
t D

ro
p

R
at

e
P

ac
ke

t D
ro

p
R

at
e

P
ac

ke
t D

ro
p

R
at

e

M
P

K
I

M
P

K
I

M
P

K
I

 0 6 12 18 24 28.5

 0 6 12 18 24 28.5

 0 6 12 18 24 28.5

 0 6 12 18 24 28.5

 0 6 12 18 24 28.5

 0 6 12 18 24 28.5

8

6

4

2

0

8

6

4

2

0

8

6

4

2

0

8

6

4

2

0

8

6

4

2

0

8

6

4

2

0

40%

30%

20%

10%

 0%

40%

30%

20%

10%

 0%

40%

30%

20%

10%

 0%

40%

30%

20%

10%

 0%

40%

30%

20%

10%

 0%

40%

30%

20%

10%

 0%

10G | 2 cores | 192B Packets

40G | 2 cores | 192B Packets

40G | 4 cores | 192B Packets

20G | 2 cores | 192B Packets

40G | 2 cores | 256B Packets

40G | 4 cores | 256B Packets

CacheBuilder Cache Allocation (MB) (a)

CacheBuilder Cache Allocation (MB) (c)

CacheBuilder Cache Allocation (MB) (e)

CacheBuilder Cache Allocation (MB) (d)

CacheBuilder Cache Allocation (MB) (f)

CacheBuilder Cache Allocation (MB) (b)

Figure 6: Performance of l3fwd application with a 20MB working set at varying link rates. At 10Gb/s and 20Gb/s
with 192B packets the link rates are below the DRAM line, but at 40Gb/s l3fwd experiences a high number of
drops due to the L3 misses (MPKI). Mitigation of the Dark Packet problem requires both larger packet sizes and
increased core counts. CacheBuilder enables flexibility between core count, packet size, and cache availability to
significantly reduce hardware costs to achieve line rates. 0MB indicates CacheBuilder was not used.

the working set size increases. This is because a smaller
size gives the hardware caching mechanism more flexibility
about data placement, something not possible with medium
sizes. In addition, the L2 cache which is 0.25MB per core
can also cache an increasing percent of the data when we
go from 12MB to 8MB improving the hit rate. Working set
sizes that far exceed the size of the cache will almost always
cause cache misses if the access patterns has enough entropy.
Therefore, we choose to focus on the 20MB size it is smaller
than the cache size, but without benefits of smallest size that
allow flexible placement. In the next section present one

technique to reduce Dark Packets to zero with CacheBuilder
to enable line rate processing.

5.4 Maximizing Cache Utility
Figure 6 shows the performance of CacheBuilder in minimiz-
ing dark packets for increasing link speeds for the l3fwdNFV
application with a table size of 20MB. A 0MB cache allocation
indicates that CacheBuilder was not used and establishes a
baseline for the default hardware managed cache policy of
the Xeon processor. We vary CacheBuilder allocation, packet

Dark Packets and the end of Network Scaling ANCS ’18, July 23–24, 2018, Ithaca, NY, USA

size, core counts, and link rate to capture the relationship
between the hardware and network configuration.

Looking back at Figure 1, the inter-packet gap for 10GbE
and 20GbE link rates with 2 cores is below the DRAM latency
line. This behavior is reflected in Figure 6(a) and Figure 6(b).
While there are several DRAM accesses, measured in L3
misses per kilo-instruction (MPKI), the number of packet
drops is marginal for these link rates. We use theMPKI rather
than cache hit rate to establish the relationship between the
number of memory accesses and Dark Packet rates. The
MPKI for slower link rates is less than the MPKI of faster
link rates as lower link rates result in a smaller number of
instructions executed in a time window.

We do not include more configurations beyond 192B and
2 cores as the packet drop rate (PDR) for these are 0.00%.
At 40GbE in Figure 6(c), the impact of misses hits a tipping
point with a packet drop rate of 35% reported for 2 core and
192B packets. At 40GbE the application is far less tolerant of
cache misses and the entire working set of the application
must be locked into the cache at 24MB to reach line rates.
As noted previously, dark packets can be overcome by either
increasing the packet size or increasing the core count.

In Figure 6(d) we increase the size to 256B and note that the
packet drop rate decreaseswhileMPKI remains the same over
varying cache sizes. This experiment shows that the number
of misses serviced is constant and only the inter-packet gap
is increasing due to larger packet sizes, giving more time
for DRAM latency resolution. In Figures 6(e) and 6(f), we
repeat these experiments but with a higher core count. Our
previous equation shows that increasing core count should
reduce the drop rate but keep the MPKI constant, and the
experiments reflect this behavior. Increasing core counts
and increasing packet sizes provide fewer drops, but it still
takes an allocation of 12MB to obtain line rate for 4 cores
at 192B. This trend from 10GbE to 40GbE shows that, for
100GbE and higher speeds, the number of dark packets will
only increase and with current solutions only larger packets
or more expensive processors will be able to mitigate the
problem in the absence of CacheBuilder.

5.5 Reducing Total Core Count by Varying
Allocation Schemes

In Table 4 we look at how many cores would be required to
provide line rate processing at 40GbE with l3fwd. We rec-
ognize that other intra-application datastructures may also
require some cache and perform an exploration of differ-
ent core allocations needed to reach line rate with a "Fair"
CacheBuilder configuration. We compare two CacheBuilder
configurations, CB Fair and CB Working Set. CB Fair splits
the cache in half regardless of the working set of the applica-
tion, and CBWorking Set (WS) allocates exactly the working

Packet Size Baseline CB (Fair) CB (WS)
192B 6 4 2
256B 4 2 2
320B 2 2 2

Table 4: Cores needed to achieve 40Gb/s line rates on
l3fwd. Fair indicates even partitioning between two
applications andWS (working set) indicates matching
cache allocation with working set size.

set of the application i.e. CB Fair has a constraint of 15MB
of cache while CB WS is constrained to 20MB. Based on the
results in Figure 6, we compare both of these configurations
with the baseline application without CacheBuilder and ob-
serve differences across different packet sizes in the presence
of the memory allocator application.
For the CB Working set configuration, CacheBuilder re-

duces the number of cores needed to achieve line rate by 3x
(from 6 cores to 2 cores). On the other hand, CB Fair pro-
vides the opportunity for the system to be configured for
mixed applications to perform at line rate, such as multiple
40GbE application each of which has a fairly split allocation
of cache. Using a fair configuration there is a 1.5x reduction
in the number of cores needed for line rate. CacheBuilder
enables the user to make this trade-off between core count,
cache size, and packet size with full transparency of the
kind of applications being run on the system. Fundamentally,
CacheBuilder gives control to the user to determine how best
to configure the system for the kind of network functions
operated.

6 RELATEDWORK
Work on networkmemories observed a similar issuewith net-
work speeds outpacing DRAM speeds. Mcknown et. al [20]
looked to solve this problem in switches by creating tail
queues in SRAM which write to DRAM in batches to re-
duce overhead. In some respect, DPDK with DDIO support
is a modern version of network memories that has been im-
plemented for servers instead of switches. As a result, any
application that requires a memory lookup will encounter
DDIO support, whether an NFV application, RPC call, key-
value lookup, etc. Keeping the data as long as possible in
SRAM is crucial to allow these applications to access data
with low latency and high throughput.

Some server implementations bend the network, CPU,
and OS interface to specalize the network stack for a single
application such as encryption [29] or key-value stores [26].
In contrast our goal was to show that a minimally invasive
approach with a general purpose interface that can specialize
the system stack while maintaining portability for general

ANCS ’18, July 23–24, 2018, Ithaca, NY, USA Shelby Thomas, Rob McGuinness, Geoffrey M. Voelker, and George Porter

purpose network applications in a multi-tenant environment
and providing high performance.
Other approaches for supporting high-speed packet pro-

cessing involve doing some work in the NIC hardware itself.
This includes the FlexNIC project [22], which introduces
simple rules that can be implemented in the NIC to direct
data to specific cores.

Page coloring [7] and utility-based partioning [24, 37, 43]
have a long history of work from both the operating system
and architecture community. However, page coloring has
limited performance without hardware support and other
hardware based mechanisms for cache partioning has only
now begun to make its way into modern processors with
tools like Intel CAT [14].

Other work such as [23] and [27] have benchmarked per-
formance for both 40GbE and 100GbE for NFVs but have not
shown the impact of DRAM accesses in an intra application
setting and did not focus on line rate packet processing.

More generally, much recent work has developed designs
and techniques for optimizing networking stack implementa-
tions (e.g., [5, 13, 21, 36]). Such approaches bypass the kernel
overhead of OS network stacks (poor cache behavior, socket
lock contention, protection domain crossing) by implement-
ing network processing at user level, polling and batch pro-
cessing, reducing data copying, removing contention among
cores, etc. CacheBuilder compliments such designs with its
support for explicit software control over processor cache
memory and cache-to-main memory copies.

7 DISCUSSION AND FUTUREWORK
Over the last 5 years total system SRAM has grown expo-
nentially [41]. While SRAM will not replace DRAM for appli-
cations in general, we observe that networking all available
general purpose server SRAM opens the doors for ultra low-
latency and low variance packet processing. For example, if
all the caches in a 1000 node cluster can be addressed as a
single unit, 100MB of SRAM turns into 1000GB of SRAM —
something not possible in a single server due to energy, area,
and technology constraints. This enables new paradigm sim-
liar to RamCloud [33] such as CacheCloud [41]. Enabling a
distributed SRAM cluster requires nodes to maintain a global
view of the current state of the system and make decisions
based on this state. This itself has challenges for maintaining
consistency across the cluster and ensuring that data is being
placed strategically to avoid going to DRAM.

To enable networked SRAMs in today’s datacenters, gen-
eral purpose processors must support fine grain software
management of traditionally black box hardware policies.
This includes control over policies such as cache replace-
ment, consistency and coherence protocols, and prefetching.
We have seen some progress on this in recently years which

has been the basis for CacheBuilder but there are still limita-
tions for modern processors and ISAs. For example, memory
bandwidth cannot still be reliably partitioned and there is
no cache control over the L2 caches. DPDK best practices
recommend disabling hyperthreading due to capacity misses
over the shared L2 cache that each application utilizes. A par-
titioned L2 and L1 cache would also enable CacheBuilder to
provide even greater benefits as hardware threads can avoid-
ing thrashing on the L2 and can provide another 2x utility
for logical core counts. With the current trend of modern
processors opening up internal hardware policies, we can ask
if current hardware prefetchers appropriate for network ap-
plications? Can we predict cache misses before they happen
and reroute packets into locations where data is resident in
cache? Additionally, can we redesign cache replacement poli-
cies from being server oriented to cluster oriented without
complete hardware specialization? Additionally, we observe
that there are current problems with cache volatility, ad-
dressability, and size. To this end, researchers at TSMC and
Intel have published recent proposals to replace traditional
SRAM-lasted last level cache with large high memories of
1GB while maintaining SRAM latency [42]. Additionally pro-
posals have also been made to try and replace the LLC with
non-volatile memory.

Another option is directly co-packaging the NIC with the
processor or rediscoveringwork on near data computing [35].
The traditional near-data processing paradigm involves mov-
ing the data towards the compute. CacheBuilder flips this
paradigm to move data closer to the CPU processing.

8 CONCLUSION
In this paper we present an empirical and theoretical study
of Dark Packets, the gap between the memory hierarchy
and high speed links that cause packet drops. To sustain line
rates for all packet sizes 100GbE and beyond, each hardware
transaction that takes place in a systemmust be carefully con-
sidered and routed. As network speeds increase, the flexible
memory hierarchy that CacheBuilder provides benefit both
application performance and system cost. The memory hier-
archy, not clock speed, is the new performance bottleneck.
This new operating regime compels us to rethink the role of
general purpose hardware to couple network, architecture,
and storage closer than ever before.

ACKNOWLEDGMENTS
The authors would like to thank the anonymous reviewers
for their feedback. This work was funded in part by the
National Science Foundation (CNS-1564185, CNS-1629973,
and CNS-1553490).

Dark Packets and the end of Network Scaling ANCS ’18, July 23–24, 2018, Ithaca, NY, USA

REFERENCES
[1] D. H. Albonesi. Selective cache ways: on-demand cache resource

allocation. In MICRO-32. Proceedings of the 32nd Annual ACM/IEEE
International Symposium on Microarchitecture, pages 248–259, 1999.

[2] Ethernet Alliance. 2016 Ethernet Roadmap. http://www.
ethernetalliance.org/roadmap/.

[3] ARM. ARM Architecture Reference Manual ARMv8. https://static.
docs.arm.com/ddi0487/ca/DDI0487C_a_armv8_arm.pdf, 2017.

[4] Mahesh Balakrishnan, Dahlia Malkhi, John D. Davis, Vijayan Prab-
hakaran, Michael Wei, and Ted Wobber. CORFU: A Distributed Shared
Log. ACM Transactions on Computer Systems (TOCS), 31(4), 2013.

[5] Adam Belay, George Prekas, Ana Klimovic, Samuel Grossman, Christos
Kozyrakis, and Edouard Bugnion. Ix: A protected dataplane operating
system for high throughput and low latency. In Proceedings of the 11th
USENIX Conference on Operating Systems Design and Implementation,
OSDI’14, pages 49–65, Berkeley, CA, USA, 2014. USENIX Association.

[6] Jeff Bonwick. The slab allocator: An object-caching kernel memory
allocator. In Proceedings of the USENIX Summer 1994 Technical Confer-
ence on USENIX Summer 1994 Technical Conference - Volume 1, USTC’94,
pages 6–6, Berkeley, CA, USA, 1994. USENIX Association.

[7] Trishul M. Chilimbi, Mark D. Hill, and James R. Larus. Cache-conscious
structure layout. In Proceedings of the ACM SIGPLAN 1999 Conference
on Programming Language Design and Implementation, PLDI ’99, pages
1–12, New York, NY, USA, 1999. ACM.

[8] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan
Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasub-
ramanian, Peter Vosshall, and Werner Vogels. Dynamo: Amazon’s
highly available key-value store. In Proceedings of Twenty-first ACM
SIGOPS Symposium on Operating Systems Principles, SOSP ’07, pages
205–220, New York, NY, USA, 2007. ACM.

[9] Facebook. Introducing data center fabric, the next-generation Face-
book data center network. https://goo.gl/mvder2.

[10] The Linux Foundation. Data plane development kit. https://dpdk.org/.
[11] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni, Jianxi Ye,

Jitu Padhye, and Marina Lipshteyn. Rdma over commodity ethernet at
scale. In Proceedings of the 2016 ACM SIGCOMMConference, SIGCOMM
’16, pages 202–215, New York, NY, USA, 2016. ACM.

[12] Sangjin Han, Keon Jang, Aurojit Panda, Shoumik Palkar, Dongsu Han,
and Sylvia Ratnasamy. Softnic: A software nic to augment hardware.
Technical Report UCB/EECS-2015-155, EECS Department, University
of California, Berkeley, May 2015.

[13] Sangjin Han, Scott Marshall, Byung-Gon Chun, and Sylvia Ratnasamy.
Megapipe: A new programming interface for scalable network i/o. In
Proceedings of the 10th USENIX Conference on Operating Systems Design
and Implementation, OSDI’12, pages 135–148, Berkeley, CA, USA, 2012.
USENIX Association.

[14] A. Herdrich, E. Verplanke, P. Autee, R. Illikkal, C. Gianos, R. Singhal,
and R. Iyer. Cache QoS: From concept to reality in the Intel Xeon
processor E5-2600 v3 product family. In 2016 IEEE International Sym-
posium on High Performance Computer Architecture (HPCA), pages
657–668, March 2016.

[15] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed.
Zookeeper: Wait-free coordination for internet-scale systems. In Pro-
ceedings of the 2010 USENIX Conference on USENIX Annual Technical
Conference, USENIXATC’10, pages 11–11, Berkeley, CA, USA, 2010.
USENIX Association.

[16] Intel. Dpdk intel nic performance report release 18.02. https://fast.dpdk.
org/doc/perf/DPDK_18_02_Intel_NIC_performance_report.pdf, 2018.

[17] Intel. Processor counter monitor. https://github.com/opcm/pcm, 2018.
[18] Intel. User space software for intel(r) resource director technology.

https://github.com/intel/intel-cmt-cat, 2018.

[19] Intel Corporation. Intel Data Direct I/O technology (Intel DDIO):
A Primer. http://www.intel.com/content/dam/www/public/us/en/
documents/technology-briefs/data-direct-i-o-technology-brief.pdf,
2012.

[20] S. Iyer, R. R. Kompella, and N. McKeowa. Analysis of a memory
architecture for fast packet buffers. In 2001 IEEE Workshop on High
Performance Switching and Routing (IEEE Cat. No.01TH8552), pages
368–373, 2001.

[21] Eun Young Jeong, Shinae Woo, Muhammad Jamshed, Haewon Jeong,
Sunghwan Ihm, Dongsu Han, and KyoungSoo Park. mtcp: A highly
scalable user-level tcp stack for multicore systems. In Proceedings of
the 11th USENIX Conference on Networked Systems Design and Imple-
mentation, NSDI’14, pages 489–502, Berkeley, CA, USA, 2014. USENIX
Association.

[22] Antoine Kaufmann, SImon Peter, Naveen Kr. Sharma, Thomas Ander-
son, and Arvind Krishnamurthy. High performance packet processing
with flexnic. SIGPLAN Not., 51(4):67–81, March 2016.

[23] R. Kawashima, H. Nakayama, T. Hayashi, and H. Matsuo. Evaluation
of forwarding efficiency in nfv-nodes toward predictable service chain
performance. IEEE Transactions on Network and Service Management,
14(4):920–933, Dec 2017.

[24] Changkyu Kim, Doug Burger, and Stephen W. Keckler. An adaptive,
non-uniform cache structure for wire-delay dominated on-chip caches.
In Proceedings of the 10th International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS
X, pages 211–222, New York, NY, USA, 2002. ACM.

[25] Avinash Lakshman and Prashant Malik. Cassandra: A decentralized
structured storage system. SIGOPS Oper. Syst. Rev., 44(2):35–40, April
2010.

[26] Bojie Li, Zhenyuan Ruan, Wencong Xiao, Yuanwei Lu, Yongqiang
Xiong, Andrew Putnam, Enhong Chen, and Lintao Zhang. Kv-direct:
High-performance in-memory key-value store with programmable nic.
In Proceedings of the 26th Symposium on Operating Systems Principles,
SOSP ’17, pages 137–152, New York, NY, USA, 2017. ACM.

[27] Peilong Li, Xiaoban Wu, Yongyi Ran, and Yan Luo. Designing virtual
network functions for 100 gbe network using multicore processors.
In Proceedings of the Symposium on Architectures for Networking and
Communications Systems, ANCS ’17, pages 49–59, Piscataway, NJ, USA,
2017. IEEE Press.

[28] Jiuxing Liu, Jiesheng Wu, and Dhabaleswar K. Panda. High perfor-
mance rdma-based mpi implementation over infiniband. Int. J. Parallel
Program., 32(3):167–198, June 2004.

[29] Ilias Marinos, Robert N.M. Watson, Mark Handley, and Randall R.
Stewart. Disk, crypt, net: Rethinking the stack for high-performance
video streaming. In Proceedings of the Conference of the ACM Special
Interest Group on Data Communication, SIGCOMM ’17, pages 211–224,
New York, NY, USA, 2017. ACM.

[30] Mark Rutland (ARM). Stale data, or how we (mis-)manage modern
caches. https://goo.gl/WtwfHk, 2016.

[31] Mellanox. Mellanox nics performance report with dpdk 17.05.
https://fast.dpdk.org/doc/perf/DPDK_17_05_Mellanox_NIC_
performance_report.pdf, 2017.

[32] ntop. PF_RING. https://www.ntop.org/products/packet-capture/pf_
ring/.

[33] John Ousterhout, Parag Agrawal, David Erickson, Christos Kozyrakis,
Jacob Leverich, David Mazières, Subhasish Mitra, Aravind Narayanan,
Guru Parulkar, Mendel Rosenblum, Stephen M. Rumble, Eric Strat-
mann, and Ryan Stutsman. The case for ramclouds: Scalable high-
performance storage entirely in dram. SIGOPS Oper. Syst. Rev., 43(4):92–
105, January 2010.

[34] Aurojit Panda, Sangjin Han, Keon Jang, Melvin Walls, Sylvia Rat-
nasamy, and Scott Shenker. Netbricks: Taking the v out of nfv. In

http://www.ethernetalliance.org/roadmap/
http://www.ethernetalliance.org/roadmap/
https://static.docs.arm.com/ddi0487/ca/DDI0487C_a_armv8_arm.pdf
https://static.docs.arm.com/ddi0487/ca/DDI0487C_a_armv8_arm.pdf
https://goo.gl/mvder2
https://dpdk.org/
https://fast.dpdk.org/doc/perf/DPDK_18_02_Intel_NIC_performance_report.pdf
https://fast.dpdk.org/doc/perf/DPDK_18_02_Intel_NIC_performance_report.pdf
https://github.com/opcm/pcm
https://github.com/intel/intel-cmt-cat
http://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/data-direct-i-o-technology-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/data-direct-i-o-technology-brief.pdf
https://goo.gl/WtwfHk
https://fast.dpdk.org/doc/perf/DPDK_17_05_Mellanox_NIC_performance_report.pdf
https://fast.dpdk.org/doc/perf/DPDK_17_05_Mellanox_NIC_performance_report.pdf
https://www.ntop.org/products/packet-capture/pf_ring/
https://www.ntop.org/products/packet-capture/pf_ring/

ANCS ’18, July 23–24, 2018, Ithaca, NY, USA Shelby Thomas, Rob McGuinness, Geoffrey M. Voelker, and George Porter

Proceedings of the 12th USENIX Conference on Operating Systems Design
and Implementation, OSDI’16, pages 203–216, Berkeley, CA, USA, 2016.
USENIX Association.

[35] David Patterson, Thomas Anderson, Neal Cardwell, Richard Fromm,
Kimberly Keeton, Christoforos Kozyrakis, Randi Thomas, and Kather-
ine Yelick. A case for intelligent ram. IEEE Micro, 17(2):34–44, March
1997.

[36] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports, DougWoos, Arvind
Krishnamurthy, Thomas Anderson, and Timothy Roscoe. Arrakis: The
operating system is the control plane. ACM Trans. Comput. Syst.,
33(4):11:1–11:30, November 2015.

[37] Moinuddin K. Qureshi and Yale N. Patt. Utility-based cache parti-
tioning: A low-overhead, high-performance, runtime mechanism to
partition shared caches. In Proceedings of the 39th Annual IEEE/ACM In-
ternational Symposium on Microarchitecture, MICRO 39, pages 423–432,
Washington, DC, USA, 2006. IEEE Computer Society.

[38] Luigi Rizzo. Netmap: A novel framework for fast packet i/o. In Proceed-
ings of the 2012 USENIX Conference on Annual Technical Conference,
USENIX ATC’12, pages 9–9, Berkeley, CA, USA, 2012. USENIX Associ-
ation.

[39] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby Armis-
tead, Roy Bannon, Seb Boving, Gaurav Desai, Bob Felderman, Paulie
Germano, Anand Kanagala, Jeff Provost, Jason Simmons, Eiichi Tanda,
Jim Wanderer, Urs HÃűlzle, Stephen Stuart, and Amin Vahdat. Jupiter
rising: A decade of clos topologies and centralized control in Google’s
datacenter network. In Sigcomm ’15, 2015.

[40] Shelby Thomas, Enrico Tanuwidjaja, Tony Chong, David Lau, Sat-
urnino Garcia, and Michael Bedford Taylor. Cortexsuite: A synthetic
brain benchmark suite. In 2014 IEEE International Symposium on Work-
load Characterization (IISWC), pages 76–79, Oct 2014.

[41] Shelby Thomas, Geoffrey M. Voelker, and George Porter. Cachecloud:
Towards speed-of-light datacenter communication. In 10th USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud 18), Boston,
MA, 2018. USENIX Association.

[42] T. K. J. Ting, G. B. Wang, M. H. Wang, C. P. Wu, C. K. Wang, C. W. Lo,
L. C. Tien, D. M. Yuan, Y. C. Hsieh, J. S. Lai, W. P. Hsu, C. C. Huang, C. K.
Chen, Y. F. Chou, D. M. Kwai, Z. Wang, W. Wu, S. Tomishima, P. Stolt,
and S. L. Lu. 23.9 an 8-channel 4.5gb 180gb/s 18ns-row-latency ram
for the last level cache. In 2017 IEEE International Solid-State Circuits
Conference (ISSCC), pages 404–405, Feb 2017.

[43] Li Zhao, Ravi Iyer, Ramesh Illikkal, Jaideep Moses, Srihari Makineni,
and Don Newell. Cachescouts: Fine-grain monitoring of shared caches
in cmp platforms. In Proceedings of the 16th International Conference
on Parallel Architecture and Compilation Techniques, PACT ’07, pages
339–352, Washington, DC, USA, 2007. IEEE Computer Society.

	Abstract
	1 Introduction
	2 System evolution of increasing network speeds
	2.1 Disk Regime
	2.2 DRAM Regime
	2.3 Cache Regime

	3 The End of Network Scaling
	3.1 Analytical Observations
	3.2 Empirical Observations

	4 CacheBuilder Design
	4.1 Requirements and Goals
	4.2 Why Cache Control Now?
	4.3 Design Considerations
	4.4 Implementation

	5 Evaluation
	5.1 Application Setup
	5.2 Application Considerations
	5.3 A Baseline for Intra-application Noise
	5.4 Maximizing Cache Utility
	5.5 Reducing Total Core Count by Varying Allocation Schemes

	6 Related Work
	7 Discussion and Future Work
	8 Conclusion
	References

