TagAlong: A Free, Wide-Area Data-Muling Service Built on the AirTag Protocol

Alex Bellon, Alex Yen, Pat Pannuto

- Track real time occupancy, without setting up backhaul infrastructure

- → Track real time occupancy, without setting up backhaul infrastructure
- → Want to use data muling device to carry the from sensors

- Track real time occupancy, without setting up backhaul infrastructure
- → Want to use data muling device to carry the from sensors
- We're going to enable that for free, with existing infrastructure

(priv₀, pub₀) on P-224 symmetric key = master beacon key

0xdeadbeef...00 28 byte pub₂

location report encrypted with derived key

{Oxdeadbeef...00: enc_location_report_0}


```
{Oxdeadbeef...00: enc_location_report_0} 
{Oxcafef00d...01: enc_location_report_1} 
{Ox01234567...02: enc_location_report_2} 
{Oxfaceface...03: enc_location_report_3} 
{Oxdeadbeef...04: enc_location_report_4} 
{Oxdeadbeef...05: enc_location_report_5} 
{Oxdeadbeef...06: enc_location_report_6}
```



```
{Oxdeadbeef...00: enc_location_report_0} 
{Oxcafef00d...01: enc_location_report_1} 
{Ox01234567...02: enc_location_report_2} 
{Oxfaceface...03: enc_location_report_3} 
{Oxdeadbeef...04: enc_location_report_4} 
{Oxdeadbeef...05: enc_location_report_5} 
{Oxdeadbeef...06: enc_location_report_6}
```



```
{Oxdeadbeef...OO: enc location report O}
{Oxcafef00d...01: enc location report 1}
{0x01234567...02: enc location report 2}
{Oxfaceface...O3: enc location report 3}
 { 0xdeadbeef...00 }
```



```
{Oxdeadbeef...00: enc_location_report_0}
{Oxcafef00d...01: enc_location_report_1}
{Ox01234567...02: enc_location_report_2}
{Oxfaceface...03: enc_location_report_3}
{Oxdeadbeef...04: enc_location_report_4}
{Oxdeadbeef...05: enc_location_report_5}
{Oxdeadbeef...06: enc_location_report_6}

{Oxdeadbeef...00}
```



```
{Oxdeadbeef...00: enc location report 0}
{Oxcafef00d...01: enc location report 1}
{0x01234567...02: enc location report 2}
{Oxfaceface...O3: enc location report 3}
 {0xdeadbeef...00} {enc_location_report_0}
```


bit index message ID modem ID counter padding 0s bit

- Only one bit of data per BLE advertisement packet
- Only one byte of payload is being used for actual data, lots of padding
- → Bit index, message ID and modem ID all have an upper limit
 - \circ 16⁸ = 4,294,967,296 bits, messages or modems

What primitives would we want in this situation?

 Unlimited number of messages/modems/data, increased data rate, greater payload sizes, etc.

TagAlong

Provide scalable arbitrary data transmission using Find My network

- Use existing Find My infra to remove limits on messages, modems, etc.
- Variable payload sizes to accommodate different situations
- → More efficient usage of BLE advertisement packet

= start of message₀
= start of message₁
= start of message₂
= start of message₃

..

. . .

0x0000beefdead

Variable payload sizes to accommodate different situations

- \neg Here, the chunk size *n* = 8 bits
- Need to broadcast out more packets for the same length payload
- Less computation on desktop side to decode
- Useful for areas with high traffic

Variable payload sizes to accommodate different situations

- \rightarrow Here, the chunk size *n* = 208 bits
- Need to broadcast out fewer packets for the same length payload
- More computation on desktop side to decode
- Useful for areas with low traffic, only one chance at connection

Variable payload sizes to accommodate different situations

More efficient usage of BLE advertisement packet

bit index message ID modem ID counter padding 0s bit

counter payload

- Original broadcasting speed of 1 bit per packet: 3 bytes/s
- TagAlong, with chunk size n = 8 bits: **12.5 bytes/s**
 - For the maximum 208 bit chunk size: **325 bytes/s**

Throughput is especially important for TagAlong, no ACKs

Throughput is especially important for TagAlong, no ACKs

	Each packet sent 1x	Each packet sent 2x	Each packet sent 5x
Percent received, isolated location	5.7%	51.2%	42.2%
Percent received, busy location	65.7%	73.2%	94.7%

TagAlong

- Arbitrary data transmission over Apple's Find My protocol
- No infrastructure to deploy, uses nearby Apple devices to carry data
- → 12 bytes per second output data rate, with up to 97% data reception

TagAlong

- Arbitrary data transmission over Apple's Find My protocol
- No infrastructure to deploy, uses nearby Apple devices to carry data
- 12 bytes per second output data rate, with up to 97% data reception

Questions?