
hacking for fun and glucose
reverse engineering an insulin pump

Alex Bellon, Deian Stefan, Alex Snoeren (UCSD)

background • motivation • progress • future work

⊣ blood sugar = how much glucose is in your blood

⊣ pancreas = keeps your blood sugar levels in check

⊣ insulin = lowers blood sugar, normally made
naturally by your pancreas

⊣ diabetes = pancreas doesn’t work well (or at all)

⊣ insulin pump = helps manage blood sugar by
administering insulin

⊣ high blood sugar is bad

⊣ thirst (body wants to flush out the extra sugar),
headaches, blurred vision, coma, etc

⊣ low blood sugar is worse

⊣ your body starts to shut down organs to conserve
energy, and in the worst case you can die

background • motivation • progress • future work

⊣ high blood sugar is bad

⊣ thirst (body wants to flush out the extra sugar),
headaches, blurred vision, coma, etc

⊣ low blood sugar is worse

⊣ your body starts to shut down organs to conserve
energy, and in the worst case you can die

⊣ we want to make sure that these devices are robust

background • motivation • progress • future work

charting blood
sugar level over

time, the red line is
the dangerous zone

insulin pump

background • motivation • progress • future work

high blood sugar,
administer insulin

background • motivation • progress • future work

insulin pump

blood sugar
continues to lower,

approaching danger
zone

background • motivation • progress • future work

insulin pump

blood sugar is now
dangerously low

background • motivation • progress • future work

insulin pump

pump knows blood sugar is too low, but...

background • motivation • progress • future work

insulin pump

pump knows blood sugar is too low, but... ...is still administering insulin!

background • motivation • progress • future work

insulin pump

already a non-zero
amount of insulin in

the body

pump knows blood sugar is too low, but... ...is still administering insulin!

background • motivation • progress • future work

insulin pump

⊣ a bug like this can have serious consequences

⊣ ...and this is just one bug that we know of

⊣ what could an attacker get the pump to do when acting
maliciously?

⊣ spoof blood sugar levels, control insulin delivery…

⊣ we better look into the code behind this!

⊣ not so fast…

background • motivation • progress • future work

⊣ getting the firmware

⊣ we have the desktop program that updates the
firmware on the insulin pump

⊣ try intercepting the firmware

background • motivation • progress • future work

⊣ intercepting web traffic

downloading the
files for the
firmware!

background • motivation • progress • future work

⊣ unfortunately the files were encrypted, so we either
need to find the encryption keys, or code that would
decrypt the firmware

⊣ luckily, we have the insulin pump itself!

background • motivation • progress • future work

⊣ lots of filing and prying
later…

(other side) main STM
chip, handles main

computing

background • motivation • progress • future work

nRF chip, handles bluetooth

background • motivation • progress • future work

⊣ lots of filing and prying
later…

TI chip (other side),
use unknown

background • motivation • progress • future work

⊣ lots of filing and prying
later…

exposed ribbon cable,
probably used for debugging

background • motivation • progress • future work

⊣ lots of filing and prying
later…

⊣ the pads on the ribbon cable should connect to the
chips on the board

⊣ all of the chips have some form of “debugging” or
communication protocol that might allow us to read
off their firmware

⊣ JTAG, SWD, SPI, etc

⊣ if we can find connections for the pins associated with
these protocols, we can connect to them

background • motivation • progress • future work

background • motivation • progress • future work

background • motivation • progress • future work

⊣ getting the nRF firmware

⊣ able to get the flash, RAM, registers and UICR

⊣ comparing the firmware in Ghidra to the SDK that
Nordic (nRF) distributes, there’s a lot of overlap

→ strings flash.bin
…
UPLOAD_START
crash_dump.c
…

background • motivation • progress • future work

⊣ getting the STM firmware

⊣ able to dump the multiple regions of
memory including the flash, where the
main firmware is

⊣ lots of interesting content

→ st-flash read firmware.bin 0x0 1048576
st-flash 1.7.0
2022-02-22T10:52:27 INFO common.c: F1xx XL-density: 96 KiB SRAM, 1024 KiB flash in at least 2 KiB pages.
2022-02-22T10:52:27 INFO common.c: read from address 0000000000 size 1048576

background • motivation • progress • future work

→ strings firmware.bin
 NRF5 App FAILED CRC AFTER DECRYPT!
 ALPHAMASK FAILED CRC AFTER DECRYPT!
 NRF5 SD FAILED CRC AFTER DECRYPT!
 NRF5 BL FAILED CRC AFTER DECRYPT!
 RASTER FAILED CRC AFTER DECRYPT!
Decrypt and CRC Check Externals...
 ARM FAILED CRC AFTER DECRYPT!
 MSP FAILED CRC AFTER DECRYPT!
Decrypt and CRC Check ...

INSULIN SUSPENDED
All deliveries were automatically
stopped. Insulin will resume when
sensor readings start to rise.
CLOSE
INSULIN RESUMED
Insulin was automatically resumed.
Your max insulin suspension has
been reached. Insulin was
automatically resumed.
Basal-IQ Suspend
Basal-IQ Resumed
Basal-IQ Auto Resume

================== Main Menu =============================
 Download Image To the STM32F10x Internal Flash ------- 1
 Execute The CTX Application -------------------------- 2
 Set SPI Flash Block Offset SW ------------------------ 4
 Set SPI Flash Block Offset HW ------------------------ b
 Download BIN to SPI Flash ---------------------------- 5
 Download BIN to MSP Flash -------------------------- 7
 Execute The MSP Application -------------------------- 8
 Reboot --- 9
 Enable High Current ---------------------------------- 0
 Download Alphamask ----------------------------------- a
 Download Raster -------------------------------------- r
 Download BIN to NRF5 Bootloader ---------------------- e
 Download BIN to NRF5 SD ------------------------------ f
 Set NRF5 Start Adr ----------------------------------- g
 Set NRF5 Chksum Adr ---------------------------------- h
 Download BIN to NRF5 App------------------------------ i
 NRF5 Bootloader Version ------------------------------ j
 Set files download bitmask --------------------------- t
 Bootloader Version ----------------------------------- v
 SPI Flash Version ------------------------------------ w
==

Hi There
what do ya want for nothing?

background • motivation • progress • future work

⊣ using Ghidra and the “FindCrypt” plugin, found some
cryptographic constants for AES and related functions

⊣ key schedule functions (converting main key into
many round keys)

⊣ AES round functions (subBytes, shiftRows…)

⊣ overarching AES encrypt/decrypt functions

background • motivation • progress • future work

⊣ unfortunately, none of these AES functions are actually
called by anything (at least statically)

⊣ this might just be boilerplate code from a library

⊣ the functions might only be called with function
pointers or other methods that you won’t find
statically

background • motivation • progress • future work

⊣ we were able to find other interesting pieces of the
firmware

⊣ functions to load firmware to chips and check the
validity of the files

⊣ functions related to calculating insulin doses

⊣ functions to check versions, etc.

background • motivation • progress • future work

⊣ currently, we are getting the firmware running in an
emulator

⊣ using HALucinator [1] to handle interactions
between firmware and (expected) hardware

⊣ connect this to a fuzzer to automate vulnerability
finding

[1] Clements, Abraham A., et al. "{HALucinator}: Firmware Re-hosting Through Abstraction Layer Emulation." 29th
USENIX Security Symposium (USENIX Security 20). 2020.

background • motivation • progress • future work

⊣ at the same time, we are looking at the Android app
that works alongside the insulin pump

⊣ recent update that allows fully remote insulin
delivery

⊣ looking into the Bluetooth pairing/authentication,
remote dosing, etc.

background • motivation • progress • future work

⊣ short term future work

⊣ once we find vulnerabilities, craft exploits as proof
of concept for the danger to users

⊣ find fixes to suggest to manufacturer

⊣ long term future work

⊣ creating a framework that allows for developers to
formally verify their firmware to ensure security

background • motivation • progress • future work

⊣ tech transfer

⊣ not yet involved with industry, will share findings
with manufacturer when we find vulnerabilities

⊣ still a work in progress, aiming to publish once we
find vulnerabilities

background • motivation • progress • future workbackground • motivation • progress • future work

⊣ thank you to Deian Stefan, Alex Snoeren, Pat Pannuto,
Aaron Schulman, Nishant Bhaskar for all the advice
and help

⊣ thank you to SRC for supporting this work

background • motivation • progress • future work

