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Abstract—Medical devices such as insulin pumps are
physically connected to people’s bodies and often have
direct control over different organs or bodily systems,
yet the software controlling these devices often undergoes
little to no security review. The FDA (who approves these
devices) only generally suggests to check for security
issues, but does not provide any specifications for security
functionality. This presents a worrying problem, as bugs
in such a depended-upon system could have injurious
or even fatal consequences. As a result, the correctness
and integrity of these systems is incredibly important, yet
current systems for ensuring the firmware on these devices
is secure often does not catch all the issues. In fact, we have
witnessed first hand an insulin pump operating incorrectly
due to logic errors in the software. By manually dumping
and reverse engineering the firmware from a Tandem
Diabetes t:slim X2 insulin pump, we aim to prove that
there already exist flaws in the software that could lead
to malfunctioning in the best case and a malicious attack
in the worse case. We plan to make a framework that
will allow developers for these devices to create verifiably
secure firmware to prevent future bugs and vulnerabilities.

I. INTRODUCTION

Hundreds of years ago, a diagnosis of diabetes would
mean an inevitable premature death. Nowadays, thanks
to advances in medical technology, this is no longer the
case, with innovations like the insulin pump allowing
diabetic individuals to lead relatively normal lives. Some
modern insulin pumps can connect to and communicate
with smartphones, allowing data about blood sugar levels
to be easily accessible to the user. Soon, it will even be
possible for users to administer doses of insulin directly
from their smartphone without having to interact with
the insulin pump at all 1.

While this progress has greatly improved quality of
life for diabetic individuals, the functionality and security
of these devices have not been keeping pace. Just within
recent years, there have been multiple recalls and safety

1https://www.tandemdiabetes.com/remote-bolus

Fig. 1. The insides of a t:Slim X2 insulin pump

notices for insulin pumps [1] [2] [3] and accessories [4]
due to programming errors and security vulnerabilities.
In the United States, the FDA (who regulates insulin
pumps and other medical devices) provides general secu-
rity requirements for insulin pumps and related devices,
but these requirements do not specify any technical
standards or specifications and leave the implementation
up to the individual manufacturers.

Bugs in these critical devices are not just some rare oc-
currence either: we have witnessed them first-hand, such
as an insulin pump continuing to administer insulin even
when blood sugar levels were already dangerously low.
To more concretely prove the existence of these logic
and security flaws, we took apart an insulin pump and
extracted the firmware on board so we could examine it.

II. BACKGROUND

A. Diabetes and Insulin Pumps

Diabetes refers to a group of diseases in which the
body cannot regulate blood sugar properly. Normally
when you eat food, your blood sugar will begin to rise,
and in response your pancreas will release insulin to
promote glucose absorption and lower the blood sugar
to normal levels. In diabetic individuals, this cycle does



not work as intended, leading to high blood sugar levels
which can cause health complications over time. This
lack of control over blood sugar levels can be very
dangerous, with continuous high or low blood sugar
leading to complications like comas and even death.

Traditionally, a diabetic individual would have to
constantly check their blood sugar using a glucose meter
(which would require a finger prick), then determine
how much insulin they needed to administer. Luckily,
medical advancements have largely digitized this process
with continual glucose monitors (CGMs) and insulin
pumps. CGMs allow continual monitoring of glucose
levels through a device that is attached to the individual.
Insulin pumps are devices connected to the individual
that can automatically administer insulin in adjustable
doses.

B. FDA Approval Process

The Food and Drug Administration is responsible
for regulating medical devices in the United States
and approving relevant devices for market. There FDA
categorizes medical devices into 3 classes [5], each with
an increasing amount of regulatory control:

• Class I: only subject to general controls
• Class II: subject to general and special controls
• Class III: must obtain premarket approval
Typically, insulin pumps that connect to phones and/or

CGMs (called “alternate controller enabled infusion
pumps” or more colloquially, “iPumps”) are categorized
as Class II devices [6]. In the special controls set forth
for iPumps, the FDA requires that [6] insulin pumps
provide “[s]ecure authentication (pairing) to external
device”, “[s]ecure, accurate and reliable means of data
transmission”, and similar requirements. While these
requirements are reassuring, the FDA does not define
what “secure” entails for device pairing or data trans-
mission, nor does it provide any technical specifications
describing, for example, what cryptographic standards to
use.

In a news release [7] regarding the Tandem t:Slim
X2 insulin pump (the pump which we are studying),
the FDA mentioned that while they “...assessed the
ability of the pump to communicate with external devices
with appropriate reliability, cybersecurity and fail-safe
modes”, one of risks of using iPumps like the t:Slim X2
“can include incorrect drug delivery as a result of loss
of communication between devices, such as the pump
misunderstanding commands it receives, or cybersecurity
vulnerabilities”. Of course, no amount of regulation can
completely remove all cybersecurity vulnerabilities from

a device, but having more explicit security requirements
for iPumps could provide a common starting ground of
minimum security.

III. RELATED WORK

There has been a large body of work focused on
security for medical devices, beginning with numerous
reviews of the status of security attacks and defenses
against implantable medical devices (and medical de-
vices in general), as well as possible directions for future
work [8] [9] [10] [11] [12] [13] [14].

There have also been works that carry out attacks
on medical devices, including pacemakers [15], insulin
pumps [16] [17], and other implantable medical devices
[18]. In the case of attacks against insulin pumps, to the
best of our knowledge these attacks have only leveraged
attacks that target the wireless communication protocol
between the insulin pump and CGM or remote, and have
not analyzed the hardware or firmware running inside of
the pump. For other medical devices, there has been work
[19] evaluating the security of device firmware, although
this was not for an implanted medical device.

Additionally, there have been many proposals for sys-
tems to provide confidentiality, integrity and authentica-
tion for implantable medical devices while also allowing
for possibly insecure but otherwise life-saving safety
measures to be performed, striking a balance between
security and safety [20] [21] [22] [23] [24] [25] [26].
Some of these works specifically focused on securing
insulin pumps [27] [28] [29], although they all took
a different approach than the one we intend to pursue
(formal verification). Finally, [30] [31] discuss the cost
of adding security to medical devices, while [32] offers
suggestions for how to implement secure software for
medical devices.

IV. THE INSULIN PUMP

The insulin pump used in this work is a t:Slim X2
Insulin Pump manufactured by Tandem Diabetes Care.
On its own, it can deliver basal insulin to the user, in
addition to boluses controlled through its touch screen.

A. Automatic insulin delivery

When used in conjunction with a CGM, there are two
predictive technologies it can additionally provide:

• Basal-IQ, which uses glucose level readings from
the CGM to prevent low blood sugar by turning off
insulin delivery

or, the more advanced



• Control-IQ, which uses glucose level readings from
the CGM to adjust insulin levels to keep blood sugar
levels in range, and predict when to administer a
bolus of insulin to prevent the blood sugar from
spiking

Only one of the technologies can be used at a time,
with Control-IQ acting as an “upgrade” from the less-
complex Basal-IQ. Both of these technologies do not
require input from the user to confirm the start or stop
of insulin delivery (although the user can turn off the
technologies entirely if they choose).

B. t:connect

Tandem also provides a smartphone application for
iOS and Android, t:connect, which allows users to view
information about their pump. They can view the amount
of basal insulin being delivered, the time and amounts
of the last boluses, as well as their personal settings
for target blood sugar levels, amound of insulin to
deliver per amount of carbohydrates, and more. When
the pump is used in conjunction with a CGM, it will also
display a graph of blood sugar levels. Currently the app
only displays information, but when Mobile Bolus2 is
released, it will also be able to remotely issue commands
to the pump to deliver a bolus of insulin.

C. Tandem Device Updater

The t:Slim X2 can be updated using the Tandem De-
vice Updater desktop application (available for Windows
and MacOS). Users plug in their insulin pump over
USB and begin the process in the Updater, which will
authenticate to Tandem’s server, download the update
files, and upload them to the insulin pump.

V. GETTING THE FIRMWARE

The firmware for the t:Slim X2 is, unsurprisingly,
closed source and not publicly available to random
graduate students who want to try to break it. Since the
main goal of this project is to get this firmware and look
for vulnerabilites, this means that the only way to get
the firmware is through more manual means.

A. Intercepting firmware during an update

Our first attempt to retrieve the firmware entailed in-
tercepting the firmware during the update process. Using
mitmproxy3 to capture HTTPS traffic and Wireshark4

to capture USB traffic, we recorded communications

2https://www.tandemdiabetes.com/remote-bolus
3https://mitmproxy.org/
4https://www.wireshark.org/

between the Updater app, Tandem servers, and insulin
pump as the pump went through the firmware update
process. Through our HTTPS traffic capture, we were
able to intercept 8 .bin files that seemed to correspond
to different internal parts of the insulin pump:

• maryann.bin
• gilligan.bin
• alphamasks_embalmed.bin
• raster_embalmed.bin
• tndm_ble.bin
• ble_stack_embalmed.bin
• ble_bl.bin
• language_pack_embalmed.bin

These files were encrypted, so we decided to look for
either decryption routines or keys in the firmware that
was actually on the insulin pump.

B. Extracting firmware from the insulin pump mainboard

After opening the insulin pump and figuring out the
basic functions of the different ICs on the mainboard
(detailed further in Section VII), we were able to iso-
late the IC that performed the main processing, the
STM32F103ZG chip. Additionally, there was an uncon-
nected ribbon cable protruding from the main board
whose contacts were covered over with polyimide tape.
After testing the connections between the contacts on
this ribbon cable and the JTAG/SWD/SPI pins on the
various ICs, it became clear that this was a cable used
for debugging that was not disabled or removed when
the pumps were shipped out to consumers.

We created and manufactured a PCB that would
connect to this ribbon cable and break out each contact
to a header pin that could be connected to with a jumper
wire. Using this setup (Fig. 2), we were able to connect
different debugging devices to read out the firmware
of the various ICs. To get the “main” firmware from
the STM32 chip, we connected an STLink2 device and
read out the flash memory and system memory (Boot
ROM). We were also able to extract the firmware from
the nRF52832 chip using a J-Link mini.

VI. REVERSE ENGINEERING

After retrieving the STM firmware, we began to
inspect it in Ghidra5. In addition to looking for
cryptography-specific functions, we also tried to figure
out the general control flow of the program, as well as
look for any interesting data or functions.

5https://ghidra-sre.org/



Fig. 2. The STLink2 connected through the breakout board to the
insulin pump

A. Cryptographic functions

Using the findcrypt6 plugin for Ghidra, we were
able to find AES T-Tables (described in [33] Section
5.2.1) in the firmware memory. Following the references
to this data, we were able to find the overarching
AES encryption and decryption function, subroutines
that performed the SubBytes and ShiftRows steps
of the AES rounds, and functions that handled the key
schedule.

Unfortunately, none of these functions we found were
referenced by any other functions in the firmware. This
led us to believe that these AES functions were part of a
library that was included but never used, or that the only
way these functions are being called are using function
pointers, or some other method that Ghidra would not
be able to resolve as references.

B. Control flow

In Ghidra, through manual inspection, we were able
to find the function that is called when the insulin pump
is first booted, as well as some ancilliary functions
that write binaries to the flash of different ICs and
perform CRC checks on the binaries. We matched up
the boot function by looking at strings that were printed
to the console when the insulin pump was booted while
connected over serial to a computer.

6https://github.com/TorgoTorgo/ghidra-findcrypt

C. Interesting data/functions

We found lots of strings that are displayed to the user
on the pump during normal operation (regarding blood
sugar levels, inslin boluses, etc.), which is what led us to
believe that the STM chip is handling the main insulin
pump logic.

Additionally, we found a set of strings that seemed to
be part of some sort of debug or administrative menu
that could write to the flash of different ICs, change IC
settings, set addresses, and more. We believe that this
was probably used in conjunction with the ribbon cable
during development, but we have been unable thus far
to figure out how to access this menu when connected
to the insulin pump.

Fig. 3. The debug menu found in the firmware.

VII. INSULIN PUMP TEARDOWN

The mainboard of the insulin pump has 4 main ICs, a
ribbon cable with contacts that connect to different debug
pins on the ICs, and many other smaller components. In
the below photos, other peripherals, such as the battery,
speaker, screen, pump motor, etc. have been removed.

Detailed below are the main ICs on the insulin pump’s
mainboard, and details about their use, debug interfaces,
etc.

A. STM32F103ZG

The STM32F103ZG is a microcontroller with an
ARM®Cortex®-M3 CPU, 1MB of flash memory and
96KB SRAM. It provides a JTAG interface (using the
TMS, TCK, TDI, TDO and TRST pins) and a SWD
interface (using the SWDIO and SWCLK pins). This IC
handles the main logic of the insulin pump.



B. MSP430F2370

The MSP430F2370 is a microcontroller with a
MSP430™ CPU, 32KB of flash memory and 2KB RAM.
It provides a JTAG interface (using the TMS, TCK, TDI,
TDO and TRST pins). Currently we do not know what
this IC is used for, as we were unable to get the TI
MSP-FET programmer to connect to the IC.

Fig. 4. The back of the mainboard, (a) STM and (b) MSP chips

C. MX25L25645G

The MX25L25645G is a flash memory chip with
256Mb of memory. It provides a SPI interface (using the
CS, SO, SI, SCLK). We do not know what specifically
is stored on this IC, as the flash chip does not seem
to be connected to the debug ribbon cable, and we are
otherwise unable to connect to the pins of the chip
without removing it entirely and breaking the insulin
pump.

D. nRF52832

The nRF52832 is a microcontroller with an
ARM®Cortex®-M4 CPU, 512KB of flash memory and
64KB RAM. It provides a SWD interface (using the
SWDIO and SWCLK pins). This IC handles Bluetooth
connections.

VIII. LIMITATIONS

The most glaring limitation is, of course, the fact that
this work in incomplete. The intercepted firmware has
yet to be decrypted, and there is still the need to automate
some sort of vulnerability finding (such as fuzzing).

Speaking specifically of the work that has been done,
we present a (non-exhaustive) list of limitations:

• Firmware incompleteness/inaccuracy: Since the
firmware that is being reverse-engineered was read
directly off of the insulin pump using a fairly
“hacky” setup, it’s possible that there may have

Fig. 5. The front of the mainboard, (c) flash and (d) nRF (Bluetooth)
chips

been bit errors when reading the firmware from
memory.

• Missing firmware: We have been unable thus far
to recover the firmware/data from the flash chip and
the MSP chip. It is possible that the cryptographic
keys may be stored in the flash chip, and we believe
that the MSP chip may be controlling the motors
and other mechanical peripherals the insulin pump
uses.

• Static, offline analysis: All of the reverse engi-
neering that has taken place has been with static,
off-device firmware that was read from the insulin
pump when it was powered off. Without being able
to interact with the firmware as it runs, on device,
in real time, there are many address references in
the firmware that cannot be resovled.

In summary, since there is no source of truth for how
the different parts of the insulin pump mainboard work,
which ICs handle which functions, what the firmware
looks like, etc. it is difficult to make any sure statements
about how the pump does/does not work. Some of this
can be remedied by getting more firmware, but some of
these issues are just inherent to reverse engineering.

IX. FUTURE WORK

We are currently in the process of rehosting the ex-
tracted firmware using HALucinator [34]. HALucinator
allows users to manually define handlers to be run
when the firmware would normally call to a hardware-
dependent function (that otherwise could not be repli-
cated off the hardware). This greatly reduces the diffi-
culty of rehosting embedded firmware, and should allow
us to run the insulin pump firmware without needing
any hardware. Once we are succesfully able to rehost



the firmware, we can connect the HALucinator setup to
a fuzzer to begin automating the vulnerabilty search.

After searching for vulnerabilities and logic bugs in
the firmware, the next major goal for this work is
to design and implement a framework that can allow
firmware developers working on high-risk systems like
health devices to write verifiably secure code.

X. CONCLUSION

We have presented our progress and findings from the
process of reverse engineering the hardware and software
of the Tandem Diabetes t:Slim X2 insulin pump. We
have recovered firmware for two of the main ICs on the
insulin pumps mainboard, as well as encrypted firmware
from the firmware update process. We were able to
find cryptographic methods in the firmware, as well as
the presence of (what seem to be) debug/development
menus, although we have not yet been able to get the
insulin pump to access them while running. We also
presented a breakdown of the main components present
on the insulin pump’s mainboard and how they are
connected to a ribbon cable used for debugging. We plan
to continue our work through fuzzing the rehosted insulin
pump firmware, and eventually create a framework that
allows for the creation of verified firmware.
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