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Abstract—An increasing number of datacenter network ap-
plications, including automated trading and high-performance
computing, have stringent end-to-end latency requirements where
even microsecond variations may be intolerable. The resulting
fine-grained measurement demands cannot be met effectively by
existing technologies, such as SNMP, NetFlow, or active probing.
We propose instrumenting routers with a hash-based primitive
that we call a Lossy Difference Aggregator (LDA) to measure
latencies down to tens of microseconds even in the presence of
packet loss. Because LDA does not modify or encapsulate the
packet, it can be deployed incrementally without changes along
the forwarding path. When compared to Poisson-spaced active
probing with similar overheads, our LDA mechanism delivers
orders of magnitude smaller relative error; active probing re-
quires 50–60 times as much bandwidth to deliver similar levels
of accuracy. Although ubiquitous deployment is ultimately de-
sired, it may be hard to achieve in the shorter term; we discuss
a partial deployment architecture called mPlane using LDAs for
intrarouter measurements and localized segment measurements
for interrouter measurements.

Index Terms—Communication technology, computer networks,
coordinated streaming, latency measurement, router.

I. INTRODUCTION

A N INCREASING number of datacenter-based appli-
cations require end-to-end latencies on the order of

milliseconds or even microseconds. Moreover, many of them
further demand that latency remain stable, i.e., low jitter, for op-
timal performance. These applications range from storage-area
networks (SANs) to interactive Web services that depend on
large numbers of back-end services to niche—but commercially
important—markets like automated trading and high-perfor-
mance computing. Currently, most of these latency-sensitive
applications are deployed on specialized and often boutique
hardware technologies like InfiniBand and FibreChannel. Tech-
nology advances and market pressures, however, are leading
to increasing use of hybrid technologies like FibreChannel
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over Etherent (FCoE) [16] that have the potential for increased
performance crosstalk and complex partial failure modes.
Vendors and operators are under increasing pressure to be able
to provision and manage converged datacenter networks that
meet these stringent specifications. Unfortunately, most of
the currently available tools are unable to accurately measure
latencies of these magnitudes, nor can they detect or localize
transient delay variations or loss spikes. Hence, we propose a
new mechanism to measure latency and loss at extremely small
timescales, even tens of microseconds.
As a motivating example, consider a trading network that

connects a stock exchange to a number of data centers where
automatic trading applications run. In order to prevent unfair ar-
bitrage opportunities, network operations personnelmust ensure
that the latencies between the exchange and each data center are
within 100 s of each other [36]. (A recent InformationWeek ar-
ticle claims that “a one-millisecond advantage in trading appli-
cations can be worth $100 million a year to a major brokerage
firm” [24].)
Current routers typically support two distinct accounting

mechanisms: SNMP and NetFlow. Neither are up to the task.
SNMP provides only cumulative counters that, while useful
to estimate load, cannot provide latency estimates. NetFlow,
on the other hand, samples and timestamps a subset of all
received packets; calculating latency requires coordinating
samples at multiple routers (e.g., trajectory sampling [8]).
Even if such coordination is possible, consistent samples and
their timestamps have to be communicated to a measurement
processor that subtracts the sent timestamp from the receive
timestamp of each successfully delivered packet in order to
estimate the average, a procedure with fundamentally high
space complexity. Moreover, computing accurate time aver-
ages requires a high sampling rate, and detecting short-term
deviations from the mean requires even more. Unfortunately,
high NetFlow sampling rates significantly impact routers’
forwarding performance and are frequently incompatible with
operational throughput demands.
Thus, operators of latency-critical networks are forced to

use external monitoring mechanisms in order to collect a
sufficient number of samples to compute accurate estimates.
The simplest technique is to send end-to-end probes across
the network [23], [30], [33]. Latency estimates computed in
this fashion, however, can be grossly inaccurate in practice.
In a recent Cisco study, periodic probes sent at 1-s intervals
computed an average latency of under 5 ms, while the actual
latencies as reported by a hardware monitor were around 20 ms
with some bursts as high as 50 ms [29, Fig. 6]. Capturing these
effects in real networks requires injecting a prohibitively high
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rate of probe packets. For these reasons, operators often employ
external passive hardware monitors (e.g., those manufactured
by Corvil [2]) at key points in their network. Unfortunately,
placing hardware monitors between every pair of input and
output ports is cost-prohibitive in many instances.
Instead, we propose the Lossy Difference Aggregator (LDA),

a low-overhead mechanism for fine-grain latency and loss mea-
surement that can be cheaply incorporated within routers to
achieve the same effect. LDA has the following features.
• Fine-granularity measurement: LDA accurately measures
loss and delay over short timescales while providing
strong bounds on its estimates, enabling operators to
detect short-term deviations from long-term means within
arbitrary confidence levels. Active probing requires
50–60 times as much bandwidth to deliver similar levels
of accuracy, as demonstrated in Section IV-C.

• Low overhead: Our suggested 40-Gb/s LDA implementa-
tion uses less than 1% of a standard networking ASIC and
72 kb of control traffic per second, as detailed in Section V.

• Customizability:Operators can use a classifier to configure
an LDA to measure the delay of particular traffic classes
to differing levels of precision, independent of others, as
discussed in Section V.

While researchers are often hesitant to propose new router
primitives for measurement because of the need to convince
major router vendors to implement them, we observe several
recent trends. First, router vendors are already under strong fi-
nancial pressure from trading and high-performance computing
customers to find low-latency measurement primitives. Second,
the advent of merchant silicon such as Broadcom and Marvell
has forced router vendors to seek new features that will avoid
commoditization and preserve profit margins. Hence, we sug-
gest that improved measurement infrastructure might be an at-
tractive value proposition for legacy vendors.
LDA forms the key building block of a network-wide archi-

tecture we propose for collecting fine-grained latency measure-
ments called MPLANE. By using LDA for intrarouter measure-
ments and active probes for link measurements, MPLANE en-
ables fine-grained latency measurements across the entire net-
work for network operators to localize any end-to-end latency
spikes. We also propose an incremental deployment strategy so
that parts of the network can be upgraded in a more gradual
fashion. without requiring all routers to be upgraded at the same
time.
The remainder of this paper is organized as follows.We begin

in Section II by discussing the MPLANE architecture. Section III
introduces the Lossy Difference Aggregator and provides ana-
lytical bounds on its performance. We evaluate LDA through
simulation in Section IV and propose a potential hardware real-
ization in Section V.

II. MPLANE ARCHITECTURE

In this section, we discuss the architecture of MPLANE that
provides router support for fine-grain latency measurements.
Before we describe the architecture, we first discuss the latency
measurement requirements in different domains.

A. Requirements

An application’s latency requirements depend greatly on its
intended deployment scenario. In the datacenter environment,
back-end storage-area networks are among the most demanding
applications, and FiberChannel has emerged to deliver similar
latencies between CPUs and remote disks, replacing the tradi-
tional I/O bus. Automated trading applications have even more
stringent requirements, as delays larger than 100 s can lead to
arbitrage opportunities that can be leveraged to produce large
financial gains. Additionally, high-performance computing ap-
plications have also begun to place increased demands on data-
center networks. Infiniband, the de facto interconnect, offers la-
tencies of 1 s or less across an individual switch and 10 s end
to end. While obsessing over a few microseconds may seem ex-
cessive to an Internet user, modern CPUs can “waste” thousands
of instructions waiting for a response delayed by a microsecond.
While latency demands obviously cannot be as stringent in

the wide area, a number of applications are quite sensitive to
delay on the order of tens to hundreds of milliseconds. For in-
stance, interactive multimedia games (e.g., World of Warcraft,
Quake) require fast-paced interaction and can be severely de-
graded by Internet latencies. While techniques such as dead-
reckoning can ameliorate the impacts, latencies of more than
200 ms are considered unplayable [5]. Interactive applications
such as video conferencing have strict limits on buffer length,
and excess jitter substantially diminishes the user experience.
For example, Cisco’s recommendations for VoIP and video con-
ferencing include an end-to-end, one-way delay of no more than
150 ms, jitter of no more than 30 ms, and less than 1% loss [35].
While we focus initially on the datacenter environment—where
the need is more immediate—we discuss later how the MPLANE
architecture can be applied to the wide area as well.
Metrics: Each of these domains clearly needs the ability to

measure the average latency and loss on paths, links, or even
link segments. However, in addition, the standard deviation of
delay is important because it not only provides an indication of
jitter, but further allows the calculation of confidence bounds on
individual packet delays. For example, one might wish to ensure
that, say, 98% of packets do not exceed a specified delay. (The
maximum per-packet delay would be even better, but we show
below that it is impossible to calculate efficiently.)

B. Key Idea: Segmented Measurement

The majority of operators today employ active mea-
surement techniques that inject synthetic probe traffic into
their network to measure loss and latency on an end-to-end
basis [23], [30], [33]. While these tools are based on sound
statistical foundations, active measurement approaches are in-
herently intrusive and can incur substantial bandwidth overhead
when tuned to collect accurate fine-grained measurements, as
we demonstrate later.
Rather than conduct end-to-end measurements and then at-

tempt to use tomography or inference techniques [3], [6], [10],
[17], [26], [37], [38] to isolate the latency of individual seg-
ments [18], [39], we propose to instrument each segment of
the network with our new measurement primitive. Thus, in our
model, every end-to-end path can be broken up into what we
call measurement segments. For example, as shown in Fig. 1, a
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Fig. 1. Path decomposed into measurement segments.

path from endpoint to endpoint via two switches, and
, can be decomposed into five measurement segments: a seg-

ment between and the input port of , a segment between the
ingress port of and the egress port of , a segment between
the egress port of and the ingress port of , a segment be-
tween the ingress port of and the egress port of , and a
final segment between the egress port of and .
A typical measurement segment extending from just after re-

ception on a router’s input port to just before transmission on the
output side has the potential for significant queuing. However,
deployments concerned with low latency (e.g., less than 100 s)
necessarily operate at light loads to reduce queuing delays, and
thus, latencies are on the order of tens of microseconds. Such
a router segment can be further decomposed as shown in the
bottom of Fig. 1 into several segments corresponding to internal
paths between key chips in the router (e.g., forwarding engine to
the queue manager, queue manager to the switch fabric). Such
decomposition allows the delay to be localized with even finer
granularity within a router if queuing occurs and may facilitate
performance debugging within a router.

C. Architecture

The MPLANE architecture utilizes the segmented measure-
ment idea described before. Each router consists of two main
components—external and internal measurement modules. The
external measurement module is responsible for measuring link-
level properties from the egress of a router to the ingress of the
adjacent one. The internal measurement module measures per-
formance metrics of interest (average delay, variance, and loss)
for all the internal forwarding paths within a router (e.g., every
ingress–egress pair). The router reports the measurements gen-
erated by these modules to a centralized monitoring station that
is equipped with a topology monitor (e.g., OSPF monitor [32]).
The monitoring station first identifies the forwarding paths in
the network using the topology monitor, and then isolates the
root causes of any perceived problems by identifying the rel-
evant router- and link-level measurements responsible for that
path and observing their properties.
External Measurements: Direct link measurements can be

conducted using lower frequency probes since there is usually
not much variability in link metrics. One way to essentially re-
move the need for any additional probes is to rely on packets

that are already exchanged between routers (e.g., time synchro-
nization packets, or OSPF Hello probes as done in [31]). How-
ever, this scheme is likely not going to work when measuring
the properties of virtual segments between two upgraded routers
that are not directly adjacent to each other. For such measure-
ments, MPLANE requires that routers inject direct active probes
to another upgraded router. (We will come back to the issue in
Section VI when we explain how MPLANE can be incrementally
deployed.)
Internal Measurements: In many real routers, forwarding

metrics (e.g., loss, delay) depend on the forwarding class
more than the particular flow. For example, all flows traveling
between the same input and output ports of a router in a given
QoS class are often treated identically in terms of queuing and
switch scheduling. Thus, we group such flows into what we
call a measurement equivalence class (MEC). We propose the
use of a scalable measurement primitive that can report latency
measurements per MEC within the router. In Section III, we
will discuss a new scalable primitive called LDA that can
achieve this in a scalable fashion. (Our architecture, however,
is not tied to LDA; any scalable measurement primitive that
can report our measurements would work equally well.)
For routers in the network, the number of measurements in

the network equals , where is the degree of router ,
assuming we instrument an LDA-like primitive to report la-
tencies on a per-ingress–egress interface pair in each router.
LDAs, as we shall see in Section III, are passive data structures
that do not inject any active probes. Thus, a positive side-ef-
fect of LDA-like primitives is that there is very minimal probe
bandwidth, which in turn allows our architecture to scale quite
well, in addition to allowing direct fault isolation of end-to-end
problems.

III. SEGMENT MEASUREMENT USING LDA

We focus on a single measurement segment between a
sender and a receiver. We assume that the segment provides
first-in–first-out (FIFO) packet delivery. While the sender and
receiver could be, in general, arbitrary measurement points,
it is difficult to guarantee FIFO packet delivery across two
routers. Thus, in this paper, we focus on segments such as an
ingress–egress interface pair of a router where packet ordering
is typically guaranteed. In practice, packets are commonly
load-balanced across router interfaces, but since TCP interacts
poorly with reordering, packets are typically resequenced
before sending out on the egress interface. In such a case, we
assume that measurement is conducted after the resequencing
points so that the FIFO assumption is still valid.
We further assume that the segment endpoints are tightly time

synchronized (to within a few microseconds). Microsecond
synchronization is easily maintained within a router today and
exists within a number of newer commercial routers. These
routers use separate hardware buses for time synchronization
that directly connect the various synchronization points within a
router such as the input and output ports; these buses bypass the
packet paths that have variable delays. Hence, the time interval
between sending and receiving of synchronization signals is
small and fixed. Given that most of the variable delays and loss
is within routers, our mechanism can immediately be deployed
within routers to allow diagnosis of the majority of latency
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problems. Microsecond synchronization is also possible across
single links using proposed standards such as IEEE 1588 [15].
Router vendors such as Cisco have already begun to incor-
porate this standard into their next-generation switches [1]. If
the clocks at sender and receiver differ by , then all latency
estimates will have an additive error of as well.
We divide time into measurement intervals of length over

which the network operator wishes to compute aggregates. We
envisage values of on the order of a few hundred milliseconds
or even seconds. Smaller values of would not only take up net-
work bandwidth, but would generate extra interrupt overhead
for any software processing control packets. For simplicity, we
assume that the measurement mechanism sends a single (log-
ical) control packet every interval. (In practice, it may need to
be sent as multiple frames due to MTU issues.)
Thus in our model, the sender starts a measurement interval at

some absolute time by sending a Start control message. The
sender also begins to compute a synopsis on all packets sent
between and . At time , the sender also sends
an End control message. If the receiver gets the Start control
message (since control messages follow the same paths as data
messages, they can be lost and take variable delay), the receiver
starts the measurement process when it receives the Start control
message. The receiver computes a corresponding synopsis
on all packets received between the Start and End control mes-
sages. The sender sends synopsis to the receiver in the End
control message so that it can compute latency and loss esti-
mates as a function of and .
Note that the receiver can start much later (depending on the

actual one-way latency between the sender and receiver) than
the sender, but the goal is merely that the sender and receiver
compute the synopses over the same set of packets. This is easily
achieved if the link is FIFO and the Start and End control mes-
sages are not lost. Loss of control packets can be detected by
adding sequence numbers to them. If either the Start or End
control packets are lost, the latency estimate for an interval is
unusable. Note that this is no different from losing a latency es-
timate if an active probe is lost.
We assume that individual packets do not carry link-level

timestamps. If they could, trivial solutions are possible where
the sender adds a timestamp to each packet, and the receiver sub-
tracts this field from the time of receipt and accumulates the av-
erage and variance using just two counters. Clearly, IP packets
do not carry timestamps across links where the TCP timestamp
option is end-to-end. While timestamps could be added or mod-
ified within a switch, adding a 32-bit timestamp to every packet
can add up to 10% overhead to the switch-fabric bandwidth.
Adding an extra header requires intrusive changes to all com-
ponents along the router forwarding path, including third-party
components such as TCAMs, making it hard in practice. Fur-
thermore, loss would still need to be computed with state accu-
mulated at both ends.Wewill show that by adding only amodest
amount of state beyond that required for loss measurements, we
can also provide fine-grain measurements of the average and
standard deviation of latency.

A. Coordinated Streaming

We measure the goodness of a measurement scheme by its
accuracy for each metric (in terms of relative error), its storage

overhead, bandwidth requirements, and its computational
overhead. A naive solution to the measurement problem is for
the sender to store a hash and timestamp of each sent packet
and for the receiver to do the same for each received packet. At
the end of the interval, the sender sends the hashes and times-
tamps for all packets to the receiver, who then matches the
send and receive timestamps of successfully received packets
using the packet hashes and computes the average. Indeed,
Papagiannaki et al. used a similar approach in their study of
router delays [27]. Unfortunately, the naive solution is very
expensive in terms of our performance measures as it takes

state at the sender and bandwidth to communicate
the timestamps. can be large. For example, if measurement
interval is 1 s, and the segment operates at 40 Gb/s, then can
be as large as 125 million 40-B packets. We aim for a scheme
that is well within the capabilities of today’s ASICs.
The quest for efficient solutions suggests considering

streaming algorithms. Several streaming algorithms are already
popular in the networking community for various applica-
tions such as finding heavy hitters [11], counting flows [12],
estimating entropy [20], and computing flow-size distribu-
tions [19], [21]. The standard setting for streaming problems
considers a single computational entity that receives a stream
of data: The goal is to compute a function of a single set of
values using a synopsis data structure that is much smaller

than .
Latency measurement, by contrast, is what we term a coor-

dinated streaming problem with loss. In the general setting, we
have two computational entities and . There are two streams
of data values and ; is the time packet left , and is
the time it is received at . Some packets are lost, so may be
undefined. The goal here is to compute some function of the
set of pairs. For measuring average latency, the func-
tion is over the cardinality of the set of packets for
which is defined (i.e., packets that are received and not lost).
For measuring variance, the function is over the
received packets. For measuring, say, the maximum delay, the
function would be . In all cases, the function re-
quires a pairwise matching between a received data item and the
corresponding sent item—a requirement absent in the standard
streaming setting.
The coordinated streaming setting is strictly harder than the

standard setting. To see this, observe that computing the max-
imum data item in the stream is trivial in a standard streaming
using space and processing. However computing the
maximum delay requires space, evenwithout the assump-
tion of loss. (The proof is a straightforward reduction from Set
Disjointness as in Alon et al. [4].) Despite this negative result
for the maximum delay, we will show that approximating both
average and standard deviation of delay can be done efficiently.
Next, we describe the LDA, a mechanism that estimates these
statistics.

B. LDA

A Lossy Difference Aggregator is a measurement data struc-
ture that supports efficiently measuring the average delay and
standard deviation of delay. Both sender and receiver maintain
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an LDA; at the end of a measurement period—in our experi-
ments, we consider 1 s—the sender sends its LDA to the re-
ceiver and the receiver computes the desired statistics. The only
additional requirements are tight time synchronization between
sender and receiver, a requirement shared by all one-way delay
measurement mechanisms, and consistent packet ordering (i.e.,
no packet reordering) at the sender and receiver.
To better explain the LDA, we begin with the simplest av-

erage delay measurement primitive—a pair of counters—and
then develop the full LDA.
1) No Loss: To start, consider the problem of (passively)

measuring the average latency between a sender and a re-
ceiver . A natural approach is a pair of timestamp accumula-
tors, adding up packet timestamps on the sender and receiver
sides, and a packet counter. The average delay is then just the
difference in timestamp accumulators between sender and re-
ceiver, divided by the number of packets: . Of
course, if packets are lost, this approach fails: The sender’s time-
stamp accumulator will include the timestamps of the lost
packets, while the receiver’s will not.
2) Low Loss: Consider the case of exactly one loss. If we

randomly split the traffic into separate “streams” and com-
pute the average latency for each such “stream” separately, then
a single loss will only make one of our measurements unusable;
we can still estimate the overall average latency using the re-
maining measurements.
Practically speaking, we maintain an array of several time-

stamp accumulators and packet counters (collectively called a
bank). Each packet is hashed to a row index in the range 1 to
, and the corresponding timestamp accumulator and packet

counter are updated as before. By using the same row hash
function on the sender and receiver, we can determine exactly
how many packets hashed to each accumulator–counter pair as
well as how many of them were lost. Note that the sum of the
receiver’s packet counters gives us the number of packets re-
ceived and the sum of the sender’s packet counters, the number
of packets sent; the difference gives the number of lost packets.
If a packet is lost, the value of the sender’s packet counter

at the row index to which the packet was hashed will be one
greater than the value of corresponding packet counter on the
receiver. We call such a row index unusable and do not use it
in calculating our average delay estimate. The remaining usable
row indices give us the average delay for a subset of the packets.
With a single loss, accumulator–counter pairs are roughly
equivalent to sampling roughly every in packets, pro-
viding a very accurate estimate of the overall average latency.
The number of packets that hashed to a usable row index is the
effective sample size of the latency estimate. In other words, it is
as if we had sampled that many packets to arrive at the estimate.
In general, for a small number of losses , the expected effec-
tive sample size is at least a fraction of the received
packets.
Example: Fig. 2 shows an example configuration

with and exactly one lost packet that hashed
to the second accumulator–counter pair. The sum of
packet delays from the other three usable accumulators is

; the effective sample
size is . The estimated delay is thus .
3) Known Loss Rate: For larger loss rates, we need to sample

the incoming packets to reduce the number of potentially unus-

Fig. 2. Computing LDA average delay with one bank of four timestamp accu-
mulator–counter pairs. Three pairs are usable (with 5, 2, and 1 packets), while
the second is not due to a packet loss. Thus, the average delay is

.

Fig. 3. LDA with banks of rows.

able rows. Sampling can easily be done in a coordinated fashion
at receiver and sender by (once again) hashing the packet con-
tents to compute a sampling probability. Thus, we ensure that
a packet is sampled at the receiver only if it is sampled at the
sender. At sample rate , we expect the number of lost packets
that are recorded by the LDA to be , so that the expected
number of usable rows is at least . Of course, packet
sampling also reduces the overall number of packets counted
by the LDA, reducing the accuracy of the latency estimate. In
Section III-D, we will address this issue formally. Intuitively,
however, we can see that for on the order of , we can ex-
pect at least a constant fraction of the accumulator–counter pairs
to suffer no loss and therefore be usable in the latency estimator.
4) Arbitrary Loss Rate: So far, we have seen that a single

bank of timestamp accumulators and packet counters can be
used to measure the average latency when the loss rate is known
a priori. In practice, of course, this is not the case. To handle a
range of loss rates, we can use multiple LDA banks, each tuned
to a different loss rate (Fig. 3). In our experiments, we found
that two banks (tuned toward the lowest and highest loss rates)
is a reasonable choice for loss rates under 5%.
At first glance, maintaining multiple banks seems to require

maintaining each bank independently and then choosing the best
bank at the end of the measurement period for computing the
estimate. However, we can structure a multibank LDA so that
only one bank needs to be updated per sampled packet.
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The trick is to have disjoint sample sets so that each packet is
sampled by a single bank, if at all. This way, only a single bank
needs to be updated and later, during post-processing, no packet
is double-counted. Furthermore, as a practical matter, a single
row hash function can be shared by all banks. Each packet is
hashed to a row uniformly and to a bank nonuniformly according
to bank sampling probabilities . For nonuniform
sampling probabilities that are powers of 1/2, this can be im-
plemented by hashing each packet to an integer uniformly and
using the number of leading zeros to determine the one bank that
needs to be updated. We can compute the average delay by com-
bining all usable elements across all banks. The full LDA
is shown in Fig. 3. For example, consider two banks having sam-
pling probabilities and . Each packet is
hashed to an integer. If the first seven bits are zero, then bank 2
is updated. Otherwise, if the first three bits are zero, then bank 1
is updated. Otherwise, if the first three bits are not all zero, the
packet is not sampled.

C. Update Procedure

Formally, the update procedure is as follows. Let denote
a packet, the row hash function, and the bank sam-
pling hash function. The row hash function maps to a
row index distributed uniformly between 1 and . The sam-
pling hash function maps to bank , where
with probability . In our analysis, we assume that and are
4-universal (which is amenable to efficient implementation), al-
though in practice this may not be necessary. We use the special
value to denote that the packet is not sampled. Upon
processing a packet at time , timestamp is added to the
timestamp accumulator at position , and the corre-
sponding packet counter is incremented. If , then the
packet is simply ignored. Using to denote the array of
timestamp accumulators and to denote corresponding array
packet counters, the procedure is as follows:

1.
2.
3. if then
4.
5.
6. end if

D. Average Latency Estimator

From the discussion above, estimating the average latency is
straightforward: For each accumulator–counter pair, we check
if the packet counters on the sender and receiver agree. If they
do, we subtract the sender’s timestamp accumulator from the re-
ceiver’s. If they do not, this accumulator–counter pair is consid-
ered unusable. The average delay is then estimated by the sum
of these differences divided by the number of packets counted.
Formally, let and denote the timestamp

accumulator arrays of the sender and receiver, respectively, and
and the corresponding packet counters. Call a

position usable if . Let be an in-
dicator for this event, that is, if is usable, and

otherwise. Define

and are the sum of the of the usable timestamp accu-
mulators on the sender and receiver, respectively. By definition

, so let

The estimate, then, is

The quantity is is the effective sample size from which the av-
erage latency is calculated. In other words, if one were to sample
and store packet timestamps, the number of packets sampled
would need to be at least to achieve the same statistical accu-
racy as the LDA. Using a Hoeffding inequality [13], it can be
shown that

(1)

where and are the actual mean and standard deviation of
the delays. When the estimate is very accurate given a
reasonable effective sample size. Let and be the number
of received and lost packets, respectively, so that .
For a single bank with design number of losses , setting
the packet sampling probability , where is a
parameter to be optimized}, gives an expected effective sample
size of

(2)

Note that if we were to store the sampled packets, the expected
sample size would be just with a tight concentration around
this value. However, because we are not storing the packets but
recording them in the LDA, we pay a constant factor
penalty in the effective sample size and a higher variance. To
maximize the bound, we set (in our evaluation).

E. Latency Standard Deviation

Note that we exploited the fact that the sum of the differences
of receive and send packet timestamps is the same as the differ-
ence of their sum. While this reshuffling works for the sum, it
does not work for the sum of squares. Despite this obstacle, we
now show that the LDA can also be used to estimate the stan-
dard deviation of the packet delays. This is crucial because an
accurate measure for standard deviation allows a network man-
ager to compute tight confidence intervals on the delay, a highly
desirable feature in a trading or high-performance computing
applications.
Again, let us start by assuming no loss; we can correct for

loss later using the same hashing technique as we used for the
average. Consider the two timestamp sums we already keep at
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the sender and receiver, and . If we take the difference,
this is just the sum of packet delays. If we now square this dif-
ference, we get

The first sum (of delays squared) is exactly what we need for
computing the standard deviation since

(3)

but we also get unwanted cross terms. Fortunately, the cross
terms can be eliminated using a technique introduced by
Alon et al. [4]. The idea is to keep a slightly different time-
stamp accumulator on the sender and receiver: Instead of
simply adding the timestamp, we add or subtract with equal
probability based on a consistent hash. Using to denote the

hash of the packet, we now have

(4)
Because of independence, the expectation of the cross terms

is zero, giving us an unbiased estimator for the square
of the delays squared.
So far, this implies that we keep a separate signed timestamp

accumulator. Also, to deal with loss, we would have to keep an
array of such counters, doubling the number of timestamp accu-
mulators. Fortunately, we can mine the existing LDA. Observe
that the sign hash above can be computed using the low-order
bit of the hash function we use to compute a row index in the
full LDA. To achieve the same effect without adding additional
memory, we use this low-order bit of the row hash value
as the sign bit, “collapsing” adjacent rows. (Thus, the estimator
uses rows.)
Define the collapsed timestamp accumulator and

packet counter arrays as

Let be an indicator for a position being usable; that is,
if , and otherwise. As in the

average latency estimator, let . Our latency
second frequency moment estimator is

(5)

Let . It is straightforward to show that

as desired. We can then estimate the standard deviation of the
delays using (3). The variance of is upper-bounded by

For comparison, the basic estimator (4), which does not handle
packet loss, corresponds to the case and has variance

By averaging several instances of the estimator as in [4], the
variance can be reduced arbitrarily. In our experiments, how-
ever, we use the estimator (5) directly with satisfactory results.
We note that this standard deviation estimate comes “for free”
by mining the LDA data structure (designed for estimating av-
erage) for more information.

IV. EVALUATION

Our evaluation has three major goals. First, we wish to em-
pirically validate our analyses of an optimal LDA’s estimates,
both in terms of average delay and standard deviation. Second,
we analyze various tuning options to select a set of practical
configuration options. Finally, we use the resulting parameter
settings to compare the efficacy of a practical LDA to the
current cost-effective alternative: Poisson-modulated active
probing. (We do not compare against special-purpose passive
monitoring devices [36], as they are prohibitively expensive to
deploy at scale.)
We have implemented a special-purpose simulator in C++ to

facilitate our evaluation.1 The simulator generates packet traces
with various loss and delay distributions and implements several
different variants of the LDA data structure, as well as active
probing and the associated estimators needed to compare LDA
to the active probing approach.
In an effort to evaluate LDA in realistic scenarios, we use

delay and loss distributions drawn from the literature. In par-
ticular, Papagiannaki et al. report that packet delays recorded
at a backbone router are well modeled by a Weibull distribu-
tion [27], with a cumulative distribution function

with and representing the scale and shape, respectively. Un-
less otherwise noted, all of our experiments consider a Weibull
distribution with their recommended shape parameter

. For comparison purposes, we also simulated Pareto
distribution generated according to the function

with and representing the scale and shape
parameters, respectively, and chosen between 3–5 so that the

1The main advantage of standard packages like ns2 is the library of preex-
isting protocol implementations like TCP, the vast majority of which are not
needed in our experiments. Thus, we feel the remaining benefits are outweighed
by the simplicity and significant speedup of a custom solution.
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Fig. 4. Relative error and 98% confidence bounds of average delay estimates, and relative error of standard deviation estimate computed by LDA as a function of
loss rate. Actual mean delay is 0.2 s in all cases. In (b), each curve represents an LDA with different random seed on the same trace. (a) Relative error of average
delay. (b) Estimated average delay. (c) Relative error of standard deviation.

delay values do not become too skewed and to ensure that the
distributions have bounded variance.
For each packet, we essentially draw a delay value from

the distribution and assign it to the packet. Therefore, while
back-to-back packets may have completely uncorrelated delay
values, the overall statistics such as mean delay and stan-
dard will however match the real packet delay distributions.
Matching these statistics is sufficient for our purposes since
LDA itself is oblivious to the exact sequence of delay values as
it involves only addition of timestamps which is commutative.
In order to ensure that sampled delay values do not cause packet
reordering, we assign timestamps to packets such that two suc-
cessive packets always differ by more than the delay of the first
packet drawn from the distribution. In other words, we ensure
that there is always only one packet in flight at any given instant
by enforcing that a given packet begins transmission only after
the previous packet has reached the receiver. This does not bias
our results in any way since LDA does not care about the actual
timestamps themselves; it is only the differences that matter.
LDA performance is independent of loss distribution within

an interval, so most experiments use a uniform loss model
for simplicity. For our comparisons to active probes—whose
performance depends on the loss distribution—we use expo-
nentially distributed loss episodes (as suggested by Misra et al.
in their study of TCP behavior [25]), where each episode
involves dropping a burst of packets (following the model of
Sommers et al. [33]).

A. Validation

The main goal of the set of experiments described in this
section is to empirically validate our analytical bounds using
a simple single-bank LDA. In particular, we study the accuracy
of LDA’s estimates over different delay and loss distributions.
For these simulations, we configure the LDA to use

bank of counters. We simulate a 10-Gb/s OC-192
link that, assuming an average packet size of 250 B, carries
roughly five million packets per second at capacity. (The choice
of 250-B packets is arbitrary and results in round numbers; the
functionality of LDA is not impacted by packet size.) We sim-
ulate a measurement interval of 1 s (so and an
average delay of 0.2 s). For different distributions, we ensure
consistency by adjusting the scale parameters appropriately to
match the mean delay of 0.2 s.

In order to isolate the effects of packet loss, for each exper-
iment, we first generate a packet trace according to the desired
delay distribution using a particular random seed, and then im-
pose varying levels of loss. Each graph presented in this section
uses the same random seed for the delay distribution.
We first verify empirically that the actual sample size ob-

tained using our data structure matches expectation. For the pur-
poses of this experiment, we assume that we know a priori the
loss rate ; we compute the number of lost packets and
set the sampling probability accordingly as ,
where . Our findings indicate that our analytical bound
is typically conservative; LDA captures more samples (almost
twice as many) in simulation than the lower bound. (For brevity,
we omit the actual graph.)
In Fig. 4(a), we plot the average relative error (defined as

) of LDA as we vary the loss rate. We
obtain the ground truth by maintaining the full delay distribu-
tion. Each point corresponds to the average of the relative error
across a set of 10 independent runs—i.e., the packet trace is the
same, but the LDA selects a different random set of packets to
sample during each run. The LDA is optimally configured for
each loss rate as in the previous section. As expected, the rel-
ative error of the estimate increases as the loss rate increases
because the number of available samples decreases with loss
rate. While the curves all follow the same general trend, the
estimates for the Weibull distributions are less accurate com-
pared to Pareto. For the particular shape parameters we sim-
ulated, the Weibull distribution suffers from a larger variance
than Pareto—variance is 0.123 at for Weibull as com-
pared to 0.013 at for Pareto. LDA therefore requires more
samples for Weibull to obtain the same accuracy level as Pareto.
Even in the worst case of 20% loss, however, the estimates have
less than 4% error on average. At low loss rates % , LDA
estimates have less than 0.3% error. Results from similar exper-
iments with a variety of random seeds are qualitatively similar;
the relative error at loss rates of even 6% across different traces
is never more than 3% with an average of about 0.2%.
Low error in expectation is nice, but some applications re-

quire guarantees of accuracy in every instance. To validate our
error bounds, we focus on the delay distribution with the least
accurate estimates from above, namely the

Weibull distribution. In Fig. 4(b), rather than report relative
error, we graph the actual delay estimate computed by a repre-
sentative five of the ten constituent runs in Fig. 4(a). In addition,



KOMPELLA et al.: ROUTER SUPPORT FOR FINE-GRAINED LATENCY MEASUREMENTS 819

Fig. 5. Performance of various multibank LDA configurations. (a) Sample size. (b) Delay. (c) Standard deviation.

we plot the 98%-confidence bounds computed using (1). The
actual confidence bound depends on the number of samples ob-
tained by each LDA and, therefore, varies across instances. Each
error bar shown in the figure corresponds to the most conserva-
tive bound computed based on the run that collected the smallest
number of samples across the 10 runs from Fig. 4(a). While con-
fidence decreases with higher loss rates, all of the individual
estimates reported in our simulation remain quite close to the
actual value. Results of other distributions are even tighter.
For the same setup as above, we also measure the accuracy of

the LDA’s standard-deviation estimator (obtained from the vari-
ance estimator). We plot the average relative error incurred for
different distributions in Fig. 4(c). Estimates suffer from about
20%–50% relative error for Pareto to less than 10% error for
Weibull distributions, independent of loss rate. The magnitude
of the relative error obviously depends on the actual standard de-
viation of the underlying distribution, however. The true stan-
dard deviation of delay in the Weibull- and Pareto-distributed
traces is about 0.35 and 0.11, respectively. Hence, the absolute
error of LDA’s standard-deviation estimator is similarly small
in both cases. Delays in Internet routers are reported to be well
modeled by aWeibull distribution [27], so relative error is likely
to be small in practice.

B. Handling Unknown Loss Rates

Up to this point, we have configured each LDA optimally for
the actual loss rate. Obviously, any real deployment will need to
be configured for a range of loss rates. Here, we evaluate the effi-
cacy of various configurations of multibank LDAs over a range
of loss rates. In particular, each bank within the LDA is tuned
( as before) to a different target loss
rate. We consider three alternatives, each with the same total
number (1024) of counters: two banks of 512 counters tuned
toward loss rates of 0.005 and 0.1; three banks with roughly
one-third of the counters tuned toward loss rates of 0.001, 0.01,
and 0.1; and, finally, four banks of 256 counters each tuned for
loss rates of 0.001, 0.01, 0.05, and 0.1, respectively. These par-
ticular configurations are arbitrary; operators may find others
better suited for their networks.
We present results along the same three dimensions consid-

ered previously—effective sample size, relative error of delay,
and standard deviation estimates—in Fig. 5. To facilitate com-
parison, we continue with the same uniform loss and Weibull
delay distributions and replot the optimal single-bank case con-
figured for the actual loss rate as shown in Fig. 4(a) and (c).

Fig. 5(a) shows that while practical configurations collect
fewer samples than optimal, the absolute value is not too far
from our analytical estimates for the single-bank case. The delay
and standard deviation curves in Fig. 5(a) and (b) follow a sim-
ilar trend. The LDAS perform comparably across the ranges of
loss, although the four-bank LDA performs the worst of the
three when the loss rates are high. The number of buckets in-
vested by the four-bank LDA tuned toward high loss rates (10%)
is low, so it struggles to keep up. We note, however, that most
real networks operate at low loss rates—typically substantially
less than 5%. In conclusion, we expect a two-bank LDA config-
uration tuned to relatively low loss rates will be appropriate for
most deployments.

C. Comparison to Active Probes

We compare the accuracy of the delay and standard deviation
estimates obtained using the two-bank LDA to those that are
obtained using Poisson-distributed active probes (such as those
used by the well-known zing tool [23]) for various probe fre-
quencies. Note that these experiments are only for comparing
the accuracy of these two schemes; the implementational com-
plexity of these schemes is quite different. LDA requires hard-
ware modifications within the router, while implementing ac-
tive probes to measure latency between router interface pairs
requires additional measurement boxes that may be administra-
tively difficult to provision.
The accuracy of the active probing approach depends crit-

ically upon the frequency, so we provide a selection of nat-
ural comparison points. One approach is to hold communication
overhead constant. First, we consider an active-probing mech-
anism that communicates as frequently as LDA—once an in-
terval, or 1 Hz. In practice, however, the LDA data structure is
too large to fit into one MTU-sized packet—an Ethernet imple-
mentation would actually need to send seven separate packets
per interval assuming 1024 72 bits kb for the data struc-
ture and 1500-B packets. Thus, to be fair in terms of number
of packets per second, we also use a probing frequency of 7 Hz.
Moreover, probe packets are much smaller (containing only one
timestamp and no counters), so holding bandwidth constant—as
opposed to packet count—results in a probing rate of about
144 Hz (assuming probe packets of size 64 B). As we shall see,
however, none of these rates approach the accuracy of LDA;
hence, we also plot a frequency that delivers roughly equivalent
performance: 10 000 Hz.
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Fig. 6. (a) Sample size, (b) delay, and (c) standard deviation estimates obtained using a two-bank LDA in comparison with active probing at various frequencies.
Log-scale axes.

We generate Poisson-modulated active probes by injecting
probe packets at intervals distributed according to a Poisson
process with the desired average interarrival time, and then sub-
jecting the probe packets to the same delay distribution as the
regular traffic. In a normal queue, adding an active probe af-
fects the queuing dynamics—for example, it may cause packets
behind to experience higher delays and in some cases, even be
dropped. We do not, however, recreate such effects on packets
behind active probes because packet delays are already based on
a distribution, and simulating such affects will cause delays to
deviate from the distribution. Thus, the delays of regular packets
are not impacted by the presence of active probes; only their
timestamps are shifted.
For these experiments, we continue to use the same Weibull

delay distribution as before, but with exponentially distributed
(as opposed to uniform) loss episodes with each episode con-
sisting of about 100 packets. In Fig. 6, we compare the effective
sample size, average relative error in the delay, and standard de-
viation estimators using active probes at various frequencies as
well as LDA.
Fig. 6(a) clearly shows the impact of increased probe

frequency: more samples. As before, each point represents
the average of 10 runs. The number of samples collected
by active probes decreases by a small amount as the loss
rate increases due to the lost probes. While the number of
effective samples obtained by LDA decreases more rapidly,
the sample size remains far larger than those obtained by all
but the most aggressive active probing rates under significant

% loss. Consequently, the average relative error observed
by LDA (0.2%–4%) is significantly lower than that for active
probes with an equivalent number of packets (almost 100%)
as shown in Fig. 6(b). Even when we hold the measurement
bandwidth steady across LDA and active probes (144 Hz),
we observe at least an order of magnitude (11% compared
to less than 1% at loss rates less than 1%) difference in the
relative error between the two. While the improvement in stan-
dard deviation estimates is not as stable as the average delay
estimates, LDA is still considerably more accurate (3%–9%
versus %) over realistic % loss rates. Overall, only the
10 000 Hz probing rate provides accuracy approaching LDA.
Said another way, active probing requires 50–60 times as much
bandwidth to achieve similar results.
Perhaps more importantly, however, LDA is significantly

more reliable. In our experiments, we found that the 98%-con-

fidence intervals for the constituent LDA runs from Fig. 6(a)
are quite small—generally within 25% of the mean (for loss
rates less than 0.1%) and less than a factor of two even at
10% loss. Empirically, however, each estimate is well inside
the analytical envelope. Focusing on loss rate regimes that the
LDA was tuned for, e.g., 0.16%, the maximum relative error
across all runs of LDA was 0.17%. The same cannot be said for
active probing, however, which had runs with relative errors as
large as 87% for 7 Hz and 13% for 144 Hz. Once again, only
10 000-Hz probes were competitive, with a maximum relative
error of 0.15%.

V. HARDWARE REALIZATION

We have sketched out the base logic for LDA that we estimate
takes less than 1% of a low-end 10 10mm networking ASIC,
using 400-MHz 65-nm process. The logic is flow-through, i.e.,
it can be inserted into the path of a link between the sender and
receiver end without changing any other logic allowing easy in-
cremental deployment. A minimal implementation would place
a single LDA together with MAC logic at ingress and egress
links.
We present a strawman design of LDA here. At the sender

(receiver), the first (say 50) bytes of the packet are sent to
the logic, which then determines the control or data packet
using an Ethernet type field. For data packets, an optional
classifier can be used to filter specific types of packets. The
update logic computes a hardware hash based on a few bytes
of each packet. H3 hash functions [28], for example, can be
implemented efficiently in hardware using XOR arrays and
can be easily modified. Our estimates use a Rabin hash whose
loop is unrolled to run at 40 Gbps using around 20 000 gates.
The high-order bits of the 64-bit hash selects the sampling
probability, which in turn determines which bank is selected.
For example, if there are two banks, which are selected with
probabilities 1/2 and 1/64, the six high-order bits are used. If a
bank is selected, the low-order bits of the hash are used to post
a read to the corresponding bank. For example, if each bank has
1024 counters, we use the 10 low-order bits. The update logic
then reads the 72-bit value stored at the indicated location. The
first 32 bits are a simple packet counter that is incremented. The
last 40 bits are a timestamp sum (allows nanosecond precision)
to which the current value of the hardware clock is added. The
updated value is then written back to the same location.
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The sender-side logic conceptually generates control packets
at the end of each measurement interval. Control packets are se-
quence-numbered so that loss of control packets translates into a
measurement interval being ignored.When the receiver logic re-
ceives the sender’s control packets and updates its own, it sends
the control packets to a line-card processor that computes delay,
loss, and variance estimates in software that it can then report
to a management station on demand. The simplest design of the
control is to keep two copies of each counter so that it can work
on reading and zeroing LDA counters for a prior interval into
control packet(s) concurrently with the update process. Alter-
nately, two control packets, one for the end of an interval and
the other sent seconds later for the start of a new one, can
be used. Keeping small will ensure only a small number of
samples (say 100) are ignored.
The logic for counters is placed in SRAM, while the re-

maining logic is implemented in flops. In a 65-nm 400-MHz
process, 1000 SRAM counters of 72 bits each take 0.13 mm .
While the size for the hash logic is about 20 000 gates, we
conservatively estimate another 30 000 gates for the classifier
(a simple mask-and-compare to one specified header), header
extraction, and counter update, yielding a total of around
50 000, or approximately 0.1 mm in a 65-nm process. The
grand total is around mm . Even if we double the width
of the counters and keep two copies of the entire data structure
(to handle sender and receiver logic), an LDA still represents
less than 1% of the area of the lowest-end (10 10 mm )
ASICs on the market today.

VI. INCREMENTAL DEPLOYMENT OF MPLANE

In this section, we discuss how MPLANE can be incrementally
deployed. In typical ISP networks, measurement servers are typ-
ically connected to the edge routers, and active probes
are injected between all pairs of servers to measure the health
of the network. Tomographic techniques (e.g., [6] and [10]) can
then be applied to infer individual hop and link latencies. In
datacenter networks, it is not clear that this approach works well
because: 1) active probes require way too much probing band-
width for them to be accurate, as our experiments indicate in
Section IV; 2) inference is typically underconstrained and may
not be accurate. We can solve the second problem by just essen-
tially placing measurement servers across each and every link
in the network. We cannot, however, solve the first problem un-
less we upgrade routers with data structures such as LDAs.
In a clean-slate deployment, all routers are upgraded to in-

clude native latency measurement techniques such as LDAs; we
refer to these upgraded routers as m-routers. In this scenario,
there is no need for any measurement servers for fault localiza-
tion purposes, although theymay still be required for end-to-end
measurements. Given it may be difficult to perform such a “fork-
lift” upgrade, we propose the following incremental deployment
strategy that blends the active probes approach (with reduced
accuracy measurements in some portions of the network) with
upgraded routers that support LDAs (with high-fidelity mea-
surements in those routers).
Our incremental deployment stragey involves three main

steps. In the first step, the set of measurement servers connected
directly to the m-routers is removed since its functionality

Fig. 7. Partial deployment and clean-slate design of the MPLANE architecture.
(a) Current topology. (b) Partially upgraded topology.

Fig. 8. Few shortest-path trees constructed locally by the m-servers and the
m-routers to determine which set of segments to monitor. here refers to the
second shortest path to since can be reached via multiple shortest paths.
(a) . (b) . (c) .

is subsumed by the m-routers. Furthermore, the set of mea-
surement servers directly connected to nonupgraded routers is
transformed into, what we call, m-servers. The m-servers are
basically measurement servers that are capable of listening to
the topology updates (OSPF LSAs) in the network, and are thus
capable of reconstructing the forwarding paths in the network
similar to the m-routers. For example, in Fig. 7, we show a
toy topology with six routers connected via undirected edges
and associated edge costs. Attached to each of the routers is a
measurement server [shown in Fig. 7(a)] that issues data-plane
probes to other such measurement servers to measure path
properties of interest. In Fig. 7(b), we show the topology when
two out of the six routers are upgraded to m-routers, and the
measurement servers are converted to m-servers.
In the second step, each m-server or m-router identifies a set

of nodes for which it monitors properties, called anm-set. It does
so by first computing a self-sourced shortest-path spanning tree
using Dijkstra’s algorithm. The shortest-path trees computed at
each of the six nodes are shown in Fig. 8. The m-router does not
need to explicitly perform this computation and can leverage
the existing shortest-path tree already computed by the OSPF
process on the router. It then determines the m-set by making
a cut in the tree whenever an m-router or an m-server is en-
countered. If an m-router is encountered, the rest of the paths
to various destinations in the subtree of this m-router are mon-
itored by that m-router. An m-server is encountered if no such
m-router exists along the path (and hence it has to monitor this
path itself). In Fig. 8, we show such m-sets for all the routers
for the toy topology in Fig. 7. Note that in Fig. 8(c), the m-set
consists of that corresponds to the second shortest path to
through . The router does not need to monitor the first

shortest path to through .
Finally, m-router to m-router or m-server links (or virtual link

consisting of paths through nonupgraded routers) are monitored
using regular active probing. The m-routers report the internal
measurements and the measurements to the nodes in the m-set
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periodically to a monitoring station using specialized measure-
ment state packets (MSPs). The m-servers only report the mea-
surements to the nodes in the m-set within the MSP. The moni-
toring station uses the topology information to build shortest-
path trees (with each node as source) and uses the MSPs to di-
rectly diagnose any end-to-end problem in the network.
Our architecture also accommodates topology changes due

to link failures or other reasons. Similar to what happens today,
the m-routers (and the m-servers) recompute the new shortest
paths when they receive OSPF LSAs and update their m-set by
identifying the cut in the shortest-path tree again. During such
periods, every m-router must continue to measure properties of
the links or virtual links to the routers in both old and newm-sets
for a configurable amount of time to ensure all paths are covered
before and after reconvergence. Afterwards, they phase out the
routers in the old m-set and restrict measurements to only those
in the new one.
Advertising Presence of m-routers: Each m-router needs to

identify the presence of other m-routers in the network in order
to construct its m-set, for which we can leverage the existing
OSPF protocol (or IS-IS) to allow m-routers to advertise their
presence. We propose to use one of the reserved bits in the
Options field of the OSPF control-plane messages for this task;
the field exists precisely to advertise special capabilities of
routers in the network.

A. Evaluating the Benefits

We now attempt to quantify the benefits achieved by incre-
mentally deploying our architecture in real networks. Lacking
access to actual tier-1 ISP topologies, we conduct our evalu-
ation using the Rocketfuel topologies annotated with inferred
link weights [34]. Despite the known deficiencies of this data,
they suffice to demonstrate general trends. We compare the ben-
efits of upgrading in a naive (random) fashion to an intelligent
upgrade strategy.
We use a simple metric called probe hop count to quanti-

tatively describe the benefit achieved by upgrading existing
routers to m-routers. Probe hop count is defined as the sum of
all the hops taken by every active probe that traverses the net-
work. When active probes are issued from every measurement
server to another, this translates to the sum of hop lengths of all
the shortest paths (including the multiple paths between
a given pair of routers) in the network. On the other hand, in the
MPLANE architecture, the probe hop count reduces to the total
number of links in the network since each m-router transmits
messages only to its adjacent routers. While the complexity of
the probes is different in both the cases (active probes versus
synchronization messages), we ignore this difference in this
metric.
In order to identify candidate routers to upgrade, we guide the

search in the direction of reducing the probe hop-count metric as
much as possible. In particular, we select the routers that reduce
the probe hop count the most. The exact algorithm is shown in
Algorithm 1.
Fig. 9 shows the results of both upgrade strategies on the

Rocketfuel autonomous system (AS) topology for Sprint net-
work (results were similar on five other topologies we consid-
ered). From the graph, we can observe that the curve is convex

Algorithm 1: IdentifyRoutersToUpgrade(V, E, numUpdate)

1.
2.
3.
4. while do
5. for do
6. for do
7.
8. end for
9. end for
10.
11.
12. for do
13. if then
14.
15.
16.
17.
18. end if
19. end for
20.
21. end while

in shape; upgrading the first few routers results in maximum
benefit, while the marginal benefit reduces drastically after a
while. On average, upgrading about 15% of the routers in an
intelligent fashion results in a two-orders-of-magnitude reduc-
tion in the probe hop count. For example, the Sprint topology
in Fig. 9(a) requires approximately one million end-to-end ac-
tive probes to measure each path without any upgraded routers.
Upgrading 45 routers out of 315 results in a probe hop count of
only 10 000—a two-orders-of-magnitude reduction in measure-
ment overhead.
Fig. 9 shows the average localization granularity as well as

maximum and minimum localization granularity, in terms of the
size of an average segment. We can observe that the average lo-
calization granularity also drops down very rapidly (convex) for
all the ISP topologies, indicating that upgrading a small number
of routers can quickly achieve almost all the benefit. The ben-
efit is achieved much slower, however, in the case of random
upgrade. In particular, for the Sprint topology, upgrading about
1/6 of the routers (50 out of about 300) reduces the localization
granularity to around 1.5 from 4. Of course, this is assuming
only direct localization. If we were to couple this with other in-
ference techniques, we can reduce this even further.

VII. RELATED WORK

Traditionally, network operators determined link and hop
properties using active measurement tools and inference
algorithms. For example, the work by Chen et al. [6] and
Duffield et al. [10] solve the problem of predicting the per-hop
loss and latency characteristics based on end-to-end measure-
ments (e.g., conducted using active probing tools [33], [23])
and routing information obtained from the network (e.g., using
OSPF monitoring [32]). The advantages of our approach in
comparison are twofold. First, LDA computes path and link
properties by passively monitoring traffic in a router, so it
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Fig. 9. (a) Probe bandwidth and (b) localization granularity for Sprint topology
with increasing number of upgraded routers.

does not interfere with measurements or waste bandwidth by
injecting any active probes. Second, LDA captures fine-grain
latency measurements that can only be matched by extremely
high frequency active probes (as discussed in Section IV-C).
Furthermore, in our evaluation, we compared against localized
active probes (i.e., between every pair of adjacent routers),
which are more fine-grain than the current best practice
(end-to-end probing) as it does not scale, requiring the moni-
toring of segments where is the number of
links, is the number of routers.
We are not the first to suggest router extensions in support of

fine-grain measurement. For example, Machiraju et al. argue for
a measurement-friendly network architecture where individual
routers provide separate priority levels for active probes [22].
Duffield et al. suggest the use of router support for sampling
packet trajectories [8]. Passive measurement of loss and delay
by directly comparing trajectory samples of the same packet
observed at different points has been studied by Zseby et al. [40]
and Duffield et al. [9]. Many high-speed router primitives have
also been suggested in the literature for measuring flow statistics
and detecting heavy-hitters [7], [11].
Papagiannaki et al. used GPS-synchronized (to microsecond

accuracy) passive monitoring cards to trace all packets entering
and leaving a Sprint backbone router [27]. Each packet gener-
ates a fixed-size timestamped record, allowing exact delays, as
well as other statistics, to be computed to within clock accu-
racy. From ameasurement standpoint, their approach represents
the ideal: exact packet-for-packet accounting. Unfortunately, as

they themselves point out, such an approach is “computation-
ally intensive and demanding in terms of storage,”makingwide-
spread production deployment infeasible. Hohn et al. describe
a mechanism to obtain router delay information using the am-
plitude and duration of busy periods [14]. While their approach
provides only an approximate distribution, it can be effective in
determining the order of magnitude of delay.

VIII. CONCLUSION

This paper proposes a mechanism that vendors can embed
directly in routers to cheaply provide fine-grain delay and loss
measurement. Starting from the simple idea of keeping a sum
of sent timestamps and a sum of receive timestamps that is not
resilient to loss, we developed a strategy to cope with loss using
multiple hash buckets, and multiple sampling granularities to
deal with unknown loss values. Furthermore, we adapt the
classic approach to L2-norm estimation in a single stream to
also calculate the standard deviation of delay. Loss estimation,
of course, falls out trivially from these data structures. We
emphasize that our mechanism complements—but does not
replace—end-to-end probes. Customers will continue to use
end-to-end probes to monitor the end-to-end performance of
their applications. Furthermore, it is unlikely that LDA will
be deployed at all links along many paths in the near future.
However, LDA probes can proactively discover latency issues,
especially at very fine scales, thata network manager can then
address. Moreover, if an end-to-end probe detects a problem, a
manager can use the LDA mechanism on routers along the path
to better localize the problem.
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