
Libra: Divide and Conquer to Verify Forwarding Tables in Huge Networks

Hongyi Zeng†∗, Shidong Zhang§, Fei Ye§, Vimalkumar Jeyakumar†∗

Mickey Ju§, Junda Liu§, Nick McKeown†, Amin Vahdat§‡

†Stanford University §Google ‡UCSD

Abstract
Data center networks often have errors in the forward-

ing tables, causing packets to loop indefinitely, fall into
black-holes or simply get dropped before they reach the
correct destination. Finding forwarding errors is possible
using static analysis, but none of the existing tools scale
to a large data center network with thousands of switches
and millions of forwarding entries. Worse still, in a large
data center network the forwarding state is constantly in
flux, which makes it hard to take an accurate snapshot of
the state for static analysis.

We solve these problems with Libra, a new tool for
verifying forwarding tables in very large networks. Libra
runs fast because it can exploit the scaling properties of
MapReduce. We show how Libra can take an accurate
snapshot of the forwarding state 99.9% of the time, and
knows when the snapshot cannot be trusted. We show
results for Libra analyzing a 10,000 switch network in
less than a minute, using 50 servers.

1 Introduction
Data center networks are immense. Modern data cen-

ters can employ 10,000 switches or more, each with its
own forwarding table. In such a large network, failures
are frequent: links go down, switches reboot, and routers
may hold incorrect prefix entries. Whether routing en-
tries are written by a distributed routing protocol (such
as OSPF) or by a remote route server, the routing state is
so large and complex that errors are inevitable. We have
seen logs from a production data center reporting many
thousands of routing changes per day, creating substan-
tial opportunity for error.

Data centers withstand failures using the principles of
scale-out and redundant design. However, the under-
lying assumption is that the system reacts correctly to
failures. Dormant bugs in the routing system triggered

∗Hongyi Zeng and Vimalkumar Jeyakumar were interns at Google
when this work was done.

by rare boundary conditions are particularly difficult to
find. Common routing failures include routing loops and
black-holes (where traffic to one part of the network dis-
appears). Some errors only become visible when an oth-
erwise benign change is made. For example, when a
routing prefix is removed it can suddenly expose a mis-
take with a less specific prefix.

Routing errors should be caught quickly before too
much traffic is lost or security is breached. We therefore
need a fast and scalable approach to verify correctness of
the entire forwarding state. A number of tools have been
proposed for analyzing networks including HSA [10],
Anteater [13], NetPlumber [9] and Veriflow [11]. These
systems take a snapshot of forwarding tables, then ana-
lyze them for errors. We first tried to adopt these tools
for our purposes, but ran into two problems. First, they
assume the snapshot is consistent. In large networks with
frequent changes to routing state, the snapshot might be
inconsistent because the network state changes while the
snapshot is being taken. Second, none of the tools are
sufficiently fast to meet the performance requirements
of modern data center networks. For example, Anteater
[13] takes more than 5 minutes to check for loops in a
178-router topology.

Hence, we set out to create Libra, a fast, scalable tool
to quickly detect loops, black-holes, and other reach-
ability failures in networks with tens of thousands of
switches. Libra is much faster than any previous sys-
tem for verifying forwarding correctness in a large-scale
network. Our benchmark goal is to verify all forwarding
entries in a 10,000 switch network with millions of rules
in minutes.

We make two main contributions in Libra. First, Libra
capture stable and consistent snapshots across large net-
work deployments, using the event stream from routing
processes (Section 3). Second, in contrast to prior tools
that deal with arbitrarily structured forwarding tables, we
substantially improve scalability by assuming packet for-
warding based on longest prefix matching.

1

Forwarding Graph

Prefix A’s
subgraph

Prefix B’s
subgraphLOOP!

(1) Map (2) Reduce

OK

Prefix A
Prefix B
Process Boundary

Figure 1: Libra divides the network into multiple forwarding
graphs in mapping phase, and checks graph properties in re-
ducing phase.

192.168.0/24 192.168.1/24

S21:
192.168.0/24→S11
192.168.1/24→S12

S22:
192.168.0/24→S11
192.168.1/24→S12

S11:
192.168.1/24→S21, S22
192.168.0/24→DIRECT

S12:
192.168.0/24→S21, S22
192.168.1/24→DIRECT

Rules

Subnets

S21 S22

S11 S12

Figure 2: Small network example for describing the types of
forwarding error found by Libra.

Libra uses MapReduce for verification. It starts with
the full graph of switches, each with its own prefix table.
As depicted in Figure 1, Libra completes verification in
two phases. In the map phase, it breaks the graph into a
number of slices, one for each prefix. The slice consists
of only those forwarding rules used to route packets to
the destination. In the reduce phase, Libra indepedently
analyzes each slice, represented as a forwarding graph,
in parallel for routing failures.

We evaluate Libra on the forwarding tables from three
different networks. First, “DCN” is an emulated data
center network with 2 million rules and 10,000 switches.
Second, “DCN-G” is made from 100 replicas of DCN
connected together; i.e., 1 million switches. Third,
“INET” is a network with 300 IPv4 routers each con-
tains the full BGP table with half a million rules. The
results are encouraging. Libra takes one minute to check
for loops and black-holes in DCN, 15 minutes for DCN-
G and 1.5 minutes for INET.

2 Forwarding Errors
A small toy network can illustrate three common types

of error found in forwarding tables. In the two-level
tree network in Figure 2 two top-of-rack (ToR) switches
(S11, S12) are connected to two spine switches (S21,

S11

S21 S22

S12

(a) Normal

S11

S21 S22

S12

(b) Loops

S11

S21 S22

S12

(c) Blackhole

S11

S21 S22

S12

(d) Incorrect Snapshot

Figure 3: Forwarding graphs for 192.168.0/24 as in Figure 2,
and potential abnormalities.

S22). The downlinks from S11 and S12 connect to up
to 254 servers on the same /24 subnet. The figure shows
a “correct” set of forwarding tables. Note that our ex-
ample network uses multipath routing. Packets arriving
at S12 on the right and destined to subnet 192.168.0/24
on the left are load-balanced over switches S21 and S22.
Our toy network has 8 rules, and 2 subnets.

A forwarding graph is a directed graph that defines
the network behavior for each subnet. It contains a list
of (local switch, remote switch) pairs. For example, in
Figure 3(a), an arrow from S12 to S21 means the pack-
ets of subnet 192.168.0/24 can be forwarded from S12
to S21. Multipath routing can be represented by a node
that has more than one outgoing edge. Figure 3(b)-(d)
illustrates three types of forwarding error in our simple
network, depicted in forwarding graphs.

Loops: Figure 3(b) shows how an error in S11’s for-
warding tables causes a loop. Instead of forwarding
192.168.0/24 down to the servers, S11 forwards packets
up, i.e., to S21 and S22. S11’s forwarding table is now:

192.168.0/24 → S21, S22

192.168.1/24 → S21, S22

The network has two loops: S21-S11-S21 and S22-
S11-S22, and packets addressed to 192.168.0/24 will
never reach their destination.

Black-holes: Figure 3(c) shows what hap-
pens if S22 loses one of its forwarding entries:
192.168.0/24 → S11. In this case, if S12 spreads
packets destined to 192.168.0/24 over both S21 and S22,
packets arriving to S22 will be dropped.

Incorrect Snapshot: Figure 3(d) shows a subtle prob-
lem that can lead to false positives when verifying for-
warding tables. Suppose the link between S11-S22 goes
down. Two events take place (shown as dashed arrows

2

Figure 4: Routing related tickets by month and type.

in the figure): e1: S22 deletes 192.168.0/24 → S11,
and e2: S12 stops forwarding packets to S22. Because
of the asynchronous nature of routing updates, the two
events could take place in either order (e1,e2) or (e2,e1).
A snapshot may capture one event, but not the other, or
might detect them happening in the reverse order.

The sequence (e1,e2) creates a temporary blackhole
as in Figure 3(c), whereas the desired sequence (e2,e1)
does not. To avoid raising an unnecessary alarm (by
detecting (e1,e2) even though it did not happen), or
missing an error altogether (by incorrectly assuming that
(e2,e1) happened), Libra must detect the correct state of
the network.

2.1 Real-world Failure Examples
To understand how often forwarding errors take place,

we examined a log of “bug tickets” from 14 months of
operation in a large Google data center. Figure 4 cate-
gorizes 35 tickets for missing forwarding entries, 11 for
loops, and 11 for black-holes. On average, four issues
are reported per month.

Today, forwarding errors are tracked down by hand
which - given the size of the network and the number
of entries - often takes many hours. And because the
diagnosis is done after the error occurred, the sequence
of events causing the error has usually long-since disap-
peared before the diagnosis starts. This makes it hard to
reproduce the error.

Case 1: Detecting Loops. One type of loop is caused
by prefix aggregation. Prefixes are aggregated to com-
pact the forwarding tables: a cluster E can advertise a
single prefix to reach all of the servers connected “be-
low” it to the core C, which usually includes the ad-
dresses of servers that have not yet been deployed. How-
ever, packets destined to these non-deployed addresses
(e.g., due to machine maintenance) can get stuck in
loops. This is because C believes these packets are des-
tined to E, while E lacks the forwarding rules to digest

these packets due to the incomplete deployment, instead,
E’s default rules lead packets back to C.

This failure does not cause a service to fail (because
the service will use other servers instead), but it does de-
grade the network causing unnecessary congestion. In
the past, these errors were ignored because of the pro-
hibitive cost of performing a full cluster check. Libra can
finish checking in less a minute, and identify and report
the specific switch and prefix entry that are at risk.

Case 2: Discovering Black-holes. In one incident,
traffic was interrupted to hundreds of servers. Initial in-
vestigation showed that some prefixes had high packet
loss rate, but packets seemed to be discarded randomly.
It took several days to finally uncover the root cause: A
subset of routing information was lost during BGP up-
dates between domains, likely due to a bug in the routing
software, leading to black-holes.

Libra will detect missing forwarding entries quickly,
reducing the outage time. Libra’s stable snapshots also
allow it to disambiguate temporary states during updates
from long-term back-holes.

Case 3: Identifying Inconsistencies. Network con-
trol runs across several instances, which may fail from
time to time. When a secondary becomes the primary,
it results in a flurry of changes to the forwarding ta-
bles. The changes may temporarily or permanently con-
flict with the previous forwarding state, particularly if the
changeover itself fails before completing. The network
can be left in an inconsistent state, leading to packet loss,
black-holes and loops.

2.2 Lessons Learned

Simple things go wrong: Routing errors occur even
in networks using relatively simple IP forwarding. They
also occur due to firmware upgrades, controller failure
and software bugs. It is essential to check the forwarding
state independently, outside the control software.

Multiple moving parts: The network consists of mul-
tiple interacting subsystems. For example, in case 1
above, Intra-DC routing is handled locally, but routing
is a global property. This can create loops that are hard
to detect locally within a subsystem. There are also mul-
tiple network controllers. Inconsistent state makes it hard
for the control plane to detect failures on its own.

Scale matters: Large data center networks use mul-
tipath routing, which means there are many forwarding
paths to check. As the number of switches, N, grows the
number of paths and prefix tables grow, and the complex-
ity of checking all routes grows with N2. It is essential
for a static checker to scale linearly with the network.

3

3 Stable Snapshots
It is not easy to take an accurate snapshot of the for-

warding state of a large, constantly changing network.
But if Libra runs its static checks on a snapshot of
the state that never actually occurred, it will raise false
alarms and miss real errors. We therefore need to cap-
ture - and check - a snapshot of the global forwarding
state that actually existed at one instant in time. We call
these stable snapshots.1

When is the state stable? A large network is usually
controlled by multiple routing processes,2 each responsi-
ble for one or more switches. Each process sends times-
tamped updates, which we call routing events, to add,
modify and delete forwarding entries in the switches it
is responsible for. Libra monitors the stream of routing
events to learn the global network state.

Finding the stable state of a single switch is easy: each
table is only written by one routing process using a single
clock, and all events are processed in order. Hence, Libra
can reconstruct a stable state simply by replaying events
in timestamp order.

By contrast, it is not obvious how to take a globally
stable snapshot of the state when different routing pro-
cesses update their switches using different, unsynchro-
nized clocks. Because the clocks are different, and events
may be delayed in the network, simply replaying the
events in timestamp order can result in a state that did
not actually occur in practice, leading to false positives
or missed errors (Section 2).

However, even if we can not precisely synchronize
clocks, we can bound the difference between any pair
of clocks with high confidence using NTP [15]. And we
can bound how out-of-date an event packet is, by prior-
itizing event packets in the network. Thus, every times-
tamp t can be treated as lying in an interval (t−ε, t +ε),
where ε bounds the uncertainty of when the event took
place.3 The interval represents the notion that network
state changes atomically at some unknown time instant
within the interval.

Figure 5 shows an example of finding a stable snap-
shot instant. It is easy to see that if no routing events
are recorded during a 2ε period we can be confident that
no routing changes actually took place. Therefore, the
snapshot of the current state is stable (i.e., accurate).4

The order of any two past events from different pro-
cesses is irrelevant to the current state, since they are

1Note that a stable snapshot is not the same as a consistent snap-
shot [3], which is only one possible state of a distributed system that
might not actually have occurred in practice.

2Libra only considers processes that can directly modify tables.
While multiple high-level protocols can co-exist (e.g., OSPF and BGP),
there is usually one common low-level table manipulation API.

3The positive and negative uncertainties can be different, but here
we assume they are the same for simplicity.

4A formal proof can be found in [14, § 3.3].

Routing
Process 1

Routing
Process 2

Flow of time

Libra

x
x
x

x
x x x x

x
2 ε

Snapshot instant

Libra's
reconstruction
of the timeline

Time instant of
a routing event

Time instant when
Libra receives routing

event updates

Figure 5: Libra’s reconstruction of the timeline of routing
events, taking into account bounded timestamp uncertainty ε .
Libra waits for twice the uncertainty to ensure there are no out-
standing events, which is sufficient to deduce that routing has
stabilized.

100ms 1s 10s 100s 1000s
RIB updates inter-arrival time

90

95

99
100

Pe
rc

en
til

es

Figure 6: CDF of inter-arrival times of routing events from a
large production data center. Routing events are very bursty:
over 95% of events happen within 400ms of another event.

applied to different tables without interfering with each
other (recall that each table is controlled by only one pro-
cess). So Libra only needs to replay all events in times-
tamp order (to ensure events for the same table are played
in order) to accurately reconstruct the current state.

This observation suggests a simple way to create a sta-
ble snapshot by simply waiting for a quiet 2ε period with
no routing update events.
Feasibility: The scheme only works if there are frequent
windows of size 2ε in which no routing events take place.
Luckily, we found that these quiet periods happen fre-
quently: we analyzed a day of logs from all routing pro-
cesses in a large Google data center with a few thousand
switches. Figure 6 shows the CDF of the inter-arrival
times for the 28,445 routing events reported by the rout-
ing processes during the day. The first thing to notice is
the burstiness — over 95% of events occur within 400ms
of another event, which means there are long periods
when the state is stable. Table 1 shows the fraction of
time the network is stable, for different values of ε . As
expected, larger ε leads to fewer stable states and smaller
percentage of stable time. For example, when ε=100ms,
only 2,137 out of all 28,445 states are stable. However,

4

ε/ms # of stable states time in stable state/%
0 28,445 100.00
1 16,957 99.97

100 2,137 99.90
1,000 456 99.75

10,000 298 99.60

Table 1: As the uncertainty in routing event timestamps (ε) in-
creases, the number of stable states decreases. However, since
routing events are bursty, the state is stable most of the time.

because the event stream is so bursty, the unstable states
are extremely short-lived, occupying in total only 0.1%
(∼1.5min) of the entire day. Put another way, for 99.9%
of the time, snapshots are stable and the static analysis
result is trustworthy.
Taking stable snapshots: The stable snapshot instant
provides a reference point to reconstruct the global state.
Libra’s stable snapshot process works as follows:

1) Take an initial snapshot S0 as the combination of all
switches’ forwarding tables. At this stage, each table can
be recorded at a slightly different time.

2) Subscribe to timestamped event streams from all
routing processes, and apply each event ei, in the order
of their timestamps, to update the state from Si−1 to Si.

3) After applying e j, if no event is received for 2ε

time, declare the current snapshot S j stable. In other
words, S0 and all past events ei form a stable state that
actually existed at this time instant.

4 Divide and Conquer
After Libra has taken a stable snapshot of the forward-

ing state, it sets out to statically check its correctness.
Given our goal of checking networks with over 10,000
switches and millions of forwarding rules, we will need
to break down the task into smaller, parallel computa-
tions. There are two natural ways to consider partitioning
the problem:
Partition based on switches: Each server could hold
the forwarding state for a cluster of switches, partition-
ing the network into a number of clusters. We found
this approach does not scale well because checking a
forwarding rule means checking the rules in many (or
all) partitions - the computation is quickly bogged down
by communication between servers. Also, it is hard to
balance the computation among servers because some
switches have very different numbers of forwarding rules
(e.g. spine and leaf switches).
Partition based on subnets: Each server could hold the
forwarding state to reach a set of subnets. The server
computes the forwarding graph to reach each subnet,
then checks the graph for abnormalities. The difficulty
with this approach is that each server must hold the en-

S11:
192.168.1/24→S21, S22
192.168.0/24→DIRECT

S12:
192.168.0/24→S21, S22
192.168.1/24→DIRECT

S21:
192.168.0/24→S11
192.168.1/24→S12

S22:
192.168.0/24→S11
192.168.1/24→S12

Matching
/Slicing

192.168.0/24:
S11→DIRECT
S12→S21, S22
S21→S11
S22→S11

192.168.1/24:
S21→DIRECT
S11→S21, S22
S21→S12
S22→S12

Graph
Computing

S11

S21 S22

S12

192.168.0/24

S11

S21 S22

S12

192.168.1/24

Figure 7: Steps to check the routing correctness in Figure 2.

tire set of forwarding tables in memory, and any update
to the forwarding rules affects all servers.

Libra partitions the network based on subnets, for rea-
sons that will become clear. We observe that the route
checker’s task can be divided into two steps. First, Libra
associates forwarding rules with subnets, by finding the
set of forwarding rules relevant to a subnet (i.e., they are
associated if the subnet is included in the rule’s prefix).
Second, Libra builds a forwarding graph to reach each
subnet, by assembling all forwarding rules for the sub-
net. Both steps are embarrassingly parallel: matching is
done per (subnet, forwarding rule) pair; and each sub-
net’s forwarding graph can be analyzed independently.

Libra therefore proceeds in three steps using N
servers:

Step 1 - Matching: Each server is initialized with the
entire list of subnets, and each server is assigned 1/N
of all forwarding rules. The server considers each for-
warding rule in turn to see if it belongs to the forwarding
graph to a subnet (i.e. the forwarding rule is a prefix of
the subnet).5 If there is a match, the server outputs the
(subnet, rule) pair. Note that a rule may match more than
one subnet.

Step 2 - Slicing: The (subnet, rule) pairs are grouped
by subnet. We call each group a slice, because it contains
all the rules and switches related to this subnet.

Step 3 - Graph Computing: The slices are distributed
to N servers. Each server constructs a forwarding graph
based on the rules contained in the slice. Standard
graph algorithms are used to detect network abnormal-
ities, such as loops and black-holes.

Figure 7 shows the steps to check the network in Fig-
ure 2. After the slicing stage, the forwarding rules are or-
ganized into two slices, corresponding to the two subnets
192.168.0/24 and 192.168.1/24. The forwarding graph
for each slice is calculated and checked in parallel.

5Otherwise, a subnet will be fragmented by a more specific rule,
leading to a complex forwarding graph. See the last paragraph in Sec-
tion 9 for detailed discussion.

5

SDN
Controllers

Route
Dumper

Rules

DFS

M

M

M

R

R

R

R
Subnets

Rules Shard 1

Rules Shard 2

Rules Shard 3

Report for
Subnet 4

MapReduce

Figure 8: Libra workflow.

If a routing error occurs and the second rule in S11
becomes 192.168.0/24 → S21, S22, the loop will
show up in the forwarding graph for 192.168.0/24. S11
will point back to S21 and S22, which will be caught in
graph loop detection algorithm.

Our three-step process is easily mapped to MapRe-
duce, which we describe in the next section.

5 Libra

Libra consists of two main components: a route
dumper and a MapReduce-based route checker. Figure 8
shows Libra’s workflow.

The route dumper takes stable snapshots from
switches or controllers, and stores them in a distributed
file system. Next, the snapshot is processed by a
MapReduce-based checker.
A quick review of MapReduce: MapReduce [5] di-
vides computation into two phases: mapping and reduc-
ing. In the mapping phase, the input is partitioned into
small “shards”. Each of them is processed by a map-
per in parallel. The mapper reads in the shard line by
line and outputs a list of <key, value> pairs. After
the mapping phase, the MapReduce system shuffles out-
puts from different mappers by sorting by the key. After
shuffling, each reducer receives a <key, values> pair,
where values=[value1, value2, . . .] is a list of all
values corresponding to the key. The reducer processes
this list and outputs the final result. The MapReduce sys-
tem also handles checkpointing and failure recovery.

In Libra, the set of forwarding rules is partitioned into
small shards and delivered to mappers. Each mapper also
takes a full set of subnets to check, which by default con-
tains all subnets in the cluster, but alternatively can be
subsets selected by user. Mappers generate intermedi-
ate keys and values, which are shuffled by MapReduce.
The reducers compile the values that belong to the same
subnet and generate final reports.

10.0.0.0/8

10.2.1.1/3210.1.0.2/3210.1.0.1/32

10.1.0.0/30

Rule
10.1.0.0/16

Subnet

No Subnet

10.1.0.0/16
< 10.1.0.0/30
< 10.1.0.1/32

Figure 9: Find all matching subnets in the trie. 10.1.0.0/30
(X) is the smallest matching trie node bigger than the
rule 10.1.0.0/16 (A). Hence, its children with subnets
10.1.0.1/32 and 10.1.0.2/32 match the rule.

5.1 Mapper
Mappers are responsible for slicing networks by

subnet. Each mapper reads one forwarding rule at a
time. If a subnet matches the rule, the mapper out-
puts the subnet prefix as the intermediate key, along
with the value <rule mask len, local switch,

remote switches, priority>. The following
is an example (local switch, remote switches,
priority is omitted):

Subnets: 192.168.1.1/32

192.168.1.2/32

Rules: 192.168.1.0/28

192.168.0.0/16

Outputs: <192.168.1.1/32, 28>

<192.168.1.1/32, 16>

<192.168.1.2/32, 16>

Since each mapper only sees a portion of the forward-
ing rules, there may be a longer and more specific—but
unseen—matching prefix for the subnet in the same for-
warding table. We defer finding the longest matching to
the reducers, which see all matching rules.

Mappers are first initialized with a full list of subnets,
which are stored in an in-memory binary trie for fast pre-
fix matching. After initialization, each mapper takes a
shard of the routing table, and matches the rules against
the subnet trie. This process is different from the con-
ventional longest prefix matching: First, in conventional
packet matching, rules are placed in a trie and packets
are matched one by one. In Libra, we build the trie with
subnets. Second, the goal is different. In conventional
packet matching, one looks for the longest matching rule.
Here, mappers simply output all matching subnets in the
trie. Here, matching has the same meaning—the subnet’s
prefix must fully fall within the rule’s prefix.

We use a trie to efficiently find “all matching prefixes,”
by searching for the smallest matching trie node (called
node X) that is bigger or equal to the rule prefix (called

6

node A). Here, “small” and “big” refer to the lexico-
graphical order (not address space size), where for each
bit in an IP address, wildcard < 0< 1. X may or may not
contain a subnet. If X exists, we enumerate all its non-
empty decedents (including X itself). Otherwise, we de-
clare that there exist no matching subnets in the trie. Fig-
ure 9 shows an example. 10.1.0.0/30 (X) is the small-
est matching trie node bigger than the rule 10.1.0.0/16
(A). Hence, its children with subnets 10.1.0.1/32 and
10.1.0.2/32 match the rule.
Proof: We briefly prove why this algorithm is correct.
In an uncompressed trie, each bit in the IP address is
represented by one level, and so the algorithm is correct
by definition: if there exist matching subnets in the trie,
A must exist in the trie and its descendants contain all
matching prefixes, which means A = X .

In a compressed trie, nearby nodes may be combined.
A may or may not exist in the trie. If it exists, the prob-
lem reduces to the uncompressed trie scenario. If A does
not exist in the trie, X (if it exists) contains all matching
subnets in its descendants. This is because:

a) Any node Y smaller than X does not match A. Be-
cause there is no node bigger than A and smaller than X
(otherwise X is not the smallest matching node), Y < X
also means Y < A. As a result, Y cannot fall within A’s
range. This is because for Y to fall within A, all A’s non-
wildcard bits should appear in Y , which implies Y ≥ A.

b) Any node Y bigger than the biggest descendants of
X does not match A. Otherwise, X and Y must have a
common ancestor Z, where Z matches A because both X
and Y match A, and Z < X because Z is the ancestor of
X (a node is always smaller than its descendants). This
contradicts the assumption that X is smallest matching
node of A.
Time complexity: We can break down the time con-
sumed by the mapping phase into two parts. The time to
construct the subnet trie is O(T), where T is the number
of subnets, because inserting an IP prefix into a trie takes
constant time (≤ length of IP address). If we consider a
single thread, it takes O(R) time to match R rules against
the trie. So the total time complexity is O(R+T). If N
mappers share the same trie, we can reduce the time to
O(R+ T

N). Here, we assume R� T . If T � R, one may
want to construct a trie with rules rather than subnets (as
in conventional longest-prefix-matching).

5.2 Reducer
The outputs from the mapping phase are shuffled

by intermediate keys, which are the subnets. When
shuffling finishes, a reducer will receive a subnet,
along with an unordered set of values, each containing
rule mask len, local switch, remote switches,
and priority. The reducer first selects the high-
est priority rule per local switch: For the same

local switch, the rule with higher priority is se-
lected; if two rules have the same priority, the one with
larger mask len is chosen. The reducer then constructs a
directed forwarding graph using the selected rules. Once
the graph is constructed, the reducer uses graph library to
verify the properties of the graph, for example, to check
if the graph is loop-free.
Time complexity: In most networks we have seen, a
subnet matches at most 2-4 rules in the routing table.
Hence, selecting the highest priority rule and construct-
ing the graph takes O(E) time, where E is the number
of physical links in the network. However, the total run-
time depends on the verification task, as we will discuss
in Section 6.

5.3 Incremental Updates
Until now, we have assumed Libra checks the forward-

ing correctness from scratch each time it runs. Libra also
supports incremental updates of subnets and forwarding
rules, allowing it to be used as an independent “correct-
ness checking service” similar to NetPlumber [9] and
Veriflow [11]. In this way, Libra could be used to check
forwarding rules quickly, before they are added to the
forwarding tables in the switches. Here, a in-memory,
“streaming” MapReduce runtime (such as [4]) is needed
to speed up the event processing.
Subnet updates. Each time we add a subnet for verifi-
cation, we need to rerun the whole MapReduce pipeline.
The mappers takes O(R

N) time to find the relevant rules.
And a single reducer takes O(E) time to construct the di-
rected graph slice for the new subnet. If one has several
subnets to add, it is faster to run them in a batch, which
takes O(T + R

N) instead of O(RT
N) to map.

Removing subnets is trivial. All results related to the
subnets are simply discarded.
Forwarding rule updates. Figure 10 shows the work-
flow to add new forwarding rules. To support incremen-
tal updates of rules, reducers need to store the forward-
ing graph for each slice it is responsible for. The reducer
could keep the graph in memory or disk—the trade-off is
a larger memory footprint.6 If the graphs are in disk, a
fixed number of idle reducer processes live in the mem-
ory and fetch graphs upon request. Similarly, the map-
pers need to keep the subnet trie.

To add a rule, a mapper is spawned just as it sees an-
other line of input (Step 1). Matching subnets from the
trie are shuffled to multiple reducers (Step 2). Each re-
ducer reads the previous slice graph (Step 3), and recal-
culates it with the new rule (Step 4).

Deleting a rule is similar. The mapper tags the rule as
“to be deleted” and pass it to reducers for updating the

6At any time instance, only a small fraction of graphs will be up-
dated, and so keeping all states in-memory can be quite inefficient.

7

Request(s) M

Subnets

(1)

R

R

R

(2)
(3)

(4)

Figure 10: Incremental rule updates in Libra. Mappers dis-
patch matching <subnet, rule> pair to reducers, indexed by
subnet. Reducers update the forwarding graph and recompute
graph properties.

slice graph. However, in the graph’s adjacency list, the
reducer not only needs to store the highest priority rule,
but also all matching rules. This is because if a highest
priority rule is deleted, the reducer must use the second
highest priority rule to update the graph.

Besides updating graphs, in certain cases, graph prop-
erties can also be checked incrementally, since the update
only affects a small part of graph. For example, in loop-
detection, adding an edge only requires a Depth-First-
Search (DFS) starting from the new edge’s destination
node, which normally will not traverse the entire graph.

Unlike NetPlumber and Veriflow, Libra does not need
to explicitly remember the dependency between rules.
This is because the dependency is already encoded in the
matching and shuffling phases.

5.4 Route Dumper
The route dumper records each rule using five fields:

<switch, ip, mask len, nexthops, priority>.
switch is the unique ID of the switch; ip and mask len

is the prefix. nexthops is a list of port names because
of multipath. priority is an integer field serving as a
tie-breaker in longest prefix matching. By storing the
egress ports in nexthops, Libra encodes the topology
information in the forwarding table.

Although the forwarding table format is mostly
straightforward, two cases need special handling:
Ingress port dependent rules. Some forwarding rules
depend on particular ingress ports. For example, a rule
may only be in effect for packets entering the switch from
port xe1/1. In reducers we want to construct a simple di-
rected graph that can be represented by an adjacency list.
Passing this ingress port dependency to the route checker
will complicate the reducer design, since the next hop in
the graph depends not only on the current hop, but also
the previous hop.

We use the notion of logical switches to solve this
problem. First, if a switch has rules that depend on the
ingress port, we split the switch into multiple logical

VRF_OVERRIDE

VRF_DEFAULT VRF_1 VRF_2

Inter-VRF
Rules

VRF_FALLBACK

Figure 11: Virtual Routing and Forwarding (VRFs) are mul-
tiple tables within the same physical switch. The tables have
dependency (inter-VRF rules) between them.

switches. Each logical switch is given a new name and
contains the rules depending on one ingress port, so that
the port is “owned” by the new logical switch. We copy
rules from the original switch to the logical switch. Sec-
ond, we update the rules in upstream switches to forward
to the logical switch.
Multiple tables. Modern switches can have multi-
ple forwarding tables that are chained together by ar-
bitrary matching rules, usually called “Virtual Routing
and Forwarding” (VRF). Figure 11 depicts an exam-
ple VRF set up: incoming packets are matched against
VRF OVERRIDE. If no rule is matched, they enter
VRF 1 to VRF 16 according to some “triggering” rules.
If all matching fails, the packet enters VRF DEFAULT.

The route dumper maps multiple tables in a physical
switch into multiple logical switches, each containing
one forwarding table. Each logical switch connects to
other logical switches directly. The rules chaining these
VRFs are added as lowest priority rules in the logical
switch’s table. Hence, if no rule is matched, the packet
will continue to the next logical switch in the chain.

6 Use cases
In Libra, the directed graph constructed by the reducer

contains all data plane information for a particular sub-
net. In this graph, each vertex corresponds to a forward-
ing table the subnet matched, and each edge represents
a possible link the packet can traverse. This graph also
encodes multipath information. Therefore, routing cor-
rectness directly corresponds to graph properties.
Reachability: A reachability check ensures the subnet
can be reached from any switch in the network. This
property can be verified by doing a (reverse) DFS from
the subnet switch, and checking if the resulting vertex
set contains all switches in the network. The verification
takes O(V +E) time where V is the number of switches
and E the number of links.
Loop detection: A loop in the graph is equivalent to at
least one strongly connected component in the directed
graph. Two vertices s1 and s2 belong to a strongly con-
nected component, if there is a path from s1 to s2 and
a path from s2 to s1. We find strongly connected com-
ponents using Tarjan’s Algorithm [21] whose time com-

8

plexity is O(V +E).
Black-holes: A switch is a black-hole for a subnet if the
switch does not have a matching route entry for the sub-
net. Some black-holes are legitimate: if the switch is the
last hop for the subnet, or there is an explicit drop rule.
Implicit drop rules need to be checked if that is by de-
sign. Black-holes map to vertices with zero out-degree,
which can therefore be enumerated in O(V) time.
Waypoint routing: Network operators may require traf-
fic destined to certain subnets to go through a “way-
point,” such as a firewall or a middlebox. Such behavior
can be verified in the forwarding graph by checking if the
waypoint exists on all the forwarding paths. Specifically,
one can remove the waypoint and the associated links,
and verify that no edge switches appear any more in a
DFS originated from the subnet’s first hop switch, with
the runtime complexity of O(V +E).

7 Implementation
We have implemented Libra for checking the correct-

ness of Software-Defined Network (SDN) clusters. Each
cluster is divided into several domains where each do-
main is controlled by a controller. Controllers exchange
routing information and build the routing tables for each
switch.

Our Libra prototype has two software components.
The route dumper, implemented in Python, connects to
each controller and downloads routing events, forward-
ing tables and VRF configurations in Protocol Buffers
[17] format in parallel. It also consults the topology
database to identify the peer of each switch link. Once
the routing information is downloaded, we preprocess
the data as described in Section 5.4 and store it in a dis-
tributed file system.

The route checker is implemented in C++ as a MapRe-
duce application in about 500 lines of code. We use a
Trie library for storing subnets, and use Boost Graph Li-
brary [1] for all graph computation. The same binary can
run at different levels of parallelism—on a single ma-
chine with multiple processes, or on a cluster with mul-
tiple machines, simply by changing command line flags.

Although Libra’s design supports incremental up-
dates, our current prototype only does batch processing.
We use micro-benchmarks to evaluate the specific costs
for incremental processing in Section 8.5, on a simplified
prototype with one mapper and one reducer.

8 Evaluation
To evaluate Libra’s performance, we first measure

start-to-finish runtime on a single machine with multi-
threading, as well as on multiple machines in a cluster.
We also demonstrate Libra’s linear scalability as well as
its incremental update capability.

Data set Switches Rules Subnets
DCN 11,260 2,657,422 11,136

DCN-G 1,126,001 265,742,626 1,113,600
INET 316 151,649,486 482,966

Table 2: Data sets used for evaluating Libra.

8.1 Data Sets
We use three data sets to evaluate the performance of

Libra. The detailed statistics are shown in Table 2.
DCN: DCN is an SDN testbed used to evaluate the scal-
ability of the controller software. Switches are emulated
by OpenFlow agents running on commodity machines
and connected together through a virtual network fabric.
The network is partitioned among controllers, which ex-
change routing information to compute the forwarding
state for switches in their partition. DCN contains about
10 thousand switches and 2.6 million IPv4 forwarding
rules. VRF is used throughout the network.
DCN-G: To stress test Libra, we replicate DCN 100
times by shifting the address space in DCN such that
each DCN-part has a unique IP address space. A sin-
gle top-level switch interconnects all the DCN pieces to-
gether. DCN-G has 1 million switches and 265 million
forwarding rules.
INET: INET is a synthetic wide area backbone network.
First, we use the Sprint network topology discovered
by RocketFuel project [20], which contains roughly 300
routers. Then, we create an interface for each prefix
found in a full BGP table from Route Views [18] (∼500k
entries as of July 2013), and spread them randomly and
uniformly to each router as “local prefixes.” Finally, we
compute forwarding tables using shortest path routing.

8.2 Single Machine Performance
We start our evaluation of Libra by running loop de-

tection locally on a desktop with Intel 6-core CPU and
32GB memory. Table 3 summarizes the results. We
have learned several aspects of Libra from single ma-
chine evaluation:
I/O bottlenecks: Standard MapReduce is disk-based:
Inputs are piped into the system from disks, which can
create I/O bottlenecks. For example, on INET, reading
from disk take 15 times longer than graph computation.
On DCN, the I/O time is much shorter due to the smaller
number of forwarding rules. In fact, in both cases, the
I/O is the bottleneck and the CPU is not fully utilized.
The runtime remains the same with or without mapping.
Hence, the mapping phase is omitted in Table 3.
Memory consumption: In standard MapReduce, inter-
mediate results are flushed to disk after the mapping
phase before shuffling, which is very slow on a single
machine. We avoid this by keeping all intermediate states

9

Threads 1 2 4 6 8
Read/s 13.7
Shuffle/s 7.4
Reduce/s 46.3 25.8 15.6 12.1 11.1
Speedup 1.00 1.79 2.96 3.82 4.17

a) DCN with 2000 subnets
Threads 1 2 4 6 8
Read/s 170
Shuffle/s 3.8
Reduce/s 11.3 5.9 3.2 2.7 2.1
Speedup 1.00 1.91 3.53 4.18 5.38

b) INET with 10,000 subnets

Table 3: Runtime of loop detection on DCN and INET data sets
on single machine. The number of subnets is reduced compared
to Table 2 so that all intermediate states can fit in the memory.
Read and shuffle phases are single-threaded due to the frame-
work limitation.

Figure 12: Example progress percentage (in Bytes) of Libra on
DCN. The three curves represent (from left to right) Mapping,
Shuffling, and Reducing phases, which are partially overlap-
ping. The whole process ends in 57 seconds.

in-memory. However, it limits the number of subnets
that can be verified at a time—intermediate results are
all matching (subnet, rule) pairs. On a single machine,
we have to limit the number of subnets to 2000 in DCN
and 10,000 in INET to avoid running out of memory.

Graph size dominates reducing phase: The reducing
phase on DCN is significantly slower than on INET, de-
spite INET having 75 times more forwarding rules. With
a single thread, Libra can only process 43.2 subnets per
second on DCN, compared with 885.0 subnets per sec-
ond on INET (20.5 times faster). Note that DCN has 35.6
times more nodes. This explains the faster running time
on INET, since the time to detect loops grows linearly
with the number of edges and nodes in the graph.

Multi-thread: Libra is multi-threaded, but the multi-
thread speedup is not linear. For example, on DCN, using
8 threads only resulted in a 4.17 speedup. This effect is
likely due to inefficiencies in the threading implementa-
tion in the underlying MapReduce framework, although
theoretically, all reducer threads should run in parallel
without state sharing.

DCN DCN-G INET
Machines 50 20,000 50

Map Input/Byte 844M 52.41G 12.04G
Shuffle Input/Byte 1.61G 16.95T 5.72G
Reduce Input/Byte 15.65G 132T 15.71G

Map Time/s 31 258 76.8
Shuffle Time/s 32 768 76.2
Reduce Time/s 25 672 16
Total Time/s 57 906 93

Table 4: Running time summary of the three data sets. Shuffle
input is compressed, while map and reduce inputs are uncom-
pressed. DCN-G results are extrapolated from processing 1%
of subnets with 200 machines as a single job.

8.3 Cluster
We use Libra to check for loops against our three data

sets on a computing cluster. Table 4 summarizes the re-
sults. Libra spends 57 seconds on DCN, 15 minutes on
DCN-G, and 93 seconds on INET. To avoid overloading
the cluster, the DCN-G result is extrapolated from the
runtime of 1% of DCN-G subnets with 200 machines.
We assume 100 such jobs running in parallel—each job
processes 1% of subnets against all rules. All the jobs
are independent of each other.

We make the following observations from our cluster-
based evaluation.
Runtime in different phases: In all data sets, the sum
of the runtime in the phases is larger than the start-to-
end runtime. This is because the phases can overlap each
other. There is no dependency between different map-
ping shards. A shard that finishes the mapping phase
can enter the shuffling phase without waiting for other
shards. However, there is a global barrier between map-
ping and reducing phases since MapReduce requires a
reducer to receive all intermediate values before start-
ing. Hence, the sum of runtime of mapping and reducing
phases roughly equals the total runtime. Table 4 shows
the overlapping progress (in bytes) of all three phases in
an analysis of DCN.
Shared-cluster overhead: These numbers are a lower
bound of what Libra can achieve for two reasons: First,
the cluster is shared with other processes and lacks per-
formance isolation. In all experiments, Libra uses 8
threads. However, the CPU utilization is between 100%
and 350% on 12-core machines, whereas it can achieve
800% on a dedicated machine. Second, the machines
start processing at different times—each machine may
need different times for initialization. Hence, all the ma-
chines are not running at full-speed from the start.
Parallelism amortizes I/O overhead: Through detailed
counters, we found that unlike in the single machine case
(where I/O is the bottleneck), the mapping and reducing

10

Figure 13: Libra runtime increases linearly with network size.

time dominates the total runtime. We have seen 75%–
80% of time spent on mapping/reducing. This is because
the aggregated I/O bandwidth of all machines in a cluster
is much higher than a single machine. The I/O is faster
than the computation throughput, which means threads
will not starve.

8.4 Linear scalability
Figure 13 shows how Libra scales with the size of

the network. We change the number of devices in the
DCN network, effectively changing both the size of the
forwarding graph and the number of rules. We do not
change the number of subnets. Our experiments run the
loop detection on 50 machines, as in the previous section.
The figure shows that the Libra runtime scales linearly
with the number of rules. The reduce phase grows more
erratically than the mapping time, because it is affected
by both nodes and edges in the network, while mapping
only depends on the number of rules.

Libra’s runtime is not necessarily inversely propor-
tional to the number of machines used. The linear scal-
ability only applies when mapping and reducing time
dominate. In fact, we observe that more machines can
take longer to finish a job, because the overhead of the
MapReduce system can slow down Libra. For example,
if we have more mapping/reducing shards, we need to
spend an additional overhead on disk shuffling. We omit
the detailed discussion as it depends on the specifics of
the underlying MapReduce framework.

8.5 Incremental Updates
Libra can update forwarding graphs incrementally as

we add and delete rules in the network, as shown in Sec-
tion 5.3. To understand its performance, we can break-
down Libra’s incremental computation into two steps:
(1) time spent in prefix matching (map phase) to find
which subnets are affected, and (2) time to do an incre-
mental DFS starting from the node whose routing entries
have changed (reduce phase). We also report the total

Map (µs) Reduce (ms) Memory (MB)
DCN 0.133 0.62 12

DCN-G 0.156 1.76 412
INET 0.158 <0.01 7

Table 5: Breakdown of runtime for incremental loop checks.
The unit for map phase is microsecond and the unit for reduce
phase is millisecond.

heap memory allocated.
We measured the time for each of the components as

follows: (1) for prefix matching, we randomly select
rules and find out all matching subnets using the algo-
rithm described in Section 5.1, and (2) for incremental
DFS, we started a new DFS from randomly chosen nodes
in the graph. Both results are averaged across 1000 tests.
The results are shown in Table 5.

First, we verified that no matter how large the sub-
net trie is, prefix matching takes almost constant time:
DCN-G’s subnet trie is 100 times larger than DCN-G’s
but takes almost the same time. Second, the results also
show that the runtime for incremental DFS is likely to be
dominated by I/O rather than compute, because the size
of the forwarding graph does not exceed the size of the
physical network. Even the largest dataset, DCN-G, has
only about a million nodes and 10 million edges, which
fits into 412MBytes of memory. This millisecond run-
time is comparable to results reported in [9] and [11],
but now on much bigger networks.

9 Limitations of Libra
Libra is designed for static headers: Libra is faster and
more scalable than existing tools because it solves a nar-
rower problem; it assumes packets are only forwarded
based on IP prefixes, and that headers are not modified
along the way. Unlike, say HSA, Libra cannot process a
graph that forwards on an arbitrary mix of headers, since
it is not obvious how to carry matching information from
mappers to reducers, or how to partition the problem.

As with other static checkers, Libra cannot handle
non-deterministic network behavior or dynamic forward-
ing state (e.g., NAT). It requires a complete, static snap-
shot of forwarding state to verify correctness. Moreover,
Libra cannot tell why a forwarding state is incorrect or
how it will evolve as it does not interpret control logic.
Libra is designed to slice the network by IP subnet:
If headers are transformed in a deterministic way (e.g.,
static NAT and IP tunnels), Libra can be extended by
combining results from multiple forwarding graphs at
the end. For example, 192.168.0/24 in the Intra-DC net-
work may be translated to 10.0.0/24 in the Inter-DC net-
work. Libra can construct forwarding graphs for both
192.168.0/24 and 10.0.0/24. When analyzing the two

11

subgraphs we can add an edge to connect them.
Forwarding graph too big for a single server: Libra
scales linearly with both subnets and rules. However, a
single reducer still computes the entire forwarding graph,
which might still be too large for a single server. Since
the reduce speed depends on the size of the graph, we
could use distributed graph libraries [16] in the reduce
phase to accelerate Libra.
Subnets must be contained by a forwarding rule: In
order to break the network into one forwarding graph per
subnet, Libra examines all the forwarding rules to decide
which rules contain the subnet. This is a practical as-
sumption because, in most networks, the rule is a prefix
that aggregates many subnets. However, if the rule has
a longer, more specific prefix (e.g., it is for routing to a
specific end-host or router console) than the subnet’s, the
forwarding graph would be complicated since the rule,
represented as an edge in the graph, does not apply to all
addresses of the subnet. In this case, one can use Veri-
flow [11]’s notion of equivalence classes to acquire sub-
nets directly from the rules themselves. This technique
may serve as an alternative way to find all matching (sub-
net, rule) pairs. We leave this for future work.

10 Related Work
Static data plane checkers: Xie et. al introduced al-
gorithms to analyze reachability in IP networks [22].
Anteater [13] makes them practical by converting the
checking problem into a Boolean satisfiability prob-
lem and solving it with SAT solvers. Header space
analysis [10] tackles general protocol-independent static
checking using a geometric model and functional simu-
lation. Recently, NetPlumber [9] and Veriflow [11] show
that, for small networks (compared to the ones we con-
sider here) static checking can be done in milliseconds
by tracking the dependency between rules. Specifically,
Veriflow slices the network into equivalence classes and
builds a forwarding graph for each class, in a similar
fashion to Libra.

However, with the exception of NetPlumber, all of
these tools and algorithms assume centralized comput-
ing. NetPlumber introduces a “rule clustering” tech-
nique for scalabilty, observing that rule dependencies can
be separated into several relatively independent clusters.
Each cluster is assigned to a process so that rule updates
can be handled individually. However, the benefits of
parallelism diminish when the number of workers ex-
ceeds the number of natural clusters in the ruleset. In
contrast, Libra scales linearly with both rules and sub-
nets. Specifically, even two rules have dependency, Libra
can still place them into different map shards, and allow
reducers to resolve the conflicts.
Other network troubleshooting techniques: Existing
network troubleshooting tools focus on a variety of net-

work components. Specifically, the explicitly layered de-
sign of SDN facilitates systematic troubleshooting [8].
Efforts in formal language foundations [6] and model-
checking control programs [2] reduce the probability of
buggy control planes. This effort has been recently ex-
tended to the embedded software on switches [12]. How-
ever, based on our experience, multiple simultaneous
writers in a dynamic environment make developing a
bug-free control plane extremely difficult.

Active testing tools [23] reveal the inconsistency be-
tween the forwarding table and the actual forwarding
state by sending out specially designed probes. They can
discover runtime properties such as congestion, packet
loss, or faulty hardware, which cannot be detected by
static checking tools. Libra is orthogonal to these tools
since we focus on forwarding table correctness.

Researchers have proposed systems to extract abnor-
malities from event histories. STS [19] extracts “minimal
causal sequences” from control plane event history to ex-
plain a particular crash or other abnormalities. NDB [7]
compiles packet histories and reasons about data plane
correctness. These methods avoid taking a stable snap-
shot from the network.

11 Conclusion
Today’s networks require way too much human in-

tervention to keep them working. As networks get
larger and larger there is huge interest in automating the
control, error-reporting, troubleshooting and debugging.
Until now, there has been no way to automatically ver-
ify all the forwarding behavior in a network with tens of
thousands of switches. Libra is fast because it focuses on
checking the IP-only fabric commonly used in data cen-
ters. Libra is scalable because it can be implemented us-
ing MapReduce allowing it to harness large numbers of
servers. In our experiments, Libra can meet the bench-
mark goal we set out to achieve: it can verify the cor-
rectness of a 10,000-node network in 1 minute using 50
servers. In future, we expect tools like Libra to check the
correctness of even larger networks in real-time.

Modern large networks have gone far beyond what
human operators can debug with their wisdom and in-
tuition. Our experience shows that it also goes beyond
what single machine can comfortably handle. We hope
that Libra is just the beginning of bringing distributed
computing into the network verification world.

References
[1] Boost Graph Library. http://www.boost.org/libs/

graph.

[2] M. Canini, D. Venzano, P. Peresini, D. Kostic, and J. Rex-
ford. A NICE Way to Test OpenFlow Applications. NSDI,
2012.

12

http://www.boost.org/libs/graph
http://www.boost.org/libs/graph

[3] K. M. Chandy and L. Lamport. Distributed snapshots:
determining global states of distributed systems. ACM
ToCS, 1985.

[4] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein,
K. Elmeleegy, and R. Sears. MapReduce Online. NSDI,
2010.

[5] J. Dean and S. Ghemawat. MapReduce: Simplified Data
Processing on Large Clusters. OSDI, 2004.

[6] N. Foster, A. Guha, M. Reitblatt, A. Story, M. Freed-
man, N. Katta, C. Monsanto, J. Reich, J. Rexford,
C. Schlesinger, D. Walker, and R. Harrison. Languages
for Software-Defined Networks. IEEE Communications
Magazine, 2013.

[7] N. Handigol, B. Heller, V. Jeyakumar, D. Mazières, and
N. McKeown. Where is the Debugger for my Software-
Defined Network? HotSDN, 2012.

[8] B. Heller, C. Scott, N. McKeown, S. Shenker, A. Wund-
sam, H. Zeng, S. Whitlock, V. Jeyakumar, N. Handigol,
J. McCauley, K. Zarifis, and P. Kazemian. Leveraging
SDN layering to systematically troubleshoot networks.
HotSDN, 2013.

[9] P. Kazemian, M. Chang, H. Zeng, G. Varghese, N. McKe-
own, and S. Whyte. Real Time Network Policy Checking
using Header Space Analysis. NSDI, 2013.

[10] P. Kazemian, G. Varghese, and N. McKeown. Header
Space Analysis: Static Checking for Networks. NSDI,
2012.

[11] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. God-
frey. VeriFlow: Verifying Network-Wide Invariants in
Real Time. NSDI, 2013.

[12] M. Kuzniar, P. Peresini, M. Canini, D. Venzano, and
D. Kostic. A SOFT Way for OpenFlow Switch Interoper-
ability Testing. CoNEXT, 2012.

[13] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B. God-
frey, and S. T. King. Debugging the data plane with
anteater. SIGCOMM, 2011.

[14] K. Marzullo and G. Neiger. Detection of global state
predicates. Springer, 1992.

[15] D. L. Mills. Internet time synchronization: the network
time protocol. IEEE Transactions on Communications,
1991.

[16] The Parallel Boost Graph Library. http://osl.iu.

edu/research/pbgl/.

[17] Protocol Buffers. https://code.google.com/p/

protobuf/.

[18] Route Views. http://www.routeviews.org/.

[19] C. Scott, A. Wundsam, S. Whitlock, A. Or, E. Huang,
K. Zarifis, and S. Shenker. How Did We Get Into This
Mess? Isolating Fault-Inducing Inputs to SDN Control
Software. Technical Report UCB/EECS-2013-8, 2013.

[20] N. Spring, R. Mahajan, D. Wetherall, and T. Anderson.
Measuring ISP topologies with rocketfuel. IEEE/ACM
TON, 2004.

[21] R. Tarjan. Depth-first search and linear graph algorithms.
12th Annual Symposium on Switching and Automata The-
ory, 1971.

[22] G. Xie, J. Zhan, D. Maltz, H. Zhang, A. Greenberg,
G. Hjalmtysson, and J. Rexford. On static reachability
analysis of IP networks. INFOCOM, 2005.

[23] H. Zeng, P. Kazemian, G. Varghese, and N. McKeown.
Automatic Test Packet Generation. CoNEXT, 2012.

13

http://osl.iu.edu/research/pbgl/
http://osl.iu.edu/research/pbgl/
https://code.google.com/p/protobuf/
https://code.google.com/p/protobuf/
http://www.routeviews.org/

	Introduction
	Forwarding Errors
	Real-world Failure Examples
	Lessons Learned

	Stable Snapshots
	Divide and Conquer
	Libra
	Mapper
	Reducer
	Incremental Updates
	Route Dumper

	Use cases
	Implementation
	Evaluation
	Data Sets
	Single Machine Performance
	Cluster
	Linear scalability
	Incremental Updates

	Limitations of Libra
	Related Work
	Conclusion

