
Attacking and Repairing the WinZip Encryption Scheme

Tadayoshi Kohno
Department of Computer Science and Engineering

University of California at San Diego
9500 Gilman Drive, MC-0114

La Jolla, California 92093, USA

tkohno@cs.ucsd.edu

ABSTRACT
WinZip is a popular compression utility for Microsoft Win-
dows computers, the latest version of which is advertised
as having “easy-to-use AES encryption to protect your sen-
sitive data.” We exhibit several attacks against WinZip’s
new encryption method, dubbed “AE-2” or “Advanced En-
cryption, version two.” We then discuss secure alterna-
tives. Since at a high level the underlying WinZip encryp-
tion method appears secure (the core is exactly Encrypt-
then-Authenticate using AES-CTR and HMAC-SHA1), and
since one of our attacks was made possible because of the
way that WinZip Computing, Inc. decided to fix a different
security problem with its previous encryption method AE-
1, our attacks further underscore the subtlety of designing
cryptographically secure software.

Categories and Subject Descriptors
D.4 [Operating Systems]: Security and Protection; E.3
[Data Encryption]: Code Breaking; H.3 [Information

Storage and Retrieval]: General.

General Terms
Security.

Keywords
WinZip, Zip, compression, encryption, applied cryptogra-
phy, attacks, security fixes.

1. INTRODUCTION
WinZip [26] is a popular compression utility for Microsoft

Windows computers, the latest version of which is advertised
as having “easy-to-use AES encryption to protect your sen-
sitive data” [26]. Because of WinZip’s already established
large user base, and because of its advertised encryption fea-
ture, we anticipate that many current and future users will
choose to exercise this encryption option in an attempt to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’04, October 25-29, 2004, Washington, DC, USA.
Copyright 2004 ACM 1-58113-961-6/04/0010 ...$5.00.

cryptographically protect their personal data. Additionally,
because of WinZip’s Microsoft Outlook email plugin [25] and
given other comments on WinZip’s websites [26, 27], we fully
anticipate that many users will also choose to use WinZip’s
encryption feature in an attempt to cryptographically pro-
tect the contents of their email attachments and other shared
data.

Unfortunately, WinZip’s latest encryption scheme, called
“Advanced Encryption-2” or AE-2 [24] and shipped with
WinZip 9.0, is insecure in a number of natural scenarios. We
exhibit several attacks in this paper and then propose ways
of fixing the protocol. We believe that our proposed fixes to
the Zip file format are relatively non-intrusive and that they
will require only a moderate amount of reimplementation on
the part of WinZip Computing, Inc. and the vendors of other
WinZip-compatible applications.

WinZip. We shall write “WinZip” when we mean “WinZip
9.0” or any other recent version of WinZip or a WinZip-
compatible tool that uses the AE-2 encryption scheme [24].1

A WinZip archive can contain multiple files, and when that
is the case, each file is compressed and encrypted indepen-
dently. For each file to archive, if the length of the file is
above some threshold, WinZip first compresses the file using
some standard compression method such as DEFLATE [8].
WinZip then invokes the AE-2 encryption method on the
output of the previous stage. Specifically, it derives AES [7]
and HMAC-SHA1 [17] keys from the user’s passphrase and
then encrypts the output of the compression stage with AES
in counter (CTR) mode (AES-CTR) and authenticates the
resulting ciphertext with HMAC-SHA1. The underlying
AES-CTR-then-HMAC-SHA1 core is a provably secure au-
thenticated encryption scheme per results by Bellare and
Namprempre [1] and Krawczyk [17] and standard assump-
tions on AES-CTR and HMAC-SHA1. In other words, at a
high-level, the new WinZip encryption architecture appears
quite solid.

A collection of issues. All our attacks exercise differ-
ent problems with the way that WinZip attempts to protect
users’ files. Furthermore, our attacks work in a variety of dif-
ferent settings, require a variety of different resources, and
accomplish a variety of different goals, which means that
different adversaries may prefer different attacks. Since no

1According to the documentation packaged with WinZip
9.0, “Because the technical specification for WinZip’s AES
format extension is available on the WinZip web site, we
anticipate that other Zip file utilities will add support for
this format extension.”

single “best” attack exists, since in order to eventually fix
the protocol we must first understand the (orthogonal) secu-
rity issues with the current design, and since we believe that
each of the issues we uncover is informative, we discuss each
of the main problems we found, and their corresponding at-
tacks, in turn. We believe that our observations also serve
to highlight the subtlety of cryptographic design since (1)
the WinZip AE-2 encryption method uses a provably-secure
Encrypt-then-Authenticate core in a natural and seemingly
secure way and (2) one of the attacks we discover was made
possible because of the way that WinZip chose to fix a dif-
ferent problem with its earlier encryption method, AE-1.
Furthermore, (1), as well as some of the other attacks that
we discuss, underscore the fact that security products must
be evaluated as a whole, and that the security of a whole
product may not follow as a simple corollary of the security
of some underlying component.

The main issues we uncover include the following:

Information leakage. According to the WinZip docu-
mentation, there is a known problem with the WinZip en-
cryption architecture in that the metadata of an encrypted
file appears in the WinZip archive in cleartext. Contained
in this metadata is the encrypted file’s original filename,
the file’s last modification date and time, the length of the
original plaintext file, and the length of the resulting ci-
phertext data, the latter also being the length of the com-
pressed plaintext data plus some known constant. Although
WinZip Computing, Inc. may have had reasons for leaving
these fields unencrypted, the risks associated with leaving
these fields unencrypted should not be discounted. For ex-
ample, if the name of a compressed and encrypted file in
the PinkSlips.zip archive is PinkSlip-Bob.doc, encrypt-
ing the files in the archive will not prevent Bob from learning
that he may soon be laid off. Additionally, a recent result
from Kelsey [15] shows that an adversary knowing only the
length of an uncompressed data stream and the length of the
compression output will be able to learn information about
the uncompressed data. For example, from the compres-
sion ratio an adversary might learn the language in which
the original file was written [3]. Of course, the mere name,
date, and size of the entire .zip archive may reveal infor-
mation to an adversary, so the goal here should not be to
prevent all information leakage, but to reduce the amount
of information leakage whenever possible.

Interactions between compression and the AE-2 en-

cryption method. One of our chosen-ciphertext attacks
exploits a novel interaction between WinZip’s compression
algorithm and the AE-2 encryption method. In particular,
although the underlying AES-CTR-then-HMAC-SHA1 core
of AE-2 provably protects both the privacy and the integrity
of encapsulated data, cf. Bellare and Namprempre [1] and
Krawczyk [17], an attacker can exploit the fact that the
metadata fields indicating the chosen compression method
and the length of the original file are not authenticated by
HMAC-SHA1 as part of AE-2.

An example situation in which an adversary could exploit
this flaw is the following: Two parties, Alice and Bob, wish
to use WinZip to protect the privacy and integrity of some
corporate data. To do this, they first agree upon a shared
secret passphrase. Suppose Alice uses WinZip to compress
and encrypt some file named F.dat, using their agreed upon
passphrase to key the encryption, and let F.zip denote the

resulting archive. Now suppose Alice sends F.zip to Bob,
perhaps using WinZip’s Outlook email plugin or by putting
it on some corporate file server or an anonymous ftp server.
We argue that the type of security that Alice and Bob would
expect in this situation is very similar to the authenticated
encryption [14, 2, 1] and secure channel [6, 17] notions; i.e.,
the construction should preserve the privacy and the au-
thenticity of Alice’s files. Unfortunately, an adversary, Mal-
lory, could break the security of WinZip under this model.
For example, assume that Mallory has the ability to change
the contents of F.zip, replacing it with a modified version,
F-prime.zip, that has a different value in the metadata field
indicating the chosen compression method and an appro-
priately revised value for the plaintext file length. When
Bob tries to decrypt and uncompress F-prime.zip, he will
use the incorrect decompression method, and the contents
of F.dat upon extraction will not be the original contents
of F.dat, but will now look like completely unintelligible
garbage G. Now suppose that Mallory can obtain G in some
way. For example, suppose Bob sends the frustrated note
“The file you sent was garbage!” to Alice. If Mallory inter-
cepts that note, he might reply to Bob, while pretending to
be Alice, “I think I’ve had this problem before; could you
send the garbage that came out so that I can figure out what
happened; it’s just garbage, there’s no reason not to include
it in an email.” Mallory, after obtaining G, can reconstruct
the true contents of Alice’s original F.dat file.

We believe that the above attack scenario is quite realistic.
It is the same scenario that Katz and Schneier [13] and Jal-
lad, Katz, and Schneier [10] used when attacking email en-
cryption programs and PGP, so any attack against WinZip’s
Outlook email plugin under the same scenario is at least as
damaging (one difference is that our attack is applicable to
WinZip in its default setting, whereas the previous attacks
against PGP require the user to choose a non-default setting
or to encrypt already compressed data). Even when users do
not use WinZip’s Outlook plugin to send encrypted attach-
ments, we believe that there are other natural scenarios in
which an adversary could mount our attack. For example,
employees of at least one large corporation, Diebold Elec-
tion Systems, transported important election-related files,
compressed and encrypted into Zip archives, via an anony-
mous ftp site [11].2 Given Jones’ [11] discussion of Diebold’s
procedures, we would be surprised if an adversary able to
modify F.zip could not also get access to the decrypted,
garbage-looking output G. Lastly, even if security-conscious
users might try to prevent an adversary from learning G, we
believe that security products should remain secure even in
the face of potential misuses by non-security conscious users,
which further suggests that the attack we describe is signif-
icant and should be protected against.

On the names of files and their interpretations.

There are a number of systems that associate software ap-
plications with filenames; for example, a Microsoft Windows
machine will by default open .doc files with Microsoft Word
and .ppt files with Microsoft Power Point. Unfortunately,
WinZip’s AE-2 encryption method does not authenticate an
encrypted file’s filename metadata field, meaning that Mal-
lory could modify the names of the encrypted files in an
archive without triggering any detection mechanism within

2These events preceded WinZip’s invention of AE-2; Diebold
used the traditional Zip encryption method.

the extraction utility. This is problematic since, on a system
like Microsoft Windows, it is important for an extracted file
to have the same extension as the original file. Otherwise,
when Bob tries to open that file, he will accidentally use
the wrong application, get an error message, and thereby
possibly allow Mallory to mount an attack similar to the
one described in the previous heading. Note that the is-
sue described here is orthogonal to the issue of leaving an
encrypted file’s filename unencrypted; specifically, the issue
is not that the filename is stored in cleartext, but that the
filename is not authenticated, though also encrypting the
filename would not hurt.

We discuss other issues that can arise from allowing an
adversary to modify the names of encrypted files. The main
lesson with all of these issues is that a file encryption utility
must not only protect the integrity of the contents of an
encrypted file, but must also protect the integrity of all of the
metadata, like the filename or filename extension, necessary
for the surrounding system to correctly interpret that data.

Interactions with AE-1 and a protocol rollback at-

tack. According to the WinZip AE-2 specification [24], the
AE-2 encryption method fixes a security problem with an
earlier AE-1 encryption method. Further, according to [24],
software implementing the AE-2 encryption method must
be able to decrypt files encrypted with AE-1. While AE-2
does protect against a specific attack against AE-1, there is
a protocol rollback attack against WinZip that exploits the
fact that an adversary can force WinZip to use the AE-1
decryption method on an AE-2-encrypted file. The attack
also exploits the fact that in addition to using HMAC-SHA1,
AE-1 also uses a 32-bit CRC of the unencrypted file.

The attack works in the same setting as the previous at-
tacks. In this attack, Mallory intercepts F.zip, makes a
guess of the contents of F.dat, and creates a replacement
F-prime.zip based off his guess. If Bob can successfully
decrypt F-prime.zip, i.e., if Bob doesn’t complain to Al-
ice that the file failed to decrypt because of a failed CRC
check, then Mallory learns with high probability whether his
guess was correct. To compare this attack with the previ-
ous attack, note that Mallory only needs to learn whether
F-prime.zip decrypted successfully. On the other hand,
Mallory only learns whether his guess was correct. Still,
this may constitute a serious attack if Mallory knows that
the contents of F.dat is from a small set of possible values,
perhaps because of pre-existing knowledge of the message
space or additional information gleaned from the compres-
sion ratio, and wants to know which value it is. (In some
situations Mallory may learn more than just whether his
guess was correct; details in the body.)

Archives with encrypted and unencrypted files. Ac-
cording to the WinZip AE-2 specification, archives can con-
tain both encrypted and unencrypted files. While this may
have some functionality and usability advantages, there is
also a rather serious security disadvantage. In particular,
when a user invokes WinZip 9.0’s extraction utility on an
archive containing both encrypted and unencrypted files,
WinZip 9.0 will ask for a passphrase. It will then proceed
to extract all of the files in the archive, without telling the
user which files were encrypted and which were not. The
user will thus think that all the files in the archive were en-
crypted (and authenticated), but, in fact, an adversary could
have complete control over the contents of all but one of the

files in the archive (one file must remain encrypted under the
user’s passphrase in order to force WinZip 9.0 to prompt the
user for the passphrase). (In Section 7 we provide evidence
that suggests that although WinZip Computing, Inc. was
unaware of the attack we found when they designed AE-2,
other Zip manufacturers may have been aware of it, or at
least knew that there were risks associated with allowing
both encrypted and unencrypted files in Zip archives.)

Key collisions and repeated keystream. To encrypt
a file, WinZip first takes the user’s passphrase and derives
cryptographic keys for AES and for HMAC-SHA1. The key
derivation process is randomized; one of the reasons for this
randomization is so that two different files encrypted with
the same passphrase will use different AES and HMAC-
SHA1 keys. Unfortunately, because not enough randomness
is used in the key derivation process, we expect AES key col-
lisions after encrypting only 232 files when using AES with
128-bit keys. Furthermore, the AE-2 specification says that
the initial CTR mode counter is always zero.3 Combining
these two observations, we can expect CTR mode keystream
reuse after encrypting only around 232 files, which is much
less than the 264 files we would expect if we chose a different
random key for each file. Additionally, assuming that the
encrypted files are all of realistic size, then this is also less
than the number of files we would expect if we used AES in
CTR mode with just a single key but a randomly selected
initial counter for each file.

Because WinZip encrypts each file in an archive indepen-
dently, all 232 files need not be put into separate archives;
we expect keystream reuse even if all 232 files are distributed
amongst only a small set of WinZip archives. The problems
with keystream reuse are well known: Once Alice reuses
keystream, Mallory will be able to learn information about
the compressed and encrypted plaintext. In a worst-case sce-
nario, if Mallory knew the entire content of the larger, after
compression, of two files encrypted with the same keystream,
then Mallory would immediately know the entire contents
of the other file.
Other ways of attacking WinZip. There are other ways
in which an adversary might attack WinZip or any other
compression utility. For example, as noted in the WinZip
documentation, an adversary might try to capture a user’s
passphrase by installing a keyboard logger on the user’s com-
puter or might try to resurrect a plaintext file from memory.
We also observe what we believe to be a new integrity at-
tack against self-extracting password-protected executables:
An adversary wanting to replace the data encapsulated by
a password-protected self-extracting executable could write
a new executable, with a similar user interface to the real
self-extracting executable, that asks for but ignores the user-
entered passphrase and simply creates a data file of the ad-
versary’s choice. However, attacks such as these are unre-
lated to the AE-2 encryption method, and since our focus is
on the AE-2 encryption method and WinZip’s use of cryp-
tography, we do not consider these attacks further.

3Previously we said that the underlying Encrypt-then-
Authenticate core of AE-2 is a provably secure authenti-
cated encryption scheme per Bellare and Namprempre [1]
and Krawczyk [17]. Because the initial CTR mode counter
is always zero, we were assuming that each key is used to
encrypt at most one message, which is typically the case as-
suming that less than 232 files are encrypted per passphrase.

Secure alternatives. In response to the cryptographic
issues and attacks we found, we discuss a number of ap-
proaches for fixing the WinZip encryption method while si-
multaneously minimizing the changes to the AE-2 specifica-
tion.

Other Zip encryption methods. There are a number
of other passphrase-based Zip encryption methods besides
WinZip’s new AE-2. The traditional Zip encryption mech-
anism [9] has similar functionality to AE-2, but it has sig-
nificantly worse security: The traditional Zip stream cipher
has been broken [5, 22] and the contents of traditionally-
encrypted archives can be efficiently recovered from the Zip
archives directly; i.e., there is no need to mount a chosen-
ciphertext attack like the ones we describe above. PKWARE
also recently announced a new passphrase-based encryption
mechanism called EFS [19]. The January 2004 version of
the PKWARE’s EFS specification [20], as well as the tra-
ditional Zip encryption mechanism, are all vulnerable to
our attacks that exploit generic properties of the Zip file
format, namely the attacks exploiting (1) the information
leakage of an encrypted file’s metadata, (2) the fact that an
encrypted file’s filename is not authenticated, and (3) the
fact that an archive can contain both encrypted and unen-
crypted files. Although the global applicability of issue (1)
is by now folklore knowledge, and we have evidence to be-
lieve that some people, although unfortunately not WinZip
Computing, Inc., may have known about some aspects of
issue (3), we have seen no previous discussions of issue (2).
The lack of previous discussions and awareness of these lat-
ter and other issues is likely because, until the creation of
applications like Zip Outlook plugins, and until the pub-
lication of works like Katz and Schneier [13], the risks of
chosen-ciphertext attacks were under-estimated.

The latest EFS specification [19], dated April 26, 2004
and appearing after the original release of this paper [16],
adds a new “filename encryption” feature that will encrypt
the filename and other metadata fields of encrypted files.
Although EFS’s approach for addressing issue (1) is differ-
ent than ours, and is an option that users or administrators
may fail to turn on (it was not the default in the version we
tested), we are pleased to find that our suggestions for fixing
(1) are less intrusive to the Zip file format than PKWARE’s
(when “filename encryption” is turned on under PKWARE’s
new specification [19], PKWARE-encrypted archives are not
parsable under the traditional Zip specification [9]). Un-
fortunately, PKWARE’s new “filename encryption” feature
alone cannot always fully protect against variants of our
problems with issues (2) and (3), largely because encryp-
tion alone does not imply authentication. PKWARE’s spec-
ification [19] also includes the ability to encrypt and sign
files using public key cryptography, assuming the presence
of the requisite additional infrastructure, though it is worth
noting that the “certificate processing method for ZIP file
encryption remains under development . . . and is subject to
change without notice [19].” Although a full treatment of
PKWARE’s new EFS passphrase-based encryption mecha-
nism, as well as PKWARE’s use of public key cryptography,
is outside the scope of this paper, we make a few obser-
vations here. The passphrase-based encryption mechanism
does not include a message authentication code at all, and
thus does not appear to have been designed to protect the
privacy or integrity of files under chosen-ciphertext attacks.
This is problematic since, although digital signatures can be

used to protect the authenticity of the encapsulated data,
it is still important to protect the authenticity of files en-
crypted with passphrases when the necessary infrastructure
for digital signatures is not available, or when a user does
not want to be bound to the contents of a file with a digital
signature. The specification is also incomplete, making it
not only difficult to implement the system from the speci-
fication alone, but to fully analyze the system for potential
security problems without making conjectures about how
the system is actually supposed to work; e.g., if the user or
developer chooses RC4 for encryption, how exactly is RC4
supposed to be used? Are results like Mironov’s [18] taken
into consideration? Where the specification is unambiguous,
the specification still leaves decisions, such as the choice of
the underlying cipher (e.g., 40-bit RC2, 64-bit RC4, 3DES,
AES) and the length of the randomness RD when deriving
encryption keys, up to the choice of implementors. This is
a concern since even if PKWARE makes safe choices with
respect to these decisions, there is nothing in the specifica-
tion to prevent third-party developers from making unsafe
choices.

Additional related works. In addition to the already-
cited related works, Biham [4] introduced the notion of key-
collision attacks in the context of DES, noting that we ex-
pect one key collision after encrypting about 228 messages
using randomly selected 56-bit DES keys; our keystream
reuse attack in Section 8 is related to Biham’s key-collision
attack except that it is more efficient than a normal key col-
lision attack because of the way that WinZip derives AES
keys from passphrases. Wagner and Schneier discuss proto-
col rollback attacks in [23].

2. THE WINZIP COMPRESSION AND EN-
CRYPTION METHOD

WinZip’s compression architecture follows the Info-ZIP
specification [9]. The AES-based AE-2 extension is described
on WinZip’s website [24]. The difference between the AE-
2 encryption method and the AE-1 encryption method is
slight and will be mentioned at the end of this section.

Basic structure. We present here the basic Zip file for-
mat and the AE-2 extensions, omitting details that are not
relevant to our attacks and to our security improvements.
A Zip archive can contain multiple files. When archiving
a set of files, WinZip creates two records for each file, a
main file record and a central directory record. The result-
ing Zip archive contains all of the main file records concate-
nated together followed by all of the central directory records
(following the central directory records is an end of archive

record, which is not relevant to our attacks and suggested im-
provements). The main file record contains metadata about
the file, like the filename, as well as the file’s contents, the
latter typically being compressed and, in the case of AE-
2, encrypted. The contents of each file is compressed and
encrypted independently. The central directory record mir-
rors the metadata stored in the main file record and also
contains information about the location of the file’s corre-
sponding main file record in the Zip archive. One of the
reasons for the existence of the central directory record is
for usability when working with multi-volume floppy or CD
archives. For example, when extracting a file from a multi-
volume CD archive, the user can insert the last CD, WinZip

can read the central directory information, and then WinZip
can prompt the user to insert the CD containing the main
file record.

When referring to fields of Zip archive, byte strings will be
written like 504b0304bs, meaning that the first byte is 50bs =
80, the second byte is 4bbs = 75, and so on. Integers, such
as lengths, that are stored in multi-byte fields are encoded
in little endian format.

Main file record. According to the Info-ZIP specifi-
cation [9], and barring certain extensions that do not af-
fect our attacks, all main file records have the following
structure (the fields important to our work are highlighted):
main file record indicator (4 bytes, always 504b0304bs), ver-
sion needed to extract (2 bytes), general purpose bit flag
(2 bytes), compression method (2 bytes), last modification

time (2 bytes), last modification date (2 bytes), 32-bit CRC

(4 bytes), compressed size (4 bytes), uncompressed size (4
bytes), filename length (2 bytes), extra field length (2 bytes),
filename (variable size), and extra field (variable size). Fol-
lowing the above fields, but still part of the main file record,
is the file data field.

Central directory record. The central directory record
for a file consists of the following fields (important fields
highlighted): central directory record indicator (4 bytes, al-
ways 504b0102bs), version made by (2 bytes), version needed
to extract (2 bytes), general purpose bit flag (2 bytes), com-

pression method (2 bytes), last modification time (2 bytes),
last modification date (2 bytes), 32-bit CRC (4 bytes), com-
pressed size (4 bytes), uncompressed size (4 bytes), filename
length (2 bytes), extra field length (2 bytes), file comment
length (2 bytes), disk number start (2 bytes), internal file
attributes (2 bytes), external file attributes (4 bytes), rela-
tive offset of local header (4 bytes), filename (variable size),
extra field (variable size), and file comment (variable size).

AE-2 settings and the AE-2 extra data field. The
following is applicable to both the main file record and the
central directory record. When the AE-2 WinZip encryption
algorithm is turned on, the four bytes reserved for the 32-
bit CRC are set to zero, bit 0 of the general purpose flag
is set to 1, and the two bytes reserved for the compression
method are set to 6300bs. The extra data field will consist of
the following 11 bytes (again, important fields highlighted):
extra field header id (2 bytes, always 0199bs), data size (2
bytes, 0700bs for AE-2 since there are seven remaining bytes
in the 11-byte extra data field), version number (2 bytes,
always 0200bs for AE-2), 2-character vendor ID (2 bytes,
always 4145bs for AE-2), value indicating AES encryption
strength (1 byte), and the actual compression method used

to compress the file (2 bytes). The encryption strength field
will be 01bs (resp., 02bs or 03bs) if the file is encrypted with
AES using a 128-bit (resp., 192-bit or 256-bit) key. Example
values for the actual compression method are 0800bs if the
file is DEFLATEd [8] and 0000bs if no compression is used.

File data field. When a file is AE-2-encrypted, the file
data field of the main file record contains the following in-
formation: salt (variable length), password verification value

(2 bytes), encrypted file data (variable length), and the au-

thentication code (10 bytes). The salt is 8 bytes (resp., 12
bytes or 16 bytes) long if the AES key is 128 bits (resp., 192
bits or 256 bits) long.

The encrypted file data and authentication code.

Before applying the AE-2 encryption method, the contents
of the plaintext file is compressed according to the “actual
compression method used to compress the file” field of the
AE-2 extra data field described above. Then an AES encryp-
tion key, an HMAC-SHA1 key, and a password verification
value are derived from the user’s passphrase and a salt us-
ing the PBKDF2-HMAC-SHA1 algorithm [12]. The length
of the salt depends on the chosen length of the AES key and
is described above. The specification [24] states that the salt
should not repeat, and since this must be true across differ-
ent invocations of the compression tool, suggests making the
salt a random value.

The derived AES key is used to encrypt the compressed
data using AES in CTR mode with the initial counter set to
zero. The compressed plaintext data is not padded before
encryption. After encryption, the encrypted data is MACed
using HMAC-SHA1 and the derived MAC key, and 80 bits
of the HMAC-SHA1 output are used as the authentication
code.

Differences between AE-1 and AE-2. The only dif-
ferences between the AE-2 method and the earlier AE-1
method is that in AE-1 the version number in the main
file record’s and central directory record’s extra data fields
are 0100bs and the 32-bit CRC fields are not all zero but
actually contains the CRC of the original unencrypted data,
which the WinZip specification [24] states must be checked
upon extraction. The motivation for zeroing out the CRC
field in AE-2 is because the CRC of the plaintext will leak
information about the plaintext.

3. INFORMATION LEAKAGE
The metadata fields of encrypted files leak important and

potentially security-critical information in several ways. The
names of the encrypted files are stored in cleartext, which
can obviously be a concern. The files’ last modification dates
and times are also stored unencrypted, which can be used
to infer some relationship between the contents of different
encrypted files or some event in the past. Additionally, the
length of plaintext files are stored in the files’ metadata fields
unencrypted. This is a concern since, based on Kelsey’s re-
cent results about compression as a side-channel [15], an
adversary can learn information about the plaintext simply
given the lengths of both the original and the compressed
data. As Kelsey notes, information leakage via the com-
pression ratio of files becomes particularly effective if Mal-
lory has pre-existing partial knowledge of the plaintext or
if Mallory can see the compression ratio of multiple related
files, e.g., different versions of the same file over time. The
WinZip documentation notes that these pieces of informa-
tion are included unencrypted in the file’s metadata, but the
risks associated with leaving these fields unencrypted is not
considered. Furthermore, many users may fail to read the
documentation, and thus not realize that these information
leakage side-channels exist in the first place.

It is a well known fact that the classic Zip encryption
method [9] also leaks the information that we mention above,
plus the 32-bit CRC of an encrypted file’s original plaintext.
It is interesting to ask why WinZip Computing, Inc. did not
fix this problem in their new AE-2 specification. The most
likely conjecture is that WinZip Computing, Inc. chose not
to do so either because of engineering or design complexi-
ties, or because of functionality issues (e.g., they actually

wanted to allow users to be get a directory listing of the
contents in their encrypted archives without having to en-
ter a passphrase). To address the former reason, we discuss
technical approaches for addressing the information leakage
concerns in Section 10.

4. EXPLOITING THE INTERACTION BE-
TWEEN COMPRESSION AND ENCRYP-
TION

Recall the setup described in Section 1, where Alice en-
crypts F.dat and sends the resulting Zip archive, F.zip,
to Bob, but where Mallory prevents the delivery of F.zip

and instead gives Bob a file, F-prime.zip, that is related
to F.zip but that is slightly different. The critical obser-
vation for our attack is that despite the fact that the un-
derlying encryption core is a provably secure Encrypt-then-
Authenticate authenticated encryption scheme, cf. [1, 17],
the compression method and original file length fields in
an encrypted file’s main file and central directory records
are not authenticated, which means that an adversary can
change these fields without voiding the HMAC-SHA1 au-
thentication tag attached to the file. Consequently, assum-
ing that the new uncompressed file length field is correct
or that the extraction tool does not check that field, when
Bob attempts to decrypt and decompress the modified file
F-prime.zip, the MAC verification will succeed and the user
will not see any error. But because the adversary changed
the compression method, the file will be decompressed us-
ing the wrong algorithm and the resulting contents G of the
extracted file will look like garbage. If Mallory can learn G,
which we argue in Section 1 is reasonable in some cases, Mal-
lory can recover the original contents of Alice’s file F.dat.

Implementing the attack. When actually mounting the
attack, Mallory would likely change the compression method
indicators in the main file and central directory records from
0800bs, which appears to be WinZip’s default and which cor-
responds the DEFLATE algorithm [8], to 0000bs, which cor-
responds to no compression. This is very easy to do and very
efficient and can be done in a linear pass through the file, as
can updating the original file length field. We implemented
this attack against WinZip 9.0. To create F-prime.zip from
F.zip, rather than parse F.zip and switch the compression
type from 0800bs to 0000bs, we found that the Unix tcsh

command line

cat F.zip |\
sed ’s/\(\x02\x00\x41\x45\x01\)\x08\x00/\1\x00\x00/g’\
> F-prime.zip

was sufficient in all of the cases that we tried, showing that
the attack is indeed very easy to mount.4 We would only
expect the above command line to not work as desired if the
7-byte string 02004145010800bs appears in F.tar in a place
not corresponding to the extra data field of a file’s main file
or central directory records. Since the WinZip 9.0 extraction
tool did not seem to verify the length of the extracted file,
we did not need to modify the original file length fields of
the file’s main file and central directory records.

4Different versions of sed appear to handle binary streams
differently. The attack worked on default RedHat 9.0 sys-
tems with sed version 4.0.3.

Subtlety of cryptographic design. Recall that in AE-1
the CRC field of an encrypted file’s header contains the CRC
of the original plaintext file but that the field is all zero in
AE-2. When trying to mount the above attack against AE-
1, since the extraction utility will also verify the CRC of the
plaintext, which will typically fail because the plaintext is
now different, the resulting garbage-looking data G will not
be saved and the attack will not immediately go through.
While it is true that if Bob is crafty he may be able to view
F.dat (the file with contents G) among the temporary files
created by WinZip during the extraction process and before
the CRC failure is noted, send G to Alice, and thereby leak
G to Mallory, it would probably be unrealistic for Mallory
to assume that Bob will find F.dat among WinZip’s tem-
porary files. This discussion highlights the subtlety of cryp-
tographic design since the vulnerability presented in this
section was accidentally introduced when the authors of the
specification tried to fix a different problem with AE-1.

5. EXPLOITING THE ASSOCIATION OF
APPLICATIONS TO FILENAMES

To complement the attack in Section 4, we note that on
many systems, including Microsoft Windows machines, soft-
ware applications are automatically attached to files based
on the files’ filename extensions; e.g., Microsoft Windows
will by default open .doc files with Microsoft Word. Since
the filename fields of an encrypted file’s main file and central
directory records are unauthenticated, an adversary could
modify those field without voiding the MAC included at the
end of the encrypted file’s main file record. Once Mallory
does this, he can mount a variant of the attack in Section 4
since applications will usually report an error when trying
to open a file of the wrong extension. Fortunately, some
applications give descriptive error messages and Bob may
realize that the file has the wrong filename extension (e.g.,
Microsoft Excel gives the error “File.xls: file format is
not valid” when opening a document created with Microsoft
Word), but this is largely serendipitous and should not be re-
lied upon for security. This discussion confirms the fact that
a file encryption utility must not only protect the integrity of
the encapsulated data itself, but also the metadata, like the
filename extension, necessary for the surrounding system to
correctly interpret that data.

We also observe that an adversary could benefit from
changing the names of the encrypted files in an archive
while still maintaining the files’ original extensions. E.g.,
if Alice’s salary is currently higher than Mallory’s, Mallory
could swap the names of the files Alice-Salary.dat and
Mallory-Salary.dat in an encrypted archive Salaries.zip
without triggering any detection mechanism within the ex-
traction utility.

6. EXPLOITING THE INTERACTION BE-
TWEEN AE-2 AND AE-1

The motivation for the change from AE-1 to AE-2 is that
in AE-1 the CRC of the plaintext file is included unen-
crypted in an AE-1-encrypted WinZip archive, and that
will leak information about the encrypted files’ contents.
While the CRC is no longer included in the output of the
AE-2 encryption method, one can exploit an interaction be-
tween AE-1 and AE-2 in the following chosen-ciphertext at-
tack that reveals information about an AE-2-encrypted file’s

CRC to an adversary. Our attack makes use of the fact that,
according to the AE-2 specification [24], Zip tools that un-
derstand AE-2 must be able to decrypt files encrypted with
AE-1 and must verify the CRC upon extraction.

Details. Recall the setting used in Section 4 and Section 5.
Assume Alice sends the encrypted file F.zip to Bob, but as-
sume that Mallory can modify the file in transit and can
learn whether Bob can successfully extract the file he re-
ceives using the passphrase he shares with Alice. Now sup-
pose that Mallory has a guess for what the original contents
of F are, but is not completely sure and wants to verify his
guess H. He can do this as follows: Compute the 32-bit
CRC of H and then modify F.zip such that the version
number in the main file and central directory records’ ex-
tra data fields are 0100bs and the CRC fields in the file’s
main file and central directory records has the CRC of H.
Let F-prime.zip denote the Mallory-doctored file. If Mal-
lory’s guess is correct, then Bob will be able to extract F

from F-prime.zip without any error. Otherwise, Bob will
with high probability see an error dialog box which, when
using WinZip 9.0, says “Data error encountered in file C:\F

Possibly recoverable, contact help@winzip.com and mention
error code 56.” By observing Bob’s reaction, Mallory will
with high probability learn whether his guess was correct.

If we look more closely at how WinZip behaves when it
attempts to extract a modified file with an incorrect CRC
guess, it appears that the file is first extracted, the CRC
is checked, the user is told that the CRC check failed, and
then the extracted file is deleted. This means that if Bob is
crafty he will be able to access the unencrypted file between
when it is extracted and when it is automatically deleted
after the CRC check fails. Even if Bob does this, which we
expect to be unlikely, he may not be confident in the correct
extraction of the file and, if so, will likely convey this lack
of confidence to Alice. Other implementations of the AE-2
specification may delete the extracted file before informing
the user that the CRC check failed.

Extension. Although not necessarily the case with all Zip
tools but in the case of WinZip, after dismissing the initial
error dialog box Bob will have the option of viewing a more
detailed error log. If Bob chooses to see this error log, he will
see a line like the following: “bad CRC 1845405d (should be
1945405d).” If Bob decides to copy and paste this detailed
error message in an email to Alice or help@winzip.com, and
if Mallory sees this email, then Mallory will learn the CRC of
the plaintext file, and thereby learn additional information
about the plaintext.

7. ATTACKING ZIP ENCRYPTION AT THE
FILE LEVEL

When a Zip archive contains multiple files, each of the
files in the archive is encapsulated independently, which
means that some files in an archive may only be compressed
and some may be both compressed and encrypted. This
fact makes the WinZip AE-2 encryption method vulnera-
ble to a number of attacks. Consider the following: Mal-
lory knows that the encrypted archive Salaries.zip con-
tains the files Alice.dat, Bob.dat and Mallory.dat, all
encrypted using AE-2 under the CFO’s secret passphrase.
Now, because of the properties described above, an adver-
sary could remove the encrypted Mallory.dat file from the

Salaries.zip archive and replace it with a new, unencrypted

file, also named Mallory.dat, but with the contents of Mal-
lory’s choice. When the CFO tries to extract the files in
the archive using the WinZip 9.0 application, he will be
prompted for his passphrase since the files Alice.dat and
Bob.dat are still encrypted. WinZip will then extract the
files Alice.dat, Bob.dat, and Mallory.dat. Since the CFO
had to enter his passphrase, he will likely believe that the ex-
tracted Mallory.dat file is the same one that he encrypted,
and thus contains Mallory’s real salary, when in fact the
contents of Mallory.dat are completely under Mallory’s
control. Similarly, if Alice creates an archive containing
both encrypted and unencrypted files and sends that archive
F.zip to Bob, Mallory will be able to easily modify the con-
tents of the unencrypted files in the archive. But, like in
the previous attack, since Bob has to enter a passphrase to
extract the contents of the archive, and because no warning
is given about some files being unencrypted, Bob will be-
lieve that all the files were encrypted by Alice and that they
contain Alice’s original content.

WinZip Computing, Inc. does not appear to have been
aware of the above attacks when they specified AE-2 [24]
and when they implemented WinZip 9.0, as supported both
by the fact that WinZip 9.0 does not generate a warning
when extracting an archive containing both encrypted and
unencrypted files, and by quotes taken from the AE-2 spec-
ification [24], which only mention usability reasons for en-
crypting all the files in an archive and which do not suggest
that vendors issue warnings when encountering unencrypted
files in an archive with encrypted files. E.g., the specification
states: “The presence of both encrypted and unencrypted
files in a Zip [archive] may trigger user warnings in some
Zip file utilities, so the user experience may be improved if
all files (including zero-length files) are encrypted. Again,
however, this is only a recommendation.” This quote does
suggest that other Zip vendors may have known of the attack
we describe above, or at least knew to be wary of archives
containing both encrypted and unencrypted files.

Because files in a Zip archive are encrypted on a per-file
basis, an adversary could also delete files from an archive.
An adversary could also create a composite Zip archive with
encrypted files taken from multiple different archives, but we
view these properties as less interesting than the first attacks
in this section. Related to the first attacks in this section,
in Section 5 we observed that an adversary could swap the
filenames of different encrypted files, and that he could also
use this fact to modify the contents of Alice’s encrypted files;
the attacks in Section 5 exploit a different security problem,
that for encrypted files the filenames are not authenticated.

8. KEYSTREAM REUSE
When AE-2 is used with a 128-bit AES key, one can expect

CTR mode keystream reuse after encrypting approximately
232 files, which is much less than one would expect given
that AES has 128-bit blocks. (When using 192-bit AES keys
with AE-2, we expect keystream reuse after encrypting 248

files; when using 256-bit AES keys, we expect collisions after
encrypting 264 files). The security problems with reusing
keystream are well-known, and therefore we can expect the
AE-2 encryption algorithm with 128-bit AES keys to start
leaking additional information about the compressed and
encrypted plaintext after 232 files are encrypted with the
same passphrase.

This problem arises for two reasons. First, the salt used
when deriving the AES and HMAC-SHA1 keys from the
passphrase is only 64 bits (resp., 96 bits and 128 bits) long
when the desired AES key length is 128 bits (resp., 192 bits
and 256 bits). Second, AES-CTR is specified to always use
zero as the initial block counter. The former means that,
with 128-bit keys, after encrypting 232 files we expect there
to be one AES key that we used twice. The latter means
that when we use the same AES key twice, we will use the
same keystream both times.

9. DICTIONARY ATTACKS
One of the reasons for using PBKDF2 [12] and a salt when

deriving AES and HMAC-SHA1 keys from passphrases is to
impede dictionary attacks. Specifically, an exhaustive search
through the most common passphrases will be very slow
because of the computational requirements for PBDKF2,
and a dictionary of HMAC-SHA1 keys, corresponding to
the most common passphrases and all possible salt values,
will be extremely large because of the number of possible
salt values.

But since a different salt is used to encrypt each file, an
adversary may not need to use all possible salt values when
populating an HMAC-SHA1 key dictionary. In particular,
Mallory would only need to populate the dictionary using
enough different salt values to ensure, with high probability,
that one of the salt values that a user uses when encrypting
her files will collide with one of the salt values that Mallory
used when creating his dictionary. For example, if the salt
is 8 bytes long and if each user is expect to encrypt on the
order of 232 files, then Mallory would only need to use 232

different salt values when creating his HMAC-SHA1 dictio-
nary. The dictionary can be indexed off of the salt and the
two-byte password verification value; the password verifica-
tion value thus further reduces the amount of HMAC-SHA1
keys the attacker has to try in the dictionary attack. Once
Mallory finds an HMAC-SHA1 key such that the MAC of
the encrypted file verifies, he will with high probability learn
the user’s corresponding passphrase, and thereafter be able
to decrypt all of the files encrypted under that passphrase.
While this is a time-memory trade-off in terms of not hav-
ing to compute PBKDF2 for every passphrase guess, the
memory and precomputation requirements are still quite
enormous and we expect that in practice anyone trying to
learn a passphrase will simply try to exhaustively search
the passphrase, rather than try to use an HMAC-SHA1 key
dictionary.

10. FIXES
In this section we consider fixes to the problems we dis-

cussed in Section 3 through Section 9, starting with Sec-
tions 4–9 and returning to Section 3 at the end.

Authenticate all. To address the problems raised in
Section 4, one approach might be to MAC the original un-
compressed plaintext instead of the ciphertext and then en-
crypt the resulting tag in a Authenticate-then-Encrypt-style
construction. However, we do not recommend this as a
general design procedure since the resulting construction
may not be generically secure (cf., the counter examples
for Authenticate-then-Encrypt in [1, 17]). Better would be
to build off of WinZip’s current Encrypt-then-Authenticate
core since Encrypt-then-Authenticate is known to be gener-

ically secure (again due to [1, 17]). Having decided to con-
tinue to use the existing Encrypt-then-Authenticate core,
we note the following general design principle for crypto-
graphic encapsulation methods: A cryptographic encapsu-
lation algorithm should authenticate all of the information
that an extractor/decapsulator will use when reconstruct-
ing the original data, excluding the authentication tag itself
and assuming that the extractor already has a copy of the
shared authentication key. In the case of WinZip, since the
compression type field of an encrypted file’s header will be
accessed when extracting an encrypted file, this means that
the compression type value should be MACed along with
the AES-CTR-generated ciphertext. We can naturally ex-
tend this general principle to mandate the authentication
of all data necessary to ensure the correct interpretation of
the data once the data has been correctly reconstructed,
which means that the filename, date, and any other im-
portant metadata fields in an encrypted file’s header must
also be authenticated, which addresses the concerns raised
in Section 5. (If WinZip Computing, Inc. does not mind de-
viating further from their current AES-CTR-then-HMAC-
SHA1 construction, we note that the new encryption core
can actually be any provably-secure authenticated encryp-

tion associated data scheme [21] as long as the important
metadata fields are authenticated.)

Addressing protocol rollback attacks. To prevent
protocol rollback attacks like the one described in Section 6,
it might be tempting to apply the above principle and create
a new AE version that MACs the encryption method ver-
sion number field in the extra data field of an encrypted file’s
header. Unfortunately, this does not necessarily work since
here we are concerned about attacks that exploit the interac-
tion between different encapsulation/decapsulation schemes,
and, in particular, interactions with schemes, AE-1 and AE-
2, that have already been specified and that do not currently
authenticate that field. To see why this is a problem, note
that an adversary could move the extra data MACed using
the new method into the ciphertext portion of an AE-2-
format archive and thereby mount a protocol rollback at-
tack. While one might try MACing information not directly
available to an adversary, such as the encipherment of some
nonce, we view such an approach as inelegant. Rather, we
suggest diversifying the AES and HMAC-SHA1 key deriva-
tion process in such a way that the AES and HMAC-SHA1
keys derived from some passphrase and salt using the new
encryption method will be different from the keys derived
from the same passphrase and salt when using the AE-1
and AE-2 encryption methods. This could involve prepend-
ing the encryption method version number, vendor ID, and
encryption strength field to the salt before running the key
derivation procedure. If it were not the case that the length
of the salt for AE-1 and AE-2 were fixed, but if the length
of the salt was variable and if the length of the salt is en-
coded in a metadata field of an encrypted file, then even
our solution here would not be a sufficient since an adver-
sary could simply add the method version number, vendor
ID, and encryption strength field into the (now larger) salt
in an AE-2-formatted archive. For similar reasons, there
is still the potential of interaction with other (non-WinZip)
applications that uses PBKDF2-HMAC-SHA1, but it seems
impossible for WinZip to complete avoid such interactions
with applications that are not under their control.

Addressing the concerns in Section 7. There are sev-
eral possible solutions for the problems raised in Section 7.
The obvious approach of authenticating an entire archive
would likely break some of WinZip Computing, Inc.’s func-
tionality design criteria, namely the desire to (efficiently)
handle updates to large archives, and in particular archives
spanning multiple CD volumes. Another approach might be
to authenticate the entire central directory (the concatena-
tion of all the central directory records), since the central
directory will always be stored at the end of the archive,
and in particular on the last CD in a multi-volume archive.
Toward this end, we note that the Zip specification already
has the ability to sign the central directory using public key
cryptography, so adding the ability to authenticate the cen-
tral directory using a MAC is certainly reasonable. However,
we point out that this solution has a number of issues that
one must be careful of. For example, the extractor must
check the consistency between the metadata in a file’s main
file record and a file’s central directory record. If we are con-
cerned about adversaries deleting files from an archive, then
the absence of files must also be checked (this may follow
as a corollary of checking the consistency of the individual
files if the consistency check includes main file record off-
sets, which are stored in the central directory record). But
of most concern is the fact that authenticating the central
directory alone will not prevent an attacker from modifying
unencrypted files in an archive. Rather, those unencrypted
files must be cryptographically bound to the central direc-
tory in some way, perhaps by including a MAC of an un-
encrypted files in its central directory record. Another po-
tential problem with this solution is that if authenticating
the central directory is an option, then one must be care-
ful to ensure that an adversary cannot simply take a Zip
archive, turn that option off, and remove the MAC of the
central directory. One possible way of handling this might
be to use different AES and HMAC-SHA1 keys when the
option is turned on and when the option is turned off. But
in reality, a reasonable solution might simply be to require

applications implementing the AE-2 decryption algorithm
to always report a warning when an archive contains both
encrypted and unencrypted files.

Addressing keystream reuse and dictionary attacks.

To address the issues raised in Section 8, we suggest two
possible solutions. First, one could double the current salt
length. Alternatively, instead of always using zero as the
initial AES-CTR mode counter, one could use a random
initial counter selected from the set of all possible 128-bit
integers. The initial counter should be included in the re-
sulting archive and should also be included in the string
to be MACed. Furthermore, under this approach the same
AES and HMAC-SHA1 keys can be used with all files pro-
tected by the same passphrase; i.e., the same randomly-
selected salt could be used with all such files in an archive.
The latter property is a performance win since in the cur-
rent design, where a different salt is used with each file,
the passphrase-based key derivation step dominates the time
when creating or extracting archives containing lots of small
files. When adding new files to an existing archive, it is im-
portant to select new salts or to verify that the users knows
the passphrase corresponding to the files encrypted with the
existing salt values (otherwise an attacker could force a user
to use a salt of the attacker’s choice, which would make
dictionary attacks more feasible).

Possible solutions to the issues raised in Section 9 include
increasing the length of the salt or using the same salt when
encrypting multiple files. Fortunately, these two recommen-
dations align with our recommendations for the issues raised
in Section 8. Additionally, we suggest not storing the pass-
word verification values in a file’s metadata since it can be
used to quickly eliminate keys in a dictionary attack against
a user’s passphrase.

Minimizing information leakage. There are a number
of different approaches for addressing the information leak-
age concerns raised in Section 3. The latest (April 26,
2004) specification from PKWARE [19], which is incompat-
ible with WinZip’s new encryption method, introduces an
option for encrypting the metadata fields of an encrypted
file; when the option is turned on (it is not on by default),
PKWARE’s SecureZIP product encrypts the entire central
directory and removes most of the metadata information
from a file’s main file record, either by zeroing out the ap-
propriate fields or replacing them with random data. Aside
from the fact that the central directory is not MACed, our
two main concerns with PKWARE’s solution are that (1)
we believe that protecting against information leakage from
an encrypted file’s header should not be an option and (2)
archives created with the above option turned on are no
longer parsable under the traditional Zip specification [9].
In contrast, our proposed fixes involve modifying the main
file and central directory records such that privacy-critical
metadata information is always hidden and the resulting Zip
archives are still parsable under the traditional Zip specifi-
cation [9]. We can achieve this goal in several ways. For
example, using AES in CTR mode, it would be possible to
encrypt specific metadata fields of a file’s main file record
and central directory record in-place. In the case of the
central directory record, this approach would require us to
copy the salt necessary to derive the encryption key from
the file data field of the main file record into the extra data
field of the central directory record. Unfortunately, this so-
lution must still leak the length of a file’s filename since,
under this approach, we cannot encrypt any information
necessary for parsing the file, and the length of a file’s file-
name is necessary information. Consequently, the solution
that we prefer is to not encrypt portions of a file’s main file
record and central directory records in-place, but to encrypt
(and also authenticate) the main file record and the cen-
tral directory record completely. Our solution would then
store the resulting ciphertext in the file data or extra data
fields of a wrapper main file record or wrapper central di-
rectory record, respectively. Preceding the ciphertexts must
be the information, like the salt, necessary to derive the
file’s cryptographic keys from the user’s passphrase. The
metadata fields of these wrapper records can be fixed, or
random, as long as the “compression method field” in the
main file record indicates that the record is just serving as a
wrapper for an encrypted file. When extracting an archive,
the extractor should see this specific compression method
type, decrypt the wrapped data, and then treat the result-
ing plaintext as an unencrypted record to parse as normal.
In order to give an intuitive error message to users who try to
decrypt a file encrypted under this method, we suggest mak-
ing the filename field of the wrapper records something like
WinZipEncryptedFile; one could even add more informa-
tion, like a URL. Lastly, another attractive property of this
solution is that, by also authenticating these records com-

pletely, this solution immediately implements our previous
recommendations for addressing the concerns in Section 4
and Section 5.

A possible instantiation. In the full version of this pa-
per [16] we discuss in more detail a natural instantiation of
the above recommendations.

Acknowledgments
The author was supported by an NDSEG Fellowship.

11. REFERENCES
[1] M. Bellare and C. Namprempre. Authenticated

encryption: Relations among notions and analysis of
the generic composition paradigm. In T. Okamoto,
editor, Advances in Cryptology – ASIACRYPT 2000,
volume 1976 of Lecture Notes in Computer Science,
pages 531–545. Springer-Verlag, Berlin Germany, Dec.
2000.

[2] M. Bellare and P. Rogaway. Encode-then-encipher
encryption: How to exploit nonces or redundancy in
plaintexts for efficient cryptography. In T. Okamoto,
editor, Advances in Cryptology – ASIACRYPT 2000,
volume 1976 of Lecture Notes in Computer Science,
pages 317–330. Springer-Verlag, Berlin Germany, Dec.
2000.

[3] D. Benedetto, E. Caglioti, and V. Loreto. Language
trees and Zipping. Physical Review Letters, 88(4), Jan.
2002.

[4] E. Biham. How to decrypt or even substitute
DES-encrypted messages in 228 steps. Information

Processing Letters, 84, 2002.

[5] E. Biham and P. Kocher. A known plaintext attack on
the PKZIP stream cipher. In B. Preneel, editor, Fast

Software Encryption ’ 94, volume 1008 of Lecture

Notes in Computer Science. Springer-Verlag, Berlin
Germany, 1994.

[6] R. Canetti and H. Krawczyk. Analysis of
key-exchange protocols and their use for building
secure channels. In B. Pfitzmann, editor, Advances in

Cryptology – EUROCRYPT 2001, volume 2045 of
Lecture Notes in Computer Science, pages 451–472.
Springer-Verlag, Berlin Germany, 2001.

[7] J. Daemen and V. Rijmen. The Design of Rijndael.
Springer-Verlag, Berlin Germany, 2002.

[8] P. Deutsch. DEFLATE compressed data format
specification version 1.3. IETF RFC 1951, May 1996.

[9] Info-ZIP. Info-ZIP note, 20011203, Dec. 2001.
Available at ftp://ftp.info-zip.org/pub/infozip/

doc/appnote-011203-iz.zip.

[10] K. Jallad, J. Katz, and B. Schneier. Implementation of
chosen-ciphertext attacks against PGP and GnuPG.
In A. H. Chan and V. D. Gligor, editors, Information

Security, 5th International Conference, volume 2433 of
Lecture Notes in Computer Science, pages 90–101.
Springer-Verlag, Berlin Germany, 2002.

[11] D. W. Jones. The Case of the Diebold FTP Site, July
2003. Available at http://www.cs.uiowa.edu/

~jones/voting/dieboldftp.html.

[12] B. Kaliski. PKCS #5: Password-based cryptography
specification version 2.0. IETF RFC 2898, Sept. 2000.

[13] J. Katz and B. Schneier. A chosen ciphertext attack
against several e-mail encryption protocols. In Ninth

USENIX Security Symposium, 2000.

[14] J. Katz and M. Yung. Unforgeable encryption and
chosen ciphertext secure modes of operation. In
B. Schneier, editor, Fast Software Encryption 2000,
volume 1978 of Lecture Notes in Computer Science,
pages 284–299. Springer-Verlag, Berlin Germany, Apr.
2000.

[15] J. Kelsey. Compression and information leakage of
plaintext. In J. Daemen and V. Rijmen, editors, Fast

Software Encryption 2002, volume 2365 of Lecture

Notes in Computer Science, pages 263–276.
Springer-Verlag, Berlin Germany, 2002.

[16] T. Kohno. Attacking and repairing the WinZip
encryption scheme. Cryptology ePrint Archive Report
2004/078, http://eprint.iacr.org/2004/078/, 2004.
Full version of this paper.

[17] H. Krawczyk. The order of encryption and
authentication for protecting communications (or:
How secure is SSL?). In J. Kilian, editor, Advances in

Cryptology – CRYPTO 2001, volume 2139 of Lecture

Notes in Computer Science, pages 310–331.
Springer-Verlag, Berlin Germany, Aug. 2001.

[18] I. Mironov. (Not so) random shuffles of RC4. In
M. Yung, editor, Advances in Cryptology – CRYPTO

2002, volume 2442 of Lecture Notes in Computer

Science, pages 304–319. Springer-Verlag, Berlin
Germany, 2002.

[19] PKWARE. APPNOTE.TXT - .ZIP File Format
Specification, Apr. 2004. Version 6.2.0, available at
http://www.pkware.com/products/enterprise/

white_papers/appnote.txt.

[20] PKWARE. APPNOTE.TXT - .ZIP File Format
Specification, Jan. 2004. Version 6.1.0, replaced
by [19].

[21] P. Rogaway. Authenticated encryption with associated
data. In V. Atluri, editor, Proceedings of the 9th

Conference on Computer and Communications

Security, Nov. 2002.

[22] M. Stay. ZIP attacks with reduced known plaintext. In
M. Matsui, editor, Fast Software Encryption 2001,
volume 2355 of Lecture Notes in Computer Science,
pages 124–134. Springer-Verlag, Berlin Germany,
2001.

[23] D. Wagner and B. Schneier. Analysis of the SSL 3.0
protocol. In Proceedings of the Second USENIX

Workshop on Electronic Commerce, 1996.

[24] WinZip Computing, Inc. AES encryption information:
Encryption specification AE-2, Jan. 2004. Version
1.02, available at
http://www.winzip.com/aes_info.htm.

[25] WinZip Computing, Inc. Download WinZip add-ons,
Apr. 2004. Available at
http://www.winzip.com/daddons.htm.

[26] WinZip Computing, Inc. Homepage, Mar. 2004.
Available at http://www.winzip.com/.

[27] WinZip Computing, Inc. What’s new in WinZip 9.0,
Mar. 2004. Available at
http://www.winzip.com/whatsnew90.htm.

