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Abstract

We present OpenCount: a system that tabulates scanned
ballots from an election by combining computer vision
algorithms with focused operator assistance. OpenCount
is designed to support risk-limiting audits and to be scal-
able to large elections, robust to conditions encountered
using typical scanner hardware, and general to a wide
class of ballot types—all without the need for integra-
tion with any vendor systems. To achieve these goals,
we introduce a novel operator-in-the-loop computer vi-
sion pipeline for automatically processing scanned bal-
lots while allowing the operator to intervene in a simple,
intuitive manner. We evaluate our system on data col-
lected from five risk-limiting audit pilots conducted in
California in 2011.

1 Introduction

In this paper, we develop techniques to count optical scan
ballots, based only upon scanned images of those ballots.

There are several reasons why it might be useful to be
able to count the ballots using a system that is indepen-
dent of the official, certified voting system. Some have
suggested that, to gain confidence in the election results,
all ballots should be scanned and the images should be
published, so that anyone interested can count the ballots
on their own [7] [16, § 3.3]. We build a tool that can
be used to perform the counting process, and thus could
be used for this purpose. Alternatively, our tool could be
used by election officials to check the accuracy of official
vote tallies before they are certified.

Perhaps most importantly, our tool can play an im-
portant role in supporting risk-limiting audits of elec-
tions [12]. Risk-limiting audits require the ability to ex-
port cast vote records (CVRs) and vote totals from the
voting system, separated by precinct and other criteria.
Unfortunately, many current voting systems cannot re-
port vote tallies in this fashion, and provide no way to

export cast vote records [20], posing a barrier to adop-
tion of risk-limiting audits. Our tool provides a way to
generate CVRs and makes it easy to generate vote tallies
for arbitrary batch sizes, enabling risk-limiting audits to
be more efficient. Thus, our tool eliminates a key barrier
to adoption of risk-limiting auditing [6, § 4].

Finally, our tool can support ballot-level audits [4, 3].
For example, if the order of ballots is maintained after
scanning, our tool enables ballot-level audits using the
order of ballots [3, § 2]. Thus, our work eliminates a
barrier to ballot-level auditing that was identified in prior
work [19, § 6]. See Section 2.4 for further discussion.

We are not the first to articulate this vision. The
Humboldt Election Transparency Project initially pro-
posed parallel tabulation [7], and in support of this goal,
the ground-breaking TEVS system [21] (the successor
to Ballot Browser) was built to automate the process of
tabulating an election from scanned ballot images. Our
work was motivated by an attempt to use TEVS during
several risk-limiting audit pilots in California in 2011.
We found that at this point in its development, TEVS
required some adaptations to the code and/or (due to its
reliance upon OCR) manual post-processing of its output
for each election [17, 18]. We design techniques to ad-
dress these problems and build a tool, OpenCount, that
provides software support for risk-limiting audits. Our
early prototype was used in California pilots in 2011, and
we plan to use the refined tool to assist with risk-limiting
audits in 6 more counties in 2012.

This paper makes the following contributions:

• We design techniques to recognize and tabulate
votes, given only scanned ballot images. Our meth-
ods require no support from the official voting sys-
tem and do not rely upon election definition files.

• We implement these techniques and show that they
scale to large elections and are robust enough to
handle the cases that arise in practice.
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• We demonstrate our techniques and our tool on five
elections held in five California counties in 2011
and show that OpenCount is at least as accurate as
currently deployed voting systems for this dataset.

2 Problem Statement

2.1 Terminology
We define some terms we will use throughout the pa-
per. A blank ballot is a paper ballot as it was originally
printed, with no voter marks on it. A voted ballot is the
ballot after a voter has marked his/her ballot and cast it.

Each ballot contains a set of contests. A contest in-
cludes a list of candidates, with one voting target per can-
didate. A voting target is an empty oval, broken arrow, or
other location on the ballot where the voter should mark
her ballot, if she wants to indicate a vote for the associ-
ated candidate. A cast vote record (CVR) is a record of
all selections made by the voter on a single voted ballot.

The ballot style is the set of contests found on the bal-
lot as well as the visual organization of these contests on
the ballot. For example, an English-language ballot may
have the same set of contests as a Spanish-language bal-
lot, but because their text is different, we consider them
as two different ballot styles. Ballots may also contain a
precinct number or a tally group for accumulation (e.g.,
absentee vs. polling-place). We do not distinguish be-
tween blank ballots whose content is visually identical.

The grouping patch is a region on the ballot that
uniquely determines the ballot style and blank ballot. For
example, the grouping patch might be a location on the
ballot where the precinct number is printed. In some
elections, we use multiple grouping patches: for exam-
ple, one grouping patch might encode the precinct, an-
other might encode the language, and (in a primary elec-
tion) a third might encode the party affiliation.

2.2 Goal
Our goal is to count a set of paper ballots, given just two
kinds of information: scans of all of the voted ballots,
and scans of blank ballots. In particular, we use only the
human-readable information that is found on the face of
the ballots—the same information that voters see. We
want to compute vote tallies and CVRs, given this set of
scans.

Deployed voting systems typically use election defini-
tion files, generated by the ballot layout definition sys-
tem, to determine where to look for voter marks and
associate them with particular candidates. We deliber-
ately avoid relying upon election definition files, both
because the election definition file can be faulty (caus-
ing deployed systems to mis-count votes) and because

we want to independently count the ballots without any
dependencies on other voting software.

We assume that someone has scanned all of the voted
ballots, and has scanned one instance of each visually-
unique blank ballot, using a standard document scanner.
The logistical details of the scanning process are out of
scope for this paper.

2.3 Technical Challenges

There are several non-trivial challenges in building a sys-
tem to count the ballots. First, our system must be scal-
able: it must be able to process all of the data associ-
ated with large elections, in a reasonable amount of time
(hours or days, not weeks). This imposes severe restric-
tions on the kinds of algorithms that we can use: a system
that takes 1 second of computation per ballot may be ac-
ceptable, but one that takes 100 seconds per ballot would
be unworkable (for an election with 100,000 ballots, pro-
cessing would take about 16 weeks).

Second, and closely related, the system must be ro-
bust. We have found that, when dealing with large num-
bers of ballots, unusual cases are common. There will
always be some ballots that are scanned imperfectly –
effects from transformation (rotation, skew), distortion
(scanner noise, specks of dust), and illumination differ-
ences may be prominent. An extreme (yet observed) case
includes the physical destruction of the paper ballot itself
(tears, creases, and other damage). Our system must be
able to handle all of these cases gracefully. A method
that works on 99.9% of ballots is too fragile; in an elec-
tion with 100,000 ballots, such a method would fail on
100 ballots. The robustness requirements rule out many
techniques that may at first glance appear promising.

Third, the system should be general: it should not rely
upon hard-coded assumptions that are specific to ballots
from a particular voting vendor. For instance, it should
not rely upon decoding barcodes or timing marks that
may be found on the ballot, as those are vendor-specific.
We do not want the system to be limited to handling bal-
lots from a particular set of voting system vendors.

Lastly, the system must be self-contained: it must not
require any additional data sources beyond the scanned
images. This poses algorithmic challenges. For instance,
when processing a voted ballot, we need to identify the
corresponding blank ballot, so that we can identify the
set of contests on the ballot, find the location of all vot-
ing targets, and then check for marks at those locations.
However, when an election might have 100 or 1000 dif-
ferent types of blank ballots, it is not clear how to quickly
map each voted ballot to its corresponding blank ballot,
within the time budget. We devise algorithms to solve
this problem efficiently.
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2.4 Applications to Auditing
OpenCount could be used to support election auditing in
three ways, elaborated below.

Parallel audits. If election officials scanned all pa-
per ballots and made the scans available to the public,
OpenCount could be used to count those scanned bal-
lots. Because OpenCount is open source, any candidate,
observer, or interested member of the public could use
OpenCount to interpret and count the ballots. However,
this procedure assumes that OpenCount is correct and
that the published scans accurately reflect the paper bal-
lots actually cast in the election [16], which limits the
level of confidence attainable through such an approach.

Batch-level risk-limiting audits. OpenCount can be
used to support risk-limiting audits, performed at a batch
granularity. Generally speaking, the smaller the batch,
the more efficient the audit is, so there are good reasons
to want to use batches that are as small as possible. The
audit procedure needs vote tallies for each batch. Unfor-
tunately, many currently deployed voting systems cannot
produce vote tallies for batches that are smaller than a
precinct. This is a key barrier to broader use of small-
batch risk-limiting audits [6, § 4].

OpenCount meets this need: it supports counting
arbitrarily-defined batches. Batches can be defined by
any combination of attributes printed on the ballot (e.g.,
precinct number, mode, ballot type, party affiliation, lan-
guage), as well as any structure inherent in how the bal-
lots are scanned (e.g., if ballots are scanned in batches,
OpenCount can produce corresponding batch-level tal-
lies). Thus, OpenCount satisfies a prerequisite for adop-
tion of small-batch risk-limiting audits. Election officials
can scan their ballots in batches using an ordinary doc-
ument scanner, process the ballots using OpenCount to
obtain batch-level tallies, and then verify those tallies us-
ing a batch-level risk-limiting audit.

OpenCount also solves a related challenge associated
with auditing of absentee ballots. Some jurisdictions do
not sort their absentee ballots by precinct; instead, they
scan them in batches. The natural way to audit such bal-
lots is using those same batches. Unfortunately, many
deployed voting systems cannot export vote tallies for
each batch, which makes it difficult to audit the absentee
ballots in this situation. OpenCount solves this problem.

Ballot-level risk-limiting audits. Ballot-level audits
have the potential to be especially efficient, because the
batch size is a single ballot. However, most deployed vot-
ing systems do not provide the information that is needed
to perform ballot-level audits [3, § 2].

Ballot-level audits require a cast vote record (CVR)
for each ballot and some way to uniquely associate each
paper ballot to its CVR. Most deployed voting systems

cannot provide this information. OpenCount meets this
need. Election officials can scan the ballots, maintain
them in the order they were scanned, and process the
scanned images using OpenCount. OpenCount can pro-
duce a CVR for each ballot, in the same order as the pa-
per ballots. The ordering of the ballots provides a way
to link each paper ballot to its CVR. Then, given these
CVRs, one could apply SOBA [3] or another ballot-level
risk-limiting audit method.

Alternatively, if ballots are stamped with a unique
number while they are scanned (a feature that is sup-
ported by many commercial scanners), OpenCount can
be used to enable ballot-level auditing without any sup-
port from or changes to the official certified voting sys-
tem [4, 3].

Note that using OpenCount to facilitate risk-limiting
audits does not require trusting OpenCount; the audit
process verifies the accuracy of OpenCount’s results.
This is a transitive audit [12]: to address limitations in
the official voting system, we count the ballots a second
time using OpenCount, check that OpenCount reports
the same winner as the official voting system, and then
use a risk-limiting audit to verify the accuracy of Open-
Count’s results. The benefit of using OpenCount is that
it can produce the information needed by risk-limiting
audit procedures—something that is beyond the capabil-
ities of many currently deployed voting systems.

3 Overview of Approach

3.1 Principles

Our design is influenced by several principles. First
and foremost, OpenCount uses a hybrid of computer vi-
sion algorithms together with human assistance. Neither
alone is sufficient; human classification does not scale,
but computer vision cannot ensure that ballots are inter-
preted as a voter or election official would. Thus, we
use vision-based algorithms for scalability, and we rely
upon assistance from a human operator to guide the al-
gorithms in edge cases or situations where voter intent is
ambiguous. The technical challenge is to identify how to
direct the computation so the operator’s workload is min-
imized. In short, OpenCount can be thought of as a hy-
brid man/machine system; one of the novel contributions
of OpenCount lies in the specific details of which tasks
are performed by algorithms and which are performed by
the operator.

Second, to ensure accuracy, OpenCount emphasizes
verification. Because computer vision algorithms can
make mistakes, we ensure that every computation per-
formed has a simple operator-assisted verification step.
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Figure 1: The OpenCount pipeline. Blank ballots are shown in black, and voted ballots in blue. Steps requiring
operator assistance are labeled with the person icon; all others are automated. The steps shown in grey are only
required when the election has multiple blank ballots. Section 3.2 describes each step.

3.2 Phases of computation

We now provide a brief overview of each phase of Open-
Count. Figure 1 shows a diagram of the major steps in
our system. Our pipeline is split up into two phases:
blank ballot processing and voted ballot processing.

3.2.1 Blank ballot processing

The first phase involves interleaving computer vision and
operator assistance in order to annotate the blank ballot
images.

Preprocessing. The preprocessing stage transforms
the scanned images (both the blank ballots and the voted
ballots) into a normalized state which makes them easier
to manipulate during the pipeline. In particular, prepro-
cessing first straightens the images, and then resizes all
images. These two steps simplify further computation.

Target and contest detection. In this step, the oper-
ator identifies the voting targets: the operator draws a
bounding box around an example of a voting target, and
OpenCount uses this to automatically find other voting
targets. The operator can inspect the result and adjust the
automatic results if necessary. Then, the operator collab-
orates with OpenCount to cluster the targets by contest.

Contest data entry. Next, the operator enters the title
and candidate list for each contest. The purpose of this
step is twofold: first, it allows OpenCount to correctly
link all appearances of a contest on multiple ballots (e.g.,
the President contest may appear on many different bal-
lot styles); and second, it allows the result of the election
to be accumulated in a human-readable format. We do
not rely on Optical Character Recognition (OCR); it is
not reliable enough for our purposes.

Grouping patch selection. If the election has more
than one blank ballot, the operator draws a bounding
box around the grouping patch for each blank ballot. If
the election has just a single blank ballot, this step is
skipped. The grouping patch is a part of the scanned bal-
lot that allows us to distinguish between blank ballots,
based solely upon the contents of this part of the ballot.
We assume elections have some grouping patch which
can be used for this purpose.

3.2.2 Voted ballot processing

After the blank ballots have been annotated for an elec-
tion, we perform processing on voted ballots for tabula-
tion.

Ballot grouping. “Grouping” is the process of associ-
ating each voted ballot with its corresponding blank bal-
lot. OpenCount examines the grouping patch of each
voted ballot to find its corresponding blank ballot. This
allows OpenCount to accurately locate all voting targets
on each voted ballot.

Grouping verification. The operator then verifies that
the grouping was accurate. We describe our methods for
doing this efficiently in Section 4.6. Any mistakes found
during verification can be corrected.

Target extraction. After all ballots have been grouped,
we extract the voting targets from each voted ballot. For
each voting target on its corresponding blank ballot, we
extract the region at the same location on the voted ballot:
this is the voting target as it appears on the voted ballot.
The result is a collection of images of the voting targets
(whether marked or not) on each voted ballot.

Target classification and verification. Next, Open-
Count helps the operator classify each extracted voting
target image as either marked or unmarked. OpenCount
displays these images, sorted by average pixel intensity
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(a) First pass (b) Second pass

Figure 2: Preprocessing detects and corrects for rotation
by detecting long lines. We show the lines discovered by
the first pass and second pass of our method.

and organized in a grid. The operator sets a threshold cut-
off value that is used to separate marked and unmarked
targets. The operator then corrects any classification er-
rors that may remain. The operator can also view the en-
tire ballot associated with a single target if more context
is needed in order to determine the intent of a mark.

Postprocessing. Finally, OpenCount collects the target
classifications and generates a CVR for each voted ballot.

4 Algorithms

4.1 Preprocessing
During the ballot scanning process, images typically ex-
perience small, random amounts of rotation and trans-
lation (i.e., a shift in some direction) between each scan.
To better manage this variability, we perform preprocess-
ing on all ballots to undo rotation at a coarse level.

In order to detect rotation, we use a linear Hough
transform that is selective for near-vertical and near-
horizontal lines, defined as being at some relatively small
angle θ (θ ≤ 4◦) to either the vertical or the horizontal
axis. We operate under the assumption that each ballot
type will contain 2 or more relatively long vertical or hor-
izontal lines. The parameters to the Hough transform are
selected to detect lines whose length is at least 4

5 of the
ballot width; they are adjusted dynamically if no lines
are found or if too many lines are found. The rotation
detection occurs in two passes.

First pass. We first run a rough Hough transform, sen-
sitive to 0.1◦ for the entire range of possibilities (e.g.,

Figure 3: After the operator selected one voting target on
this blank ballot from Merced County, OpenCount auto-
matically detected the location of most of the voting tar-
gets. The green bounding-box is the exemplar target—
the rest were auto-detected by OpenCount. Note the two
undetected targets: the operator will have to identify an-
other exemplar target to help OpenCount detect the rest.

4◦ from the horizontal or the vertical in either direction).
For each discovered line, we calculate its angle of rota-
tion from the vertical axis. To filter out possible outliers,
we take a trimmed mean of the discovered angles as our
first-order approximation of the rotation angle.

Second pass. To improve precision, we run another
Hough transform, this time over a narrower range of pos-
sible angles (0.1◦ in either direction from the estimate
obtained in the first pass), sensitive to 0.01◦. To estimate
the overall rotation angle, we take the median of the re-
sulting values. Figure 2 displays the lines found by both
passes on a sample ballot.

4.2 Voting target detection
OpenCount needs to identify the locations of all voting
targets on all ballots. This task is nontrivial. Differ-
ent ballot vendors deploy widely-varying ballot styles,
each with their own style of voting target. In addition,
while empty voting targets (with no voting marks) all
look identical, marked voting targets exhibit broad varia-
tion, as different voters may mark their ballot differently.
This makes it difficult to identify the location of voting
targets from the voted ballots.
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Our solution is to find the location of all voting tar-
gets by analyzing the blank ballots. On the blank ballots,
the voting targets are uniformly empty (unmarked) and
look visually identical, so it is easy to recognize all tar-
gets if we are given information about what an empty
voting target looks like. We ask the operator to iden-
tify an example of an empty voting target by drawing a
bounding box around it. OpenCount then automatically
identifies other targets using template matching, a pro-
cess for finding other places where a template image ap-
pears in a second image. The operator can inspect the
results; if this automatic process has missed any voting
targets, the operator can indicate them and OpenCount
will use template matching to find additional instances it
missed in the first round, repeating until all targets have
been found. Figure 3 shows the result after OpenCount
has located voting targets using one round of template
matching.

Template matching takes as input two images: an im-
age I, and a template image T . A search is performed
on I in order to try to identify possible locations where T
might appear in I by comparing all T -sized patches in I
to T with some comparison metric. OpenCount currently
uses the Normalized Correlation Coefficient (NCC) [11]
as the metric.

Due to differences in image conditions across ballot
scans (e.g., scanner noise, skew), template matching may
not detect all voting targets. If this happens, the operator
can draw a second bounding box around another voting
target. This allows OpenCount to template match on that
voting target as well. If template matching produces false
matches, as a last resort the operator can move, resize,
or delete targets. In our experience, typically it suffices
to identify one or two examples of voting targets. The
operator must then review the detected target locations
on all blank ballots, but this can usually be done rapidly.

4.3 Clustering targets into contests

Next, OpenCount attempts to automatically identify
which voting targets are part of the same contest, using
heuristics based upon the spacing and layout of the tar-
gets. The operator can inspect this clustering and adjust
it manually if needed.

The intuition behind our algorithm is simple: on any
given ballot, within a contest C, there typically is a fixed
distance D between all voting targets within C. We use
the smallest distance D′ between any two targets as an
estimate for D. Then, if two voting targets T1 and T2 are
within (1+ε) ·D′ pixels of each other (where ε is a small
error factor), we merge T1 and T2 into the same contest.
All distances are measured using the Euclidean distance.

Figure 4: The user interface for entering contest titles
and candidate names.

4.4 Labeling contests
Next, OpenCount asks the operator to label each con-
test with its title (e.g., “President”), as well as the names
of all candidates running in each contest (e.g., “Barack
Obama”, “John McCain”, etc.). The operator manually
enters this information for each contest on each differ-
ent kind of blank ballot. If same contest appears on
many ballots, the operator only needs to enter the text
once; thereafter, the operator can select the contest from
a drop-down of previously entered contests.

While this may seem like a scenario in which Opti-
cal Character Recognition (OCR) is easily applicable,
we have found that open-source OCR libraries make too
many errors and are too unreliable for this purpose. In
addition, OCR is a “black box”, so if it does not work
well for some inputs, one has limited recourse, which
makes systems that rely upon OCR more fragile. This
makes OCR an unappealing choice for our purposes.

The user interface is shown in Figure 4. This screen in-
cludes a picture of the entire ballot (with color highlights
used to indicate which contest the operator is currently
working on and which contests have been completed)
and an enlarged display of the current contest, which can
be panned or zoomed by the operator if needed. Open-
Count uses several heuristics to identify which part of
the ballot to display enlarged; however, because the op-
erator can pan this image, the heuristics do not need to
be perfect.

4.5 Grouping
OpenCount automatically finds, for each voted ballots,
its corresponding blank ballot by checking which one has
a matching grouping patch.

The grouping computation assumes that ballots con-
tain an image region, called the grouping patch, that al-
lows for a unique mapping from a voted ballot to a blank
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(a) San Luis Obispo County (b) Alameda County

Figure 5: Examples of grouping patches shown in blue
for two types of ballots. For ballot (a), we use the timing
marks as the grouping patch. For ballot (b), we used a
precinct number and some text (which uniquely identi-
fies the language) as the grouping patch.

ballot. This might be a portion of the timing marks (see
Figure 5(a)), or it might be a region that captures the
precinct number and ballot language (see Figure 5(b); the
language was crucial in this example, because the voting
targets are at different locations on different-language
ballots). We utilize the NCC-based template matching
technique, along with a direct pixel-based registration al-
gorithm, to find the blank ballot whose grouping patch
best matches that of the voted ballot. For each voted bal-
lot, the algorithm simply scores how well the patch from
the voted ballot matches the patch from each possible
blank ballot; the closest match is assumed to be correct.

Direct pixel-based registration. A key challenge is
that the voted ballot might not be perfectly aligned to
the blank ballot, so we must correct for this. We model
transformations between a voted ballot and a blank ballot
using a rigid model. Motion between a point x and x′ is
governed by the equation x′ = Rθ x+ t. Rθ is a rotation
matrix, parameterized by θ , the degree of rotation, and
t is a translation vector. This model allows for transla-
tion and rotation between the two images, but does not
allow for other changes, such as scale or skew. Though
other models have the power to capture broader families
of transformation, the rigid model has fewer degrees of
freedom, making it easier to estimate. Furthermore, the
rigid model is sufficient to capture the variation typically
introduced during the scanning process. We adopt the
Lucas-Kanade [14] algorithm, which finds the parame-
ters θ , t that minimize the least squared error between
two images.

squared error = ∑
x
[I(W (x;θ , t))−T (x)]2

Algorithm 1 Pyramid ballot grouping
b: Voted ballot image
G: Set of grouping patches from blank ballots
mx: Maximum scale

1: procedure BALLOTGROUPING(b,G,mx)
2: p← SUPERREGION(b,G)
3: s← INITMINSCALE(G)
4: step = (mx− s)/ log2 |G|
5: while |G|> 1 do
6: for i = 1,2, . . . , |G| do
7: ri← NCC+LK(p,Gi,s)
8: end for
9: Sort r, to get π such that rπ(1) ≤ ·· · ≤ rπ(|G|).

10: G←{Gπ(1),Gπ(2), . . . ,Gπ(|G|/2)}
11: s← s+ step
12: end while
13: end procedure

The function W (x;θ , t) represents the location of pixel x
after being warped by the transformation with parame-
ters θ and t, which capture rotation and translation. We
refer the reader to Lucas, Baker, et al. [14, 2] for a de-
tailed review of this class of algorithms.

NCC+LK. To compute the similarity between a bal-
lot and a particular grouping patch, we pair the NCC
template-matching algorithm with Lucas-Kanade. This
is done for two reasons: (1) variation in the scanning
may affect the exact location of the grouping patch and
(2) Lucas-Kanade is a gradient descent-type algorithm,
sensitive to good initialization.

To score how well a grouping patch matches a blank
ballot, we first perform NCC using the patch, then run
Lucas-Kanade on the best matching location. The score
output by NCC+LK is the least-squares registration error
from Lucas-Kanade.

The pyramid optimization. We have developed an
optimization that significantly speeds up this compu-
tation, by first performing the comparison on smaller,
downsampled (lower-resolution) versions of the images
to quickly prune away poor matches.

In computing the NCC+LK, we only consider the re-
gion in the ballot around the union of the grouping patch
regions. We define SUPERREGION(b,G) to compute
the union of the bounding boxes of G, expanded, and
cropped from ballot b. We adopt a pyramid scheme to
efficiently find the closest match in G. The pyramid
scheme initially applies NCC+LK to smaller-scale ver-
sions of the patches, then throws away the worst matches
and repeats the process on the surviving pairs at a higher
resolution.

Let the initial set of grouping patches be G. Let
p← SUPERREGION(b,G). We downsample p and the
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Algorithm 2 Starting scale computation
T : Set of blank ballot images
G: Set of grouping patches from T
mn: Minimum scale
mx: Maximum scale
d: Scale step

1: procedure INITMINSCALE(T,G,mn,mx,d)
2: for i = 1,2, . . . , |G| do
3: G′← G\{Gi}
4: g← SUPERREGION(Ti,G′)
5: s← mx
6: for j = 1,2, . . . , |G′| do
7: r j← NCC+LK(g,G′j,s)
8: end for
9: Let x be the index that minimizes rx.

10: repeat
11: s← s−d
12: for j = 1,2, . . . , |G′| do
13: r j← NCC+LK(g,G′j,s)
14: end for
15: Sort r, so rπ(1) ≤ ·· · ≤ rπ(|G|).
16: until π−1(x)≥ 1

2 |G
′| or s≤ mn

17: yi← s
18: end for
19: return MAX(y)
20: end procedure

patches in G to an initial minimum scale s. Next we mea-
sure the NCC+LK response of each patch in G to p and
prune away the worst scoring half, retaining the remain-
ing set. Then we increment the scale s and repeat the
matching and pruning process on the pruned set G. This
continues until only a single element remains in G. The
algorithm is summarized in Algorithm 1. Gi represents
the ith element of G.

This approach depends on knowing the smallest scale
to begin the pyramid searching. Given the blank ballots
T and patches G, we compute the smallest scale that al-
lows for discrimination between grouping patches. The
intuition behind our approach is that for any given blank
ballot, we find the most similar grouping patch at the full
scale, then continue reducing the scale until that patch
is no longer among the top half closest matches to that
blank ballot.

In more detail, consider a blank ballot Ti. We crop out
the patch from Ti, call it g. We compare g to the patches
G′ from all other blank ballots, computing the NCC+LK
response for each at full scale. Suppose g∗ ∈ G′ is the
closest match to g, at full scale. Intuitively, this means
that g∗ is the patch that is hardest to distinguish from
g. We repeatedly reduce the scale and recompute the
NCC+LK response at each scale until the patch g∗ falls

(a) Cluster needing split (b) New cluster after split

Figure 6: A screenshot of the grouping verification UI.
The figure on the left (a) shows a cluster overlay that con-
tains at least one erroneously grouped ballot; the opera-
tor should click split to separate these ballots into two or
more sub-clusters. The figure on the right (b) shows the
resulting sub-cluster. One can readily verify that all of
the ballots in the new sub-cluster are correctly grouped.

outside the top half of responses. This algorithm is sum-
marized in Algorithm 2. We track the order of similarity
of elements G to be used later in grouping verification.

In our pyramid approach, the most NCC+LK compar-
isons are performed at the smallest scale, with the num-
ber of comparisons halved at every scale increase. The
performance of both NCC and Lucas-Kanade is highly
dependent on the scale of the image patches: they are
much more efficient at small scales. With this approach,
we can prune away the most dissimilar patches at lower
resolutions while only comparing the most similar ele-
ments at the highest resolutions. In the situation where
we have a large number of blank ballots, this results in
significant computational gains. In practice this proce-
dure is run twice — one for the original ballot image and
a version rotated by 180◦ — to handle flipped ballots.

4.6 Grouping verification
Following the automatic grouping, the operator is pre-
sented with a simple interface to correct and verify the
resulting mapping from voted ballots to blank ballots.
We refer to the set of ballots matched to the same blank
ballot as a ballot cluster. The operator views a summary
image of all ballots in a ballot cluster, one cluster at a
time (see Figure 6). For each cluster, the operator can
(a) accept the cluster as accurately grouped, (b) indicate
that the cluster contains voted ballots from multiple dif-
ferent underlying blank ballots, erroneously merged, or
(b) correct errors by changing the blank ballot that all of
the ballots in the cluster are associated with.

Verification. We visually summarize all of the ballots
in the cluster using an image overlay [5]. An overlay is a
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Inputs: ballot (left) and template (right)

Global alignment Isolate region Local alignment

Figure 7: The target extraction procedure. The voted ballot is shown in blue and the blank ballot is in black. (1)
First, we align the ballot to the blank ballot, globally. Since the transformation introduced by scanning is not perfectly
uniform across a ballot, we (2) isolate a region around each voting target and (3) perform alignment once more, locally.
Finally, we extract the bounding box corresponding to the location of the target on the blank ballot.

concise way of summarizing a large collection of images
that are allegedly nearly identical. We show both a min
overlay, which intuitively contains the union of the black
pixels in the collection (if any image in the collection has
a black pixel at location (x,y), then so does the overlay
image), and a max overlay, which contains the intersec-
tion of the black pixels. To verify a cluster, the oper-
ator views an overlay of all the grouping patches from
the cluster, juxtaposed with the grouping patch from the
blank ballot that these were associated with, and the op-
erator judges whether or not the association is correct.

Oor experience is that overlays make it easy for a hu-
man operator to quickly check whether all of the bal-
lots were correctly associated to their matching grouping
patch. See, for instance, Figure 6 for an example where
the cluster contains at least one incorrectly grouped bal-
lot (Fig. 6(a)) and an example where all ballots were cor-
rectly grouped (Fig. 6(b)).

Re-label cluster. Another action the operator can per-
form is to re-label the cluster. If the operator observes
that the overlays have been incorrectly labelled (i.e.,
associated with the wrong blank ballot), she may use
a drop-down menu to correct the error and select the
matching blank ballot. The choices are ordered using
scores from the grouping stage.

The ordering of blank ballots for a cluster is created
in the following way. From the grouping step we have
a ranked list of blank ballots, called Lb for a ballot b.
Our goal is to combine the lists of all ballots in a clus-
ter to form a single ranked list, to be used for the drop-
down menu. We implement the following weighted vot-
ing scheme: for each ballot, go through its ordered list
of Lb and cast a vote worth 2− j for each blank ballot,
where j is the position of the blank ballot in Lb. Thus,
a blank ballot will receive 1 vote from ballots for which
it is the best match, 1

2 votes from ballots for which it is
the second-best match, etc. The final ranked list of the
cluster is obtained by sorting these votes in descending
order.

Split cluster. Finally, if the operator observes that the
cluster of ballots appears to represent multiple different
blank ballots (i.e., some ballots were wrongly merged
into this cluster), the operator can correct the error by
splitting the cluster. This action will divide the cluster
into smaller clusters based on scores from the grouping
stage. The system then guides the operator through ex-
amining each of the smaller clusters, using the same in-
terface.

To split a cluster of ballots, we again utilize each bal-
lot’s ranked list of candidate blank ballots, and group the
ballots according to the nth blank ballot on the list, where
n is the smallest entry in such that we observe a differ-
ence in blank ballots among ballots in a cluster. For ex-
ample, if all the ballots in a cluster have the same rank
list of blank ballots up until the 5th element down their
lists, then the ballots are re-grouped based on that ranked
list index.

4.7 Voting target extraction

Once the voted-ballot-to-blank-ballot association is es-
tablished, we extract the voting targets from each voted
ballot. The blank ballots tell us where the voting tar-
gets are located; we then look at the same location in the
voted ballot, and crop out regions around the voting tar-
gets so that later stages can classify them into filled vs.
empty.

The main challenge is to align the voted ballot and
its corresponding blank ballot, so that the locations of
the voting targets in each are aligned. We solve this in
two steps: (a) coarse global registration and (b) fine lo-
cal registration around each individual target. We use
the content of the ballot itself for alignment, not the
ballot-specific registration marks which are sometimes
obscured or missing from the scanning process. In this
phase, we again use a rigid transformation model and di-
rect registration algorithms (as described in Section 4.5).

The first step is to estimate the transformation between
the voted ballot and its corresponding blank ballot at
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a coarse level, using the entire ballot image. We use
the Lucas-Kanade algorithm, with a rigid transforma-
tion model. The ballot and blank ballot are both down-
sampled prior to coarse registration for performance rea-
sons.

This produces an approximate alignment, but it is
not perfect. Though the rigid transformation can model
much of the variation between scanned images, often the
variation introduced by scanning is not perfectly uniform
across the image. Thus, it is possible for one region
of the ballot to be well-aligned, while another region is
not. Our second step, local alignment, addresses this
problem. During local alignment, we apply the Lucas-
Kanade algorithm to small regions around each voting
target, separately and individually. Figure 7 shows an
example of this two-step process.

4.8 Quarantining

For robustness, our processing pipeline is designed to au-
tomatically sanity-check its results and detect anomalies.
Anomalous ballots are quarantined for manual review.
Figure 12(b) shows examples where operator assistance
was necessary. The top image shows an example where
unusual voter marks can result in unpredictable situa-
tions that are best interpreted by a human; the bottom
image illustrates a case where only part of the ballot was
scanned, a situation that we cannot resolve automatically.

We detect anomalous ballots using a outlier detection
procedure. We use distance-based outliers [10]: a value
is a DB(p,D)-outlier when at least a fraction p of all
other values in the dataset E are of distance greater than
D from it. One appealing aspect of this approach is that
the observed data need not follow a standard distribution.

During target alignment, we track the final least
squares registration error from each target’s local align-
ment step and use those values for outlier detection. This
is a single value for each target that estimates the good-
ness of fit of the registration around that target. For each
voting target, we form the set E of least squares registra-
tion errors for that target (across all ballots in the elec-
tion) and check for DB(p,D)-outliers among the set E.
In other words, we declare a registration error error e∈ E
an outlier if we have |e− e′|> D for at least a p fraction
of all e′ ∈ E. This can be computed efficiently by sorting
the set E and iterating over its entries. In our work, we
set p = 0.999 and D = (max(E)−min(E))/2 and per-
form the outlier test separately for each different voting
target. Ballots containing any flagged targets are quaran-
tined and set aside for manual review.

Figure 8: The mark classification step. The main screen
shows all the targets in a grid. In purple, we show a
zoomed-in version of a portion of this screen image. The
operator can both set a global threshold and mark targets
that are mis-classified by the threshold. Also, the op-
erator may select a particular target and view the ballot
containing that target, to help adjuticate voter intent.

4.9 Mark classification

The final step in OpenCount is to classify each extracted
target from the voted ballots as either “marked” or “un-
marked”. We display all of the extracted targets in a grid,
sorted by their average pixel intensity (similar to Ballot-
Tool [13]). The operator can then select a threshold that
separates the marked voting targets from the unmarked.

In nearly all cases, voting targets are clearly marked or
unmarked, as a majority of voters completely fill in the
voting targets, so this approach works well for the over-
whelming majority of voting targets. However, a small
fraction of targets are borderline or less clearcut. We
handle these marginal marks through manual review. We
treat the operator as a domain-specific expert who has
the final say, sidestepping the difficult problem of auto-
matically inferring voter intent for marginal marks. In
particular, the operator can adjuticate the status of any
individual target and override the threshold-based clas-
sification for that target. If voter intent is unclear from
the voting target alone, the operator can view the corre-
sponding ballot (Figure 8) to help determine voter intent.

We have found that the grid-based interface is very
helpful, as it allows the operator to efficiently scan a large
collection of voting targets. Unusual or borderline cases
tend to stand out visually.

As an optimization, OpenCount initially estimates a
suggested threshold using clustering techniques. We
make the simplifying assumption that the average pixel
intensities of marked and unmarked targets each follow
normal distributions, and we set the initial threshold as
the value that minimizes the difference between the two
actual distributions and the best-fit normal distributions.

We do not attempt to resolve write-ins [9]. Instead,
we treat all write-in votes as votes for a single synthetic
candidate, “write-in.”
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Election Name Voted Ballots Blank Ballots Resolution

Alameda 1374 8 1460×2100
Merced 7120 1 1272×2100
San Luis Obispo (SLO) 10689 26 1700×2200
Stanislaus 3151 1 1700×2800
Ventura 17301 1 1408×3000

Table 1: We use data from five California counties.

Dataset Prepr. Template Ballot Grouping Target Target Avg. per Operator Total
(C) creation (H) grouping (C) check (H) extract. (C) check (H) ballot (C) total (H) in min.

Stanislaus 594 31s - - 478s 53s 0.34s 84s 19 mins
Merced 1011s 108s - - 3045s 712s 0.57s 820s 81 mins
Ventura 2851s 107s - - 6197s 490s 0.52s 597s 161 mins
Alameda 848s 510s 403s 87s 896s 162s 1.56s 759s 48 mins
SLO 1924s 438s 6219s 998s 5722s 29s 1.30s 1465s 256 mins

Table 2: Timing information for each dataset. Steps that use operator interaction time are labeled with (H) and steps
that use computing time are labeled with (C). In template creation, we sum the total time required by the operator to
detect targets, perform data entry, and select grouping patches.

5 Evaluation

We evaluated our system on data from the California
2011–2012 post-election risk-limiting audit pilot pro-
gram [1]. The data covers elections in five counties and
includes voted ballots, blank ballots, and CVRs. See Ta-
ble 1 for a summary.

The CVRs obtained from the dataset were produced
from a much earlier prototype which we used to conduct
the audits in 2011. During those audits, we compared
the CVRs against the official voting tallies. In the few
cases where discrepancies were found, these CVRs were
consistently found to be more accurate than the official
tallies. For sake of evaluating our current system, we
regard the existing CVRs as ground truth and measure
the accuracy of OpenCount by comparing its output to
the CVRs provided in the datasets.

In our evaluation, we measure both operator interac-
tion time and computation time; see Table 2. A member
of the team that developed OpenCount served as operator
in all the tests. All timings were measured on a four-core
machine with an Intel i7-950 CPU and 12GB of RAM.

We emphasize that we do not claim to develop the
most sophisticated fully-automated vote tabulation sys-
tem. Rather, our system helps a trained human opera-
tor find the difficult cases to make an informed judge-
ment. We highlight all such difficult cases in each eval-
uation. We also highlight interesting examples of ballots
detected as outliers for each dataset.

Three of the elections—Merced, Stanislaus, and
Ventura—had only a single ballot style, and thus did not
exercise the grouping step. Two others had multiple bal-
lot styles and required grouping. We use OpenCount to
process all datasets with no additional tuning. See Fig-

(a) Stanislaus (b) Merced (c) Ventura

Figure 9: Example ballots from three counties.

ures 9, 12, and 13, for example ballots.
In every one of the five elections, with the possible

exception of a few judgement calls, we achieve perfect
accuracy. These judgement calls represent ambiguous
cases where the human operator made a different deci-
sion in classifying the target, and where it is not clear
what the right outcome should be. These are unrelated to
the performance of our system.

Stanislaus. The Stanislaus County ballots were pro-
cessed in 19 minutes. (0.34 seconds of computation per
ballot). The CVRs generated by OpenCount matched the
ground truth completely. In this election only a single
contest was audited, resulting in minimal operator effort
during contest labeling.

Merced. The Merced County ballots took 81 minutes
to proces. We observed some discrepancies between
the CVRs produced using OpenCount compared to the
ground truth. Upon closer inspection, we believe that all

11



(a) (b)

(c) (d) (e)

(f) (g)

Figure 10: In these examples, the ground truth registered
a vote but OpenCount’s operator treated them as non-
votes. In (g), the target appears to have been darkened
through erasure, damaging the ballot.

disagreements consist of borderline cases of interpreting
voter intent. Figures 10 and 11 (in the appendix) dis-
play every target disagreed upon, highlighted in blue. In
all cases, the OpenCount operator regarded the partic-
ular target as un-marked while the ground truth CVRs
treat them as marked. As we rely upon a human opera-
tor to adjuticate such cases and it is not the purpose of
these experiments to evaluate the operator’s judgements,
we make no claims about which result is “correct.” It
is enough that OpenCount helped the operator identify
these cases, so that the operator could form a judgement.

The goal of our system is to steer the operator’s atten-
tion to the difficult cases, so the operator can make an
informed decision. OpenCount was successful in doing
so. In the borderline cases mentioned above, the only
difference between the results is that the operator judged
the target differently.

Ventura. The Ventura County ballots took 161 minutes
to process We identified only one discrepancy between
our CVRs and the ground truth, shown in Figure 12(a).
We consider this another difficult case, which is left up
to election officials.

We discovered interesting ballots that OpenCount au-
tomatically flagged as suspicious (Figure 12(b)). In
one example, the scanned image is completely occluded,

(a) (b) (c)

Figure 11: In these Merced “vote for three” contests,
the ground-truth CVRs counted these as valid marks and
treated the contest as overvoted. OpenCount’s opera-
tor considered them hesitation marks (i.e., not a valid
mark), so the contest is interpreted as containing three
valid votes.

halfway down the ballot. In the other, a voter scribbled
out a marked vote, perhaps to make a correction. Both
cases were automatically flagged as outliers and set aside
for manual review.

Alameda. The Alameda County ballots took 48 min-
utes to process OpenCount produced the same CVRs as
the ground truth.

The Alameda County case study presented an inter-
esting challenge. Ballots were cast in four different
precincts, and each precinct had an English/Spanish and
English/Chinese version of each ballot. As Figure 13
shows, the choice of language influences the locations
of the voting targets. As such, the choice of grouping
patch was especially important in order for OpenCount
to be able to correctly tabulate the voted ballots. Note
that the timing marks, which are labeled in purple and
encode the precinct number, did not appear to encode the
language used. Therefore, we defined a grouping patch
that included both the precinct number and a portion of
text from the ballot (to capture the language).

San Luis Obispo (SLO). The SLO dataset was distinc-
tive due to the relatively large number of blank ballots.
OpenCount processed the ballots in 256 minutes Com-
paring the CVRs from our system yielded only one dis-
crepancy, shown in Figure 14. This is another case of
a judgement call in which the human operator made a
different decision. All other ballots matched the ground
truth CVR completely.

Discussion. Overall, our experience with OpenCount
has been positive. However, we have identified several

12



(a) (b)

Figure 12: Examples from Ventura. (a) contains a case
where the ground truth claimed three votes, while Open-
Count claimed two votes. (b) contains examples of bal-
lots automatically flagged for manual inspection.

Figure 13: Example ballots from Alameda, which has
four precincts (purple box) as well as two different lan-
guage styles. We show two ballots from the same
precinct, but with different languages; in green we zoom
in on a single contest. As the red dashed line indicates,
the language affects the location of the voting target. The
blue grouping patch captures both the language and the
precinct information in order to identify the ballot style.

areas for future improvement. While our current ap-
proach scales satisfactorily to elections with dozens of
ballot styles, the operator effort to label all contests and
verify the grouping results becomes prohibitive if there
are thousands of different ballot styles. In addition, we
have learned that the requirement to find and scan one of
each kind of blank ballot is labor-intensive for election
officials. A way to eliminate this requirement would be
valuable.

Figure 14: The one discrepancy for the SLO election.
The operator of OpenCount adjuticated this as a vote for
YES; the ground truth classifies it as an overvote.

6 Related Work

We were inspired by the pioneering work of TEVS [21]
and Votoscope [8], which attempt to solve the same
problem. As mentioned before, one difference between
TEVS and OpenCount is that TEVS is specialized to a
vendor’s particular ballot layout, whereas we try to avoid
making assumptions about ballot layout and, for robust-
ness, avoid relying upon OCR. The current implemen-
tation of TEVS supports only Hart ballots. In addition,
TEVS does not provide the operator an opportunity to
verify or visualize intermediate results of the computa-
tion, whereas it is a key goal of OpenCount to enable the
operator to verify the results of its computations.

BallotTool is another system to assist a human opera-
tor in processing a set of ballot images [13]. BallotTool
requires the operator to define the ballot layout and iden-
tify voting targets, whereas we attempt to largely auto-
mate these tasks. Our work distinguishes itself in our
tight integration of computer vision techniques with fo-
cused operator interaction. Our careful interleaving of
processing and verification enables us to reduce the oper-
ator workload while being robust to scanning errors ex-
hibited by the scanning process and general to a wide
class of ballot styles.

Nagy et al. describe a method for identifying candi-
date locations for voting targets, based upon analysis of
the timing marks on the edge of the ballot [15]. However,
we have found that not all vendors’ ballot styles contain
these timing marks. For instance, Alameda and Ventura
Counties use Sequoia ballots, which do not have the nec-
essary timing marks. In addition, their method failed on
1% of ballots in their experiments, which is too high for
our purposes. Therefore, we developed other methods.

Many recent works have looked at various aspects of
the ballot analysis problem [5, 22, 9, 13, 23]. Works
that are complementary to ours include tools for guid-
ing an operator to discover sources of errors in scanned
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ballots [5], analysis of write-in regions [9], and capturing
a stream of paper ballots at a distance using video [22].
Xiu et al. describe more more sophisticated approaches
to fully automated target classification [23], though we
have not found a need for these techniques in our exper-
iments to date.

7 Conclusion

In this paper, we present OpenCount: a scaleable, ro-
bust, and accurate tool that helps support election au-
diting. OpenCount’s unique combination of computer
vision techniques and operator assistance allows us to
operate on real-life elections, without relying upon or
integrating with vendor systems. OpenCount has been
successfully used to support risk-limiting audits in five
California counties.

The OpenCount software is available to the public at
https://code.google.com/p/opencount/.
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