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Abstract

We strengthen the foundations of deterministic public-key encryption via definitional equivalences
and standard-model constructs based on general assumptions. Specifically we consider seven notions of
privacy for deterministic encryption, including six forms of semantic security and an indistinguishability
notion, and show them all equivalent. We then present a deterministic scheme for the secure encryption
of uniformly and independently distributed messages based solely on the existence of trapdoor one-way
permutations. We show a generalization of the construction that allows secure deterministic encryption
of independent high-entropy messages. Finally we show relations between deterministic and standard
(randomized) encryption.
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1 Introduction

The foundations of public-key encryption, as laid by Goldwasser and Micali [25] and their successors,
involve two central threads. The first is definitional equivalences, which aim not only to increase our con-
fidence that we have the “right” notion of privacy but also to give us definitions that are as easy to use in
applications as possible. (Easy-to-use indistinguishability is equivalent to the more intuitive, but also more
complex, semantic security [31, 25, 26, 23].) The second (of the two threads) is to obtain schemes achieving
the definitions under assumptions as minimal as possible. In this paper we pursue these same two threads for
deterministic encryption [3], proving definitional equivalences and providing constructions based on general
assumptions.

DETERMINISTIC ENCRYPTION. A public-key encryption scheme is said to be deterministic if its encryption
algorithm is deterministic. Deterministic encryption was introduced by Bellare, Boldyreva, and O’Neill [3].
The motivating application they gave is efficiently searchable encryption. Deterministic encryption permits
logarithmic time search on encrypted data, while randomized encryption only allows linear time search [30,
12], meaning a search requires scanning the whole database. This difference is crucial for large outsourced
databases which cannot afford to slow down search. Of course deterministic encryption cannot achieve the
classical notions of security of randomized encryption, but [3] formalize a semantic security style notion
PRIV that captures the “best possible” privacy achievable when encryption is deterministic, namely that an
adversary provided with encryptions of plaintexts drawn from a message-space of high (super-logarithmic)
min-entropy should have negligible advantage in computing any public-key independent partial information
function of the plaintexts. The authors provide some schemes in the random-oracle (RO) model [4] meeting
this definition but leave open the problem of finding standard model schemes.

The PRIV definition captures intuition well but is hard to work with. We would like to find simpler,
alternative definitions of privacy for deterministic encryption —restricted forms of semantic security as well
as an indistinguishablility style definition— that are equivalent to PRIV. We would also like to find schemes
not only in the standard model but based on general assumptions.

NOTIONS CONSIDERED. We define seven notions of privacy for deterministic encryption inspired by the
work of [20, 3]. These include a notion IND in the indistinguishability style and six notions —A-CSS,
B-CSS, BB-CSS, A-SSS, B-SSS, BB-SSS— in the semantic-security style. The IND definition —adapted
from [20]— asks that the adversary be unable to distinguish encryptions of plaintexts drawn from two,
adversary-specified, high-entropy message spaces, and is simple and easy to use. The semantic security
notions are organized along two dimensions. The first dimension is the class of partial information functions
considered, and we look at three choices, namely arbitrary (A), boolean (B), or balanced boolean (BB). (A
boolean function is balanced if the probabilities that it returns 0 or 1 are nearly the same.) The second
dimension is whether the formalization is simulation (S) based or comparison (C) based.1 The PRIV notion
of [3] is A-CSS in our taxonomy. Low-end notions —think of BB as the lowest, then B then A and similarly
C then S in the other dimension— are simpler and easier to use in applications, while high end ones are
more intuitively correct. The question is whether the simplifications come at the price of power.

DEFINITIONAL EQUIVALENCES. We show that all seven notions discussed above are equivalent. The
results are summarized in Figure 1. These results not only show that semantic security for boolean functions
(predicates) is as powerful as semantic security for arbitrary functions, but (perhaps surprisingly) that one
can even restrict attention to boolean functions that are balanced, meaning semantic security for balanced

1In the first case, A’s success in computing partial information about plaintexts from ciphertexts is measured relative to that of
a simulator, while in the second it is measured relative to A’s own success when it is given the encryption of plaintexts independent
of the challenge ones. The terminology is from [7] who prove equivalence between simulation and comparison based notions of
non-malleability.
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Figure 1: Notions of security for deterministic encryption schemes and implications showing that all seven
notions are equivalent. An arrow X → Y means that every scheme secure under X is also secure under Y .
Unlabeled implications are trivial.

boolean functions is as powerful as semantic security for arbitrary functions. We note that balance in this
context originates with [20] but they only use it as a tool. We explicitly define and consider the notions
BB-CSS and BB-SSS because they bear a natural and intuitive relation to IND and because we feel that
the use made of balance by [20] indicates it is important. The proofs of our results rely on new techniques
compared to [20, 17, 18].

DEFINITIONAL FRAMEWORK. We believe that an important and useful contribution of our paper is its
definitional framework. Rather than an experiment per notion, we have a few core experiments and then use
the approach of [5], capturing different notions via different adversary classes. Advantages of this approach
are its easy extendability —for example we can capture the notions of [11] by simply introducing a couple
of new adversary classes— and the ability to capture many definitional variants in a way that is unified,
concise and yet precise.

A CONSTRUCTION FOR UNIFORM MESSAGES. Constructing a non-RO model deterministic encryption
scheme meeting our strong notions of security seems like a very challenging problem. We are however
able to make progress on certain special cases. We present a deterministic encryption scheme DE1 for the
secure encryption of independent, uniformly distributed messages. The scheme is not only without random
oracles but based on general trapdoor one-way permutations. To encrypt a random message x one iterates
a trapdoor permutation f on x a number of times to get a point y. Let r denote the sequence of Goldreich-
Levin [24] hardcore bits obtained in the process. Then one uses a standard IND-CPA scheme —which exists
assuming trapdoor one-way permutations— to encrypt y with coins r. The interesting aspect of the scheme,
and the source of the difficulty in analyzing it, is its cyclic nature, namely that the coins used for the IND-
CPA encryption depend on the plaintext y that is IND-CPA encrypted. The proof manages to show that an
adversary who, given y, can distinguish r from random can recover x even though this adversary may have
partial information about the underlying seed x. The proof exploits in a crucial way that the equivalence
between A-CSS and B-CSS holds even for uniformly and independently distributed messages.

ANOTHER PERSPECTIVE. A deterministic encryption scheme is (syntactically) the same thing as a family
of injective trapdoor functions. Our notions can then be seen as an extension of the usual notion of one-
wayness. Our construction is then a family of injective trapdoor functions which hides all (possible) partial
information about its (randomly chosen) input. We believe this is a natural and useful strengthening of the
usual notion of a trapdoor function that is fully achieved under standard assumptions in our work.
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EFFICIENCY. The general assumption notwithstanding, our scheme admits efficient instantiations. For
example with squaring as the trapdoor permutation [8] and Blum-Goldwasser [9] as the bare IND-CPA
scheme, encryption and decryption come in at about double that of Blum-Goldwasser with no increase in
ciphertext size. See Section 5.

A GENERALIZATION. We generalize our construction to obtain a non-RO model deterministic scheme
DE2 for the encryption of independent, high min-entropy (but not necessarily uniform) plaintexts. The
assumption used is that one has a trapdoor permutation that is one-way for high min-entropy distributions
on its input. This increase in assumption strength is in some sense necessary, since deterministic encryption
secure for some distribution trivially provides a one-way injective trapdoor function for that distribution.

FROM DETERMINISTIC TO RANDOMIZED ENCRYPTION. Another central foundational theme is relations
between primitives, meaning determining which primitives imply which others. From this perspective we
consider how to build IND-CPA-secure standard (randomized) encryption from PRIV-secure deterministic
encryption. The obvious approach would be to use the deterministic encryption scheme as a trapdoor one-
way function within some well-known general construction [24]. However, this approach leads to large
ciphertexts, and we would hope to achieve better efficiency when using a primitive that provides more than
one-wayness. We provide a much more efficient construction using a hybrid encryption-style approach, in
which the deterministic scheme encrypts a fresh session key padded with extra randomness and the session
key is used to encrypt the message. See Section 7 for the details.

CCA. Lifting our notions and equivalences to the CCA setting is straightforward; see Appendix G. Our
above-mentioned construction of a randomized encryption scheme from a deterministic one works even
in the CCA setting. This means, in particular, that we can generically build witness-recovering IND-CCA
encryption schemes [27] from arbitrary CCA-secure deterministic schemes. (Witness-recovering encryption
allows, during decryption, recovery of all randomness used to generate a ciphertext.) CCA-secure witness-
recovering encryption is of use in further applications [16], and only very recently was a (not very efficient)
standard-model construction produced [27]. Our construction shows that building CCA-secure deterministic
schemes is at least as hard as building witness-recovering probabilistic encryption.

RELATED WORK. Dodis and Smith’s work on entropic security [20] has in common with ours the con-
sideration of privacy for messages of high min-entropy. But there are important differences in the set-
tings, namely that theirs is information-theoretic and symmetric while ours is computational and public-key.
Dodis and Smith [20] introduce definitions that in our framework are IND, B-SSS, and BB-SSS, to com-
plement the A-SSS-like information-theoretic notion originally proposed by Russell and Wang [28]. Also,
Desrosiers [17] and Desrosiers and Dupuis [18] subsequently treat quantum entropic security, providing
notions similar to our framework’s B-CSS and A-CSS. These works provide some relations between the
notions they define. While some of their techniques and implications lift to our setting, others do not. The
salient fact that emerges is that prior work does not imply equivalence of all seven notions we consider.
In particular, the BB-SSS and BB-CSS notions are not considered in [17, 18] and Dodis and Smith [20]
only provide reductions for BB-SSS implying A-SSS that result in inefficient or restricted adversaries. See
Appendix H for more information.

Another setting that deals with high min-entropy messages is that of perfectly one-way hash functions
(POWHF), introduced by Canetti [13] and further studied by Canetti, Micciancio, and Reingold [14]. These
are randomized hash functions that produce publically-verifiable outputs. Our definitions and equivalences
can be adapted to the POWHF setting.

INDEPENDENT WORK. In concurrent and independent work, Boldyreva, Fehr, and O’Neill [11] consider a
relaxation of PRIV in which message sequences need to not merely have high entropy but each message must
have high entropy even given the others. They prove some relations between their notions using techniques
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of [20, 17, 18] but do not consider as many notions as us and in particular do not consider balance. Their
schemes achieve stronger notions of security then our DE1 but at the cost of specific algebraic assumptions
as opposed to our general one. Combining their results with ours shows that our DE2 achieves their notion
of security while using a general (even though non-standard) assumption.

2 Preliminaries

NOTATION AND CONVENTIONS. If x is a string then |x| denotes its length; if x is a number then |x| denotes
its absolute value; if S is a set then |S| denotes its size. We denote by λ the empty string. If S is a set then
X ←$ S denotes that X is selected uniformly at random from S. We let x[i . . . j] denote bits i through j of
string x, for 1 ≤ i ≤ j ≤ |x|. By x1 ‖ · · · ‖ xn we denote the concatenation of x1, . . . , xn. Vectors are
denoted in boldface, e.g. x. If x is a vector then |x| denotes the number of components of x and x[i] denotes
its ith component for 1 ≤ i ≤ |x|. If i ≥ 1 is an integer, we use Bi as shorthand for {0, 1}i. By 〈a, b〉 we
denote the inner product modulo 2 of equal-length strings a, b.

We write α←$ X(x, y, . . .) to denote running X on inputs (x, y, . . .) with fresh random coins and
assigning the result to α. We let [X(x, y, . . .)] denote the set of possible outputs of X when run on
x, y, . . . ∈ {0, 1}∗. An algorithm X is non-uniform if its first input is 1k and there is a collection {Ck}k∈N
of (randomized) circuits such that Ck computes X(1k, . . .). The running time is the circuit size. A function
f is called negligible if it approaches zero faster than the reciprocal of any polynomial, that is, for any poly-
nomial p, there exists np ∈ N such that f(n) ≤ 1/p(n) for all n ≥ np. “PT” stands for polynomial time.
We denote by Λ the algorithm that on any inputs returns λ.

PUBLIC-KEY ENCRYPTION. A public-key encryption (PKE) scheme Π = (K, E ,D) is a triple of PT al-
gorithms. The key generation algorithm K takes input 1k, where k ∈ N is the security parameter, and
outputs a public-key, secret-key pair (pk, sk). The encryption algorithm E takes inputs 1k, pk, and plaintext
x ∈ {0, 1}∗ and outputs a ciphertext. The deterministic decryption algorithm D takes inputs 1k, sk, and
ciphertext y and outputs either a plaintext x or ⊥. We say that Π is deterministic if E is deterministic. If
x is a vector of plaintexts, then we write y←$ E(1k, pk,x) to denote component-wise encryption of x, i.e.
y[i]←$ E(1k, pk,x[i]) for all 1 ≤ i ≤ |x|.

3 Security Notions for Deterministic PKE

We first provide formal definitions and then discuss them.

SEMANTIC SECURITY. An SS-adversary A = (Ac, Am, Ag) is a tuple of non-uniform algorithms. Ac takes
as input a unary encoding 1k of the security parameter k ∈ N and returns a string st representing some
state information. Am takes input 1k and st, and returns a vector of challenge messages x together with a
test string t that represents some information about x. Ag takes 1k, a public key and the component-wise
encryption of x under this key, and tries to compute t. The running time of A is defined as the sum of the
running times of Ac, Am, Ag, so that A is PT if Ac, Am, Ag are all PT.

Let Π = (K, E ,D) be a PKE scheme, A = (Ac, Am, Ag) an SS-adversary, and S a simulator (a non-
uniform algorithm). Let k ∈ N. Figure 2 displays the css (comparison-based semantic security) and sss
(simulation-based semantic security) experiments. We define the css advantage and sss advantage of A by

Advcss
Π,A(k) = 2 · Pr

[
Expcss

Π,A(k)⇒ true
]
− 1 , and (1)

Advsss
Π,A,S(k) = 2 · Pr

[
Expsss

Π,A,S(k)⇒ true
]
− 1 . (2)

Our approach to defining the six notions of semantic security of interest to us is to associate to each a
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Experiment Expcss
Π,A(k)

b←$ {0, 1} ; st←$ Ac(1k)
(x0, t0)←$ Am(1k, st)
(x1, t1)←$ Am(1k, st)
(pk, sk)←$K(1k)
c←$ E(1k, pk,xb)
g←$ Ag(1k,pk, c, st)
If g = t1 then b′ ← 1
Else b′ ← 0
Ret (b′ = b)

Experiment Expsss
Π,A,S(k)

b←$ {0, 1} ; st←$ Ac(1k)
(x, t)←$ Am(1k, st)
(pk, sk)←$K(1k)
c←$ E(1k,pk,x)
If b = 1 then

g←$ Ag(1k,pk, c, st)
Else g←$ S(1k, pk, st)
If g = t then b′ ← 1
Else b′ ← 0
Ret (b′ = b)

Experiment Expind
Π,I(k)

b←$ {0, 1} ; st←$ Ic(1k)
xb←$ Im(1k, b, st)
(pk, sk)←$K(1k)
c←$ E(1k, pk,xb)
b′←$ Ig(1k,pk, c, st)
Ret (b′ = b)

Figure 2: Three experiments for defining security of encryption schemes.

corresponding class of adversaries and ask that the advantage of any adversary in this class be negligible.
We proceed to define the relevant classes.

An SS-adversary A = (Ac, Am, Ag) is legitimate if there exists a function v(·), called the number of
messages, and a collection {yk}k∈N of reference message-vectors such that the following three conditions
hold. First, |x| = v(k) for all (x, t) ∈ [Am(1k, st)] and all st ∈ {0, 1}∗. Second, |x[i]| = |yk[i]| for all
(x, t) ∈ [Am(1k, st)], all st ∈ {0, 1}∗, and all 1 ≤ i ≤ v(k). Third, the function

ν(k) = Pr
[

eq(x,yk) = 0 : st←$ Ac(1k) ; (x, t)←$ Am(1k, st)
]

is negligible, where

eq(x,yk) =

{
1 if ∀i, j : x[i] = x[j] iff yk[i] = yk[j]

0 otherwise.
(3)

(The third condition reflects that every deterministic scheme leaks plaintext equality.) Let ASS be the set of
all legitimate, PT SS-adversaries. We say that A has trivial state function if Ac = Λ. Let Aλ be the set of
all SS-adversaries with trivial state functions.

Without loss of generality (through suitable padding) we can assume there is a function `(·) such that
the output of Ag(1k, ·, ·) and any test string t output by Am(1k, ·) always have length `(k). We call ` the
information length of A. An SS-adversary A = (Ac, Am, Ag) ∈ ASS is boolean if it has information
length `(·) = 1. Let AB ⊆ ASS be the class of all boolean SS-adversaries. A boolean SS-adversary
A = (Ac, Am, Ag) ∈ AB is δ-balanced if for every st we have∣∣∣∣Pr

[
t = 0 : (x, t)←$ Am(1k, st)

]
− 1

2

∣∣∣∣ ≤ δ . (4)

When δ = 0 we say that A is perfectly balanced. We say that A is balanced if it is δ-balanced for some
δ < 1/2. Let AδBB ⊆ AB be the class of all δ-balanced boolean SS-adversaries. An SS-adversary A =
(Ac, Am, Ag) ∈ ASS has min-entropy µ if

Pr
[
x[i] = x : (x, t)←$ Am(1k, st)

]
≤ 2−µ(k)

for all k ∈ N, all 1 ≤ i ≤ v(k), all x ∈ {0, 1}∗, and all st ∈ {0, 1}∗. Let AµME ⊆ ASS be the class
of all SS-adversaries with min-entropy µ. We say that A has high min-entropy if it is in AµME for some
µ(k) ∈ ω(log k). Let AHE ⊆ ASS be the class of all SS-adversaries that have high min-entropy.

Let Π be a PKE scheme. We say that Π is A-CSS secure if Advcss
Π,A(·) is negligible for all A ∈

7



AHE ∩Aλ; Π is B-CSS-secure if Advcss
Π,A(·) is negligible for all A ∈ AHE ∩Aλ ∩AB; and Π is BB-CSS-

secure if there exists δ < 1/2 such that Advcss
Π,A(·) is negligible for all A ∈ AHE ∩ Aλ ∩ AδBB.

Similarly, we say that Π is A-SSS-secure if for allA ∈ AHE∩Aλ there exists a PT simulator S such that
Advsss

Π,A,S(·) is negligible; Π is B-SSS-secure if for all A ∈ AHE ∩Aλ ∩AB there exists a PT simulator S
such that Advsss

Π,A,S(·) is negligible; and Π is BB-SSS-secure if there exists δ < 1/2 such that for all
A ∈ AHE ∩ Aλ ∩ AδBB there exists a PT simulator S such that Advsss

Π,A,S(·) is negligible.
The message space of an SS-adversary A = (Ac, Am, Ag) is the algorithm Ad that on input 1k, st

lets (x, t)←$ Am(1k, st) and returns x. An SS-adversary is said to produce independent messages if the
coordinates of x are independently distributed when x←$ Ad(1k, st) for all k, st. Let A× be the class of
all SS-adversaries which produce independent messages.

For each d ∈ {0, 1}, we let Expcss-d
Π,A (k) be the same as Expcss

Π,A(k) except that the first line sets b← d

rather than picking b at random. We similarly define Expsss-d
Π,A,S(k). A standard argument gives

Advcss
Π,A(k) = Pr

[
Expcss-1

Π,A (k)⇒ true
]
− Pr

[
Expcss-0

Π,A (k)⇒ false
]

and (5)

Advsss
Π,A,S(k) = Pr

[
Expsss-1

Π,A,S(k)⇒ true
]
− Pr

[
Expsss-0

Π,A,S(k)⇒ false
]
. (6)

INDISTINGUISHABILITY. An IND-adversary I = (Ic, Im, Ig) is a tuple of non-uniform algorithms. Ic takes
as input 1k and returns a string st representing some state information. Im takes input 1k, a bit b, and st,
and returns a vector of messages x. Ig takes 1k, a public key, the component-wise encryption of x under
this key, and st and tries to compute the bit b. The running time of I is defined as the sum of the running
times of Ic, Im, Ig, so that I is PT if Ic, Im, Ig are all PT.

Let Π = (K, E ,D) be a PKE scheme, I = (Ic, Im, Ig) an IND-adversary and k ∈ N. Figure 2 displays
the ind experiment. We define the ind advantage of I by

Advind
Π,I(k) = 2 · Pr

[
Expind

Π,I(k)⇒ true
]
− 1 . (7)

We next define classes of IND-adversaries. An IND-adversary I = (Ic, Im, Ig) is legitimate if there exists a
function v(·), called the number of messages, and a collection {yk}k∈N of reference message-vectors such
that the following three conditions hold. First, |x| = v(k) for all x ∈ [Im(1k, b, st)], all b ∈ {0, 1}, and all
st ∈ {0, 1}∗. Second, |x[i]| = |yk[i]| for all x ∈ [Im(1k, b, st)], all b ∈ {0, 1}, all st ∈ {0, 1}∗, and all
1 ≤ i ≤ v(k). Third, the function

ν(k) = Pr
[

eq(x,yk) = 0 : st←$ Ic(1k) ; b←$ {0, 1} ; x←$ Im(1k, b, st)
]

is negligible, where eq(x,yk) was defined by (3). Let I be the set of all legitimate, polynomial time IND-
adversaries. We say that I has trivial state function if Ic = Λ. Let Iλ ⊆ I be the set of all IND-adversaries
with trivial state functions. An IND-adversary I = (Ic, Im, Ig) ∈ I has min-entropy µ if

Pr
[
x[i] = x : x←$ Im(1k, b, st)

]
≤ 2−µ(k)

for all k ∈ N, all b ∈ {0, 1}, all 1 ≤ i ≤ v(k), all x ∈ {0, 1}∗, and all st ∈ {0, 1}∗. Let IµME ⊆ I be the
class of all IND-adversaries with min-entropy µ. We say I has high min-entropy if it is in IµME for some
µ(k) ∈ ω(log k). Let IHE be the class of all IND-adversaries that have high min-entropy. We say that Π is
IND-secure if Advind

Π,I(·) is negligible for all I ∈ IHE ∩ Iλ.
For each d ∈ {0, 1}, we let Expind-d

Π,I (k) be the same as Expind
Π,I(k) except that the first line sets b← d

rather than picking b at random. A standard argument gives

Advind
Π,A(k) = Pr

[
Expind-1

Π,I (k)⇒ true
]
− Pr

[
Expind-0

Π,I (k)⇒ false
]
. (8)

DISCUSSION. A-CSS is exactly the PRIV definition of [3]. As discussed in [3], it is important that Am

does not take input the public key, and this carries over to Im. In the classical setting a standard hybrid
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argument [2] shows that the security of encrypting one message implies the security of encrypting multiple
messages. In the deterministic encryption setting this is not true in general, which is why Am, Im output
vectors of messages.

Following [3], message spaces are not explicit but rather implicitly defined by their PT sampling algo-
rithms Am and Im. As a consequence, message spaces are PT sampleable.

Following [3], the partial information function is not explicit. Think of t as its value on x. This is more
general because t is allowed to depend on coins underlying the generation of x rather than merely on x
itself. (This is stronger than merely allowing the function to be randomized, which is standard.) It allows
us in particular to capture “history.” However, we show in Appendix A that this formulation is equivalent
to one where the partial information is computed as a function of the message. Note that the (implicit or
explicit) partial information functions are PT.

Our security definitions quantify only over adversaries with trivial state functions. We do this for com-
patibility with [3, 20]. So why introduce the common state function at all? The reason is that it is useful in
proofs. Indeed, [20] use such a function implicitly in many places. We believe making it explicit increases
clarity. In the end we can always hardwire a “best” state and thereby end up with an adversary in Aλ.

4 Relating the Security Notions

In this section and its supporting appendices we justify the implications summarized by Figure 1. The im-
plications given by the unlabeled arrows are trivial and can be justified by the fact thatX → Y whenever the
adversary class corresponding to Y is a subset of the one corresponding toX . We focus on the implications:
A-CSS⇒ A-SSS; BB-SSS⇒ IND; IND⇒ BB-CSS; BB-CSS⇒ B-CSS; and B-CSS⇒ A-CSS.

Theorem 4.1 [B-CSS⇒ A-CSS] Let Π = (K, E ,D) be a PKE scheme. Let A = (Ac, Am, Ag) ∈ AµME ∩
Aλ be an SS-adversary having information length `(·). Then there exists a boolean SS-adversary A′ =
(A′c, A

′
m, A

′
g) ∈ AµME ∩ Aλ ∩ AB such that for all k ∈ N

Advcss
Π,A(k) ≤ 2 ·Advcss

Π,A′(k) . (9)

A′ has the same message space as A and its running time is that of A plus O(`). �

Proof: The proof is from [20] and repeated here in order to provide intuition for Theorem 4.2. Below we
write ` for `(k). Then let

algorithm A∗c(1k):
r←$ {0, 1}`
s←$ {0, 1}
Ret (r, s)

algorithm A∗m(1k, (r, s)):
(x, t)←$ Am(1k, λ)
Ret (x, 〈r, t〉 ⊕ s))

algorithm A∗g(1k, pk, c, (r, s)):

g←$ Ag(1k, pk, c, λ)
Ret 〈r, g〉 ⊕ s

Then A∗ = (A∗c , A
∗
m, A

∗
g) is certainly boolean, and

PA∗(k) = PA(k) +
1
2

[1− PA(k)]

QA∗(k) = QA(k) +
1
2

[1−QA(k)]

where PX(k) = Pr
[
Expcss-1

Π,X (k)⇒ true
]

and QX(k) = Pr
[
Expcss-0

Π,X (k)⇒ false
]
. Subtracting, we get

Advcss
Π,A∗(k) = 1

2 ·Advcss
Π,A(k). We are not done yet because A∗ does not have trivial state function. Let A′

be obtained from A∗ by hardwiring in a “best” choice of r, s and we are done.

9



Now we wish to show that BB-CSS ⇒ B-CSS. Note that if the adversary A′ constructed in the proof of
Theorem 4.1 were balanced, we would be done. But, A′ need not be balanced. Dodis and Smith [20] give
a partial solution to this problem, showing that it is in fact possible to find an r that, when hardwired into
A∗, results in a balanced adversary, as long as p ≤ ε2/4, where p is the maximum probability of any t being
output by Am and ε = Advcss

Π,A(·).
We will remove this restriction by proceeding as follows. Let A be a given SS-adversary, which

from Theorem 4.1 we can assume is boolean (but not balanced). We again construct an A∗ with non-
trivial state, but this will consist of n independently chosen keys K[1], . . . ,K[n] for a family of pair-
wise independent hash functions H . Then A∗m(1k,K) first runs (x, t)←$ Am(1k, λ) and then returns
(x, H(K[i], t)) for random i ∈ {1, . . . , n}, while A∗g(1k, pk, c,K) picks its own independent random j

and returns H(K[j], Ag(1k, pk, c, λ)). Our analysis will show that for a suitable choice of n there exists
a choice of the vector K which, when hardwired into A∗, yields an adversary A′ having all the claimed
properties. The theorem is below and the proof is in Appendix B.

Theorem 4.2 [BB-CSS ⇒ B-CSS] Let Π = (K, E ,D) be a PKE scheme. Let A = (Ac, Am, Ag) ∈
AµME ∩Aλ ∩AB be a boolean SS-adversary. Let ε(·) = Advcss

Π,A(·) > 0 and let δ = 1/4. Then there exists
an SS-adversary A′ = (A′c, A

′
m, A

′
g) ∈ AµME ∩ Aλ ∩ AδBB such that for all k ∈ N
Advcss

Π,A(k) ≤ 4n(k) ·Advcss
Π,A′(k) ,

where n(k) = max {485 , d64 · ln (1/ε(k)) + 64 ln 4e}. A′ has the same message space as A and its
running time is that of A plus O(log(1/ε(k)) + k). �

Below are theorem statements for the other three implications. The proofs are found in Appendices C, D,
and E, respectively.

Theorem 4.3 [A-CSS ⇒ A-SSS] Let Π = (K, E ,D) be a PKE scheme. Let A = (Ac, Am, Ag) ∈ AµME ∩
Aλ be an SS-adversary outputting at most v messages. Then there exists a simulator S such that for all
k ∈ N

Advsss
Π,A,S(k) ≤ Advcss

Π,A(k) .

The running time of S is that of A plus the time to perform v encryptions. �

Theorem 4.4 [BB-SSS⇒ IND] Let Π = (K, E ,D) be a PKE scheme. Let I = (Ic, Im, Ig) ∈ IµME ∩Iλ be
an IND-adversary. Let δ = 0. Then there exists an SS-adversary A = (Ac, Am, Ag) ∈ AµME ∩ Aλ ∩ AδBB

such that for any simulator S and all k ∈ N
Advind

Π,I(k) ≤ 2 ·Advsss
Π,A,S(k) .

The running time of A is that of I . �

Theorem 4.5 [IND ⇒ BB-CSS] Let Π = (K, E ,D) be a PKE scheme. Let 0 ≤ δ < 1/2 and let A =
(Ac, Am, Ag) ∈ AµME∩Aλ∩AδBB be an SS-adversary. Then there exists an ind-adversary I = (Ic, Im, Ig) ∈
IνME ∩ Iλ such that for all k ∈ N

Advcss
Π,A(k) ≤ 2 ·Advind

Π,I(k) + 2−k .

I has min-entropy ν(k) = µ(k) − 1 + log(1 − 2δ) and its running time is that of A plus the time for
d−(log(2/(1 + 2δ)))−1e(k + 3) + 1 executions of Am. �

5 Deterministic Encryption from Trapdoor Permutations

We construct a deterministic encryption scheme, without ROs, that meets our definitions in the case that
the messages being encrypted are uniformly and independently distributed. It is based on the existence of
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algorithm K(1k):

(φ, τ)←$ G(1k)
s←$ {0, 1}k

(pk, sk)←$K(1k)
pk ← (φ,pk, s)
sk ← (τ, sk)
Ret (pk, sk)

algorithm E(1k, pk, x):

(φ,pk, s)← pk

y ← F
n(k)
φ (x)

ω ← G(1k, 1n(k), φ, x, s)
c← E(1k,pk, y ; ω)
Ret c

algorithm D(1k, sk, c):

(τ, sk)← sk

y ← D(1k, sk, c)
x← F

n(k)
τ (y)

Ret x

Figure 3: Algorithms defining our deterministic encryption scheme Π = (K, E ,D).

trapdoor permutations. In Appendix 6 we generalize the construction to independently distributed messages
of high min-entropy µ, but under the (stronger and non-standard) assumption of the existence of trapdoor
permutations that are one-way under all input distributions of min entropy µ.

PRIMITIVES. A family of trapdoor permutations T P = (G,F, F ) is a triple of PT algorithms, with the last
two being deterministic. On input 1k, the key generation algorithm G returns a pair (φ, τ) of strings such
that Fφ(·) = F (φ, ·) is a permutation on {0, 1}k and F τ (·) = F (τ, ·) is its inverse. If f : {0, 1}k → {0, 1}k
then f i : {0, 1}k → {0, 1}k is defined inductively by f0(x) = x and f i+1(x) = f(f i(x)) for i ≥ 0 and
x ∈ {0, 1}k. The Blum-Micali-Yao [10, 31], Goldreich-Levin [24] generator GT P takes input 1k, 1n, φ and
x, s ∈ Bk and returns 〈

F 0
φ(x), s

〉
‖
〈
F 1
φ(x), s

〉
‖ · · · ‖ 〈Fn−1

φ (x), s〉 .

To discuss the security of our scheme, we say that an SS-adversary is uniform if for every k and every st
the components of x are uniformly and independently distributed over {0, 1}k when (x, t)←$ Am(1k, st).
We let AUN be the class of all uniform SS-adversaries. If f : Bk → Bk then f(x) denotes the vec-
tor whose ith component is f(x[i]). We let GT P(1k, 1n, φ,x, s) be the vector whose ith component is
GT P(1k, 1n, φ,x[i], s).

THE CONSTRUCTION. We fix a (randomized) encryption scheme Π = (K, E ,D). Assume that E(1k, ·, ·)
draws its coins from {0, 1}n(k), and write E(1k, pk, x ; ω) for the execution of E on inputs 1k, pk, x and
coins ω. Let T P = (G,F, F ) be a family of trapdoor permutations and GT P the associated generator. Our
deterministic encryption scheme Π = (K, E ,D) is defined as shown in Figure 3. We refer to it as DE1.

INTUITION. A weird aspect of our scheme is that one is encrypting, under the standard scheme E , a message
y under coins ω that are related to y. The challenge is to show that this works assuming T P is one-way and
Π is IND-CPA. So let A = (Ac, Am, Ag) ∈ AUN ∩ Aλ be an adversary with associated information length
`(·) and number of messages v(·) that is successful in violating the A-CSS security of Π. It is not hard to
see that the assumed security of Π allows us to reduce our task to showing that it is hard for a PT adversary
D to have a non-negligible advantage in computing the challenge bit b in the following distinguishing game.
The game generates φ, τ, pk, sk, s as done by K(1k) and lets (x, t)←$ Am(1k, λ). It lets

ω1 ← GT P(1k, 1n(k), φ,x, s) and ω0←$ B
v(k)
n(k) ,

picks a random challenge bit b, and provides the adversary D with φ, s, Fn(k)
φ (x), ωb, and t. Now, D’s

task would be merely the standard (and known to be hard) one of breaking the pseudorandomness of GT P
(meaning, we would be done) but for one catch, namely that D has “help” information t about the seed(s)
x. If we could somehow remove it we would be done, but this seems hard to do directly. Instead, we
first produce from D an adversary I ′ that solves (although still with help) a computational (rather than
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Experiment Expowf
T P,J(k)

(φ, τ)←$ G(1k) ; st←$ Jc(1k, φ)
x←$ {0, 1}k ; t←$ Jp(1k, x, φ, st)
y ← Fφ(x) ; x′←$ Js(1k, φ, st, y, t)
Ret (x = x′)

Experiment Expprg-v
T P,D,n(k)

(φ, τ)←$ G(1k) ; st←$ Dc(1k, φ)
x←$ B

v(k)
k ; s←$ {0, 1}k ; d←$ {0, 1}

t←$ Dp(1k,x, φ, st)
ω1 ← GT P(1k, 1n(k), φ,x, s)
ω0←$ B

v(k)
n(k)

d′←$ Dg(1k, φ, st, Fn(k)
φ (x),ωd, s, t)

Ret (d = d′)

Figure 4: (Left) Experiment defining one-wayness of T P = (G,F, F ). (Right) Experiment defining
pseudorandomness of GT P .

decision) problem, namely that of inverting Fφ: given φ, Fφ(x), and `(·) bits of information about x,
our adversary computes x. This is obtained by noting that the Goldreich-Levin [24] and Blum-Micali-
Yao [10, 31] proof of pseudorandomness of GT P based on the one-wayness of T P generalizes to say that
GT P remains pseudorandom in the presence of `(·) bits of help information about the seed assuming T P
is one-way in the presence of `(·) bits of help information about the input. Now we need to turn I ′ into
an adversary succeeding at the same task, but without help. We appeal to Theorem 4.1, which allows us to
assume our starting adversary A was boolean, meaning `(·) = 1. In this case it is easy to dispense with the
help provided to I because we can try both values of it and lower our success probability by at most a factor
of 2.

We remark that we have made crucial use of the fact that the adversary constructed by Theorem 4.1 has
the same message space as the original one. This means that if the latter is in AUN then so is the former,
so that B-CSS for uniform adversaries implies A-CSS for uniform adversaries. We now proceed to the full
proof.

OWPS AND PRGS WITH HELP. For our proof, we will need to extend the usual frameworks of one-wayness
and pseudorandomness to adversaries with “help.” An inversion adversary J = (Jc, Jp, Js) is a triple of
non-uniform algorithms. If T P = (G,F, F ) is a family of trapdoor permutations we let

Advowf
T P,J(k) = Pr

[
Expowf

T P,J(k)⇒ true
]

where the experiment is shown in Figure 4. The running time of J is defined as the sum of the running times
of Jc and Js, so that J is PT if Jc, Js are PT. (Jp is not required to be PT.) We say that J has help-length `(·)
if the output of Jp(1k, ·, ·, ·) is always of length `(k). We say that J is unaided if it has help length `(·) = 0.
We let J` denote the class of all PT inversion adversaries with help length `(·). We say T P is one-way for
help-length `(·) if Advowf

T P,J(·) is negligible for all J ∈ J`. We say that T P is one-way if it is one-way for
help-length `(·) = 0. The following, although trivial, will be very useful.

Proposition 5.1 Let T P be a family of trapdoor permutations and J an inversion adversary with help-length
`(·). Then there is an inversion adversary J ′ with help-length 0 such that

Advowf
T P,J(k) ≤ 2`(k) ·Advowf

T P,J ′(k)

for all k, and the running time of J ′ is that of J plus O(`). �

Proof: Let J = (Jc, Jp, Js) and J ′ = (Jc,Λ, J ′s) where J ′s(1
k, φ, st, y, λ) lets t←$ {0, 1}`(k) and returns

Js(1k, φ, st, y, t).
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A PRG adversary D = (Dc, Dp, Dg) is a triple of non-uniform algorithms. If T P = (G,F, F ) is a family
of trapdoor permutations and GT P is the corresponding generator we let

Advprg-v
T P,D,n(k) = 2 · Pr

[
Expprg-v

T P,D,n(k)⇒ true
]
− 1

where the experiment is shown in Figure 4 and v(·), n(·) : N→ N. The running time of D is defined as the
sum of the running times of Dc and Dg, so that D is PT if Dc, Dg are PT. (Dp is not required to be PT.) We
say that D has help-length `(·) if the output of Dp(1k, ·, ·, ·) is always of length `(k). We let D` denote the
class of all PT PRG-adversaries with help length `(·). We say GT P is pseudorandom for help-length `(·) if
Advprg-v

T P,D,n(·) is negligible for all D ∈ D` and all polynomials v, n. We say that GT P is pseudorandom if
it is pseudorandom for help-length `(·) = 0. We remark that it is important that Dp does not get s as input,
meaning the help information is only about x. The following says that if T P is one-way for help-length `(·)
then GT P is pseudorandom for help-length `(·). The case `(·) = 0 is the standard result [10, 31, 24] saying
that GT P is pseudorandom if T P is one-way. The proof of the following is in Appendix F.

Lemma 5.2 Let T P = (G,F, F ) be a family of trapdoor permutations. Let v(·), n(·) be polynomials. Let
D be a PRG-adversary with help-length `(·) and let ε(·) = Advprg-v

T P,D,n(·) > 0. Then there is an inversion
adversary J with help-length `(·) such that

ε(k) ≤ 4n(k)v(k) ·Advowf
T P,J(k)

and the running time of J is

TJ = O(k3n4v4ε−4) +O(TD + nvTF )k2n2v2ε−2 ,

where TX is the running time of X . �

IND-CPA. Associate to (randomized) encryption scheme Π = (K, E ,D) and adversary B the experiment
Expind-cpa

Π,B
(k) defined by

b←$ {0, 1} ; (pk, sk)←$K(1k) ; b′←$ BEpk(LR(·,·,b))(pk) ; Ret (b = b′)

where LR(M0,M1, b) = Mb. B is an IND-CPA adversary if all its oracle queries consist of equal length
strings. Let

Advind-cpa

Π,B
(k) = 2 · Pr

[
Expind-cpa

Π,B
(k)⇒ true

]
− 1 .

We say that Π is IND-CPA secure if Advind-cpa

Π,B
(·) is negligible for all PT IND-CPA adversaries B.

SECURITY OF OUR SCHEME. The following says that our scheme is B-CSS secure for uniform adversaries
assuming T P is one-way and Π is IND-CPA secure. By Theorem 4.1 it is A-CSS secure for uniform
adversaries under the same assumptions and a constant factor loss in security. Since the existence of one-
way trapdoor permutations implies the existence of IND-CPA secure encryption schemes we obtain the
results under the sole assumption of the existence of one-way trapdoor permutations.

Theorem 5.3 Let T P = (G,F, F ) be a family of trapdoor permutations and Π = (K, E ,D) an encryption
scheme. Let Π = (K, E ,D) be the associated deterministic encryption scheme as per our construction
above. Let A = (Ac, Am, Ac) ∈ AB ∩ Aλ ∩ AUN be an SS-adversary against Π with advantage ε(·) =
Advcss

Π,A(·) > 0 and number of messages v(·). Then there is an unaided inversion adversary J and an
IND-CPA adversary B such that for all k ∈ N

ε(k) ≤ 2 ·Advind-cpa

Π,B
(k) + 16n(k)v(k) ·Advowf

T P,J(k) . (10)

The running time of B is that of A plus O(nTF + TG) and it makes v(k) oracle queries. The running time
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of J is

O(k3n4v4ε−4) +O(TA + TE + TK + nvTF ) ·k2n2v2ε−2 (11)

where TX is the running time of X . �

Proof: Consider the experiments of Figure 5. There E(1k, pk,y ; ω) is the vector whose ith component is
E(1k, pk,y[i] ; ω[i]). Let

Pa = Pr
[
Expd-aΠ,A(k)⇒ true

]
for a ∈ {0, 1}. Then

Advcss
Π,A(k) = 2P1 − 1 = 2(P1 − P0) + (2P0 − 1) .

Adversary B is shown in Figure 5, and we omit the (easy) analysis establishing that

2P0 − 1 ≤ Advind-cpa

Π,B
(k) .

Next we define PRG-adversary D = (Λ, Dp, Dg) with help length `(·) as shown in Figure 6 and claim that

P1 − P0 ≤ 2 ·Advprg-v
T P,D,n(k) . (12)

Before justifying this claim let us see how to conclude. Let J ′ be the inversion adversary obtained from D
by Lemma 5.2. It also has help-length `(·). Now apply Proposition 5.1 to get inversion adversary J with
help-length 0. Now, putting together the above would give us

Advcss
Π,A(k) ≤ Advind-cpa

Π,B
(k) + 16n(k)v(k)Advowf

T P,J(k) . (13)

However, (10) has an extra factor of 2 on the first right-hand-side term. This is to ensure that the running
time of J is as claimed. To see this, consider two cases. The first is when 2(P1 − P0) ≥ ε(k)/2. In this
case, (12) implies that Advprg-v

T P,D,n(k) ≥ ε(k)/8, and hence the running time of J ′ (and hence J) is, up
to a constant factor, as given by Lemma 5.2. However, in the second case, namely 2(P1 − P0) < ε(k)/2,
the value of Advprg-v

T P,D,n(k) could be very small and the running time of J ′ (and hence J) would not be as
shown in (11). But also in this case we have 2P0 − 1 ≥ ε(k)/2 so

Advcss
Π,A(k) ≤ 2(2P0 − 1) ≤ 2 ·Advind-cpa

Π,B
(k)

so (10) —but not (13)— is true regardless of the advantage of J in this case. Accordingly, we simply halt
J ′ (and hence J) when its running time hits the bound (11).

It remains to justify (12). Let d be the challenge bit of Expprg-v
T P,D,n(k) and d′ the output of Dg. Then

Pr
[
d′ = 1 | d = 1

]
= Pr

[
c = c′ | d = 1

]
= Pr

[
c′ = 1 | c = 1 ∧ d = 1

] 1
2

+ (1− Pr
[
c′ = 1 | c = 0 ∧ d = 1

]
)
1
2

=
1
2

+
1
2

Pr [ g = t1 | c = 1 ∧ d = 1 ]− 1
2

Pr [ g = t1 | c = 0 ∧ d = 1 ]

=
1
2

+
1
2

Pr
[
Expd-1

T P,A(k)⇒ true | b = 1
]
− 1

2
Pr
[
Expd-1

T P,A(k)⇒ false | b = 0
]

=
1
2

+
1
2
P1 ,
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Experiment Expd-1
Π,A(k) / Expd-0

Π,A(k)

b←$ {0, 1}
(x0, t0), (x1, t1)←$ Am(1k, λ)
(φ, τ)←$ G(1k) ; s←$ {0, 1}k

(pk, sk)←$K(1k) ; pk ← (φ, pk, s)
ω ← GT P(1k, 1n(k), φ,xb, s)

ω←$ B
v(k)
n(k)

y← F
n(k)
φ (xb) ; c← E(1k, pk,y ; ω)

g←$ Ag(1k, pk, c, λ)
If g = t1 then b′ ← 1 else b′ ← 0
Ret (b = b′)

adversary BEpk(LR(·,·,b))(pk):
(x0, t0), (x1, t1)←$ Am(1k, λ)
(φ, τ)←$ G(1k) ; s←$ {0, 1}k

pk ← (φ,pk, s)
y0 ← F

n(k)
φ (x0) ; y1 ← F

n(k)
φ (x1)

For i = 1, . . . , v(k) do
c[i]←$ Epk(LR(y0[i],y1[i], b))

g←$ Ag(1k, pk, c, λ)
If g = t1 then Ret 1 else Ret 0

Figure 5: (Left) Experiments used in the proof of Theorem 5.3. The experiment d-0 includes the boxed
statement while d-1 does not. (Right) IND-CPA adversary for proof of Theorem 5.3.

where b is the challenge bit of the Figure 5 experiments. Similarly

Pr
[
d′ = 1 | d = 0

]
= Pr

[
c = c′ | d = 0

]
= Pr

[
c′ = 1 | c = 1 ∧ d = 0

] 1
2

+ (1− Pr
[
c′ = 1 | c = 0 ∧ d = 0

]
)
1
2

=
1
2

+
1
2

Pr [ g = t1 | c = 1 ∧ d = 0 ]− 1
2

Pr [ g = t1 | c = 0 ∧ d = 0 ]

=
1
2

+
1
2

Pr
[
Expd-0

T P,A(k)⇒ true | b = 1
]
− 1

2
Pr
[
Expd-0

T P,A(k)⇒ false | b = 0
]

=
1
2

+
1
2
P0 .

So

Advprg-v
T P,D,n(k) = Pr

[
d′ = 1 | d = 1

]
− Pr

[
d′ = 1 | d = 0

]
=

(
1
2

+
1
2
P1

)
−
(

1
2

+
1
2
P0

)
=

1
2

(P1 − P0)

establishing (12).

INSTANTIATIONS. DE1 admits quite efficient instantiations. Say we want to encrypt a 1024 bit (random)
message. Let the trapdoor one-way permutation be squaring modulo a 1024-bit composite numberN [8] that
is part of the public key. Then the PRG requires n squarings, where n is the number of bits of randomness
required by the (randomized) encryption scheme Π. Let Π be the Blum-Goldwasser scheme [9], also using
a 1024-bit modulus. (This modulus, also part of the public key, must be different from N .) Then encryption
cost of DE1 is that of Blum-Goldwasser (1024 squarings) plus n = 1024 squarings for the PRG to get coins
for Π. (We assume here, and below, an efficient mapping from bits to group elements, otherwise n increases
by a small amount.) Decryption time also doubles, coming in at about 4 exponentiations modulo 512 bit
numbers (less than one 1024 bit exponentiation!) using Chinese remainders. The ciphertext size is that of
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algorithm Dp(1k,x, φ, λ):
Repeat

(x′, t′)←$ Am(1k, λ)
Until (x′ = x)
t← t′

Ret t

algorithm Dg(1k, φ, λ,y,ω, s, t):
c←$ {0, 1} ; y1 ← y ; t1 ← t ; ω1 ← ω

(x0, t0)←$ Am(1k, λ)
(pk, sk)←$K(1k) ; pk ← (φ, pk, s)
ω0 ← GT P(1k, 1n(k), φ,x0, s) ; y0 ← F

n(k)
φ (x0)

c← E(1k,pk,yc ; ωc)
g←$ Ag(1k, pk, c, λ)
If (g = tc) then c′ ← 1 else c′ ← 0
Ret c⊕ c′ ⊕ 1

Figure 6: PRG adversary for proof of Theorem 5.3.

Blum-Goldwasser, namely 2048 bits, and security rests solely on factoring. Alternatively, let Π be El Gamal
hybrid encryption using a 160-bit group. (A universal hash of the DH key is used to one-time symmetrically
encrypt the data.) Encryption time for DE1 is that of hybrid El Gamal plus the time for n = 320 squarings
modulo N , decryption time is 2 exponentiations modulo 512 bit numbers plus one 160-bit exponentiation.
and the ciphertext size is only 1344 bits. The security assumption is now factoring + DDH.

DISCUSSION. One might ask why we did not work with IND rather than with CSS notions. The reason is
that it is unclear how to meaningfully capture the case of uniformly and independently distributed messages
with IND. We could certainly say that an IND-adversary I = (Ic, Im, Ig) is uniform if for every k and
every st, b the components of x are uniformly distributed over {0, 1}k when x←$ Im(1k, b, st). But such
an adversary would always have zero advantage.

6 Generalizing Our Construction to Non-Uniform Messages

Section 5 provides a deterministic encryption scheme for the A-CSS-secure encryption of independent, uni-
formly distributed messages assuming the existence of trapdoor one-way permutations. Here we explain
how the same scheme provides A-CSS-secure encryption of independent messages that are not necessarily
uniformly distributed but rather have high min-entropy µ, as long as the assumption is strengthened to the
existence of trapdoor permutations one-way for distributions of min-entropy µ. We point out that a similar
assumption was used by [19] in order to construct signature schemes getting only “imperfect” randomness.
The main observation needed for the generalization is simply that min-entropy is preserved under permuta-
tion, meaning if a random variable X over Bk has min-entropy µ then so does f(X) for any permutation
f on Bk. In the following we make the result more precise and sketch how the previous proof approach
generalizes.

EXTENDING THE FRAMEWORK. An inversion adversary J = (Jm, Jc, Jp, Js) is now a 4-tuple where Jm

is a non-uniform algorithm with [Jm(1k)] ⊆ {0, 1}k and Jc, Jp, Js are as before. We say that J ∈ J µME

if the output of Jm has min-entropy µ. The running time of J is defined as the sum of the running times
of Jm, Jc and Js. A PRG-adversary D = (Dm, Dc, Dp, Dg) is similarly a 4-tuple where Dm is a non-
uniform algorithm with [Dm(1k, 1v)] ⊆ Bv

k and Dc, Dp, Dg are as before. We say that D ∈ DµME if the
components of the output of Dm are independently distributed, each with min-entropy µ. The running time
of D is defined as the sum of the running times of Dm, Dc and Dg. The help length `(·) is defined as before
and J`,D` are the corresponding classes. J is unaided if it has help length 0. Experiment Expowf

T P,J(k) of
Figure 4 is modified by replacing x←$ {0, 1}k by x←$ Jm(1k). Experiment Expprg-v

T P,D,n(k) of Figure 4 is
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modified by replacing x←$ B
v(k)
k by x←$ Dm(1k, 1v(k)). The advantage functions are defined as before,

and we say that T P is one-way for min-entropy µ if Advowf
T P,J(·) is negligible for all PT J ∈ J0 ∩ J µME.

Proposition 5.1 generalizes so that if J is in J µME then so is J ′. Lemma 5.2 generalizes so that if D ∈ DµME

then J ∈ J µME.

SECURITY OF OUR SCHEME. Theorem 5.3 generalizes as follows. In the preamble, instead of A being
in AB ∩ Aλ ∩ AUN, let it be in AB ∩ Aλ ∩ AµME ∩ A×. Then, in the conclusion, the unaided inversion
adversary J will be in J µME. The theorem is saying that our scheme is B-CSS secure for independently
distributed messages of min-entropy µ assuming T P is one-way for min-entropy µ and Π is IND-CPA.
Since the transformation of Theorem 4.1 preserves the message distribution, the corollary is that our scheme
is A-CSS secure under the same conditions. Since the existence of a family of trapdoor permutations one-
way for min-entropy µ implies the existence of one-way trapdoor permutations, it also implies the existence
of IND-CPA secure encryption schemes and so we obtain the results under the sole assumption of the
existence of trapdoor permutations one-way for min-entropy µ.

7 From Deterministic to Randomized PKE

OVERVIEW. As observed in the introduction, any PRIV-secure deterministic scheme Π is trivially a one-
way trapdoor injection, meaning an obvious method for building a secure randomized scheme Π is to use
Π within a generic construction (i.e., [24, 21]) to derive an IND-CPA secure scheme. The equally obvious
downside of such an approach is the lack of efficiency. For example, [24] requires large ciphertexts: O(k ·
|M |) for security parameter k and message M . ([21] requires both large ciphertexts and large keys, though
it meets CCA security.) One would expect to do better given a primitive that provides more than just one-
wayness.

A tempting approach to achieve a more efficient construction is the following. Noting that Π meets a
form of semantic-security whenever there is sufficient entropy in the message space, we could have Π en-
crypt by padding messages with an appropriate number of random bits, and then applying Π to the resulting
padded string. This would ensure the scheme always enjoys PRIV security, even when messages have no
entropy. But is Π also IND-CPA? In general the answer is no, due to the fact that Π only provides security
when messages are chosen independently of the public key. On the other hand, the IND-CPA definition
mandates security even against public-key dependent messages. One can easily build a scheme Π that is
PRIV-secure but for which Π as described is not IND-CPA.

Fortunately we can circumvent the key-independency issue using a hybrid-encryption approach. Par-
ticularly, encryption first generates a fresh session key and a random pad. Then, it uses Π to encrypt the
concatenation of the session key and pad followed by using a standard (one-time secure) encryption scheme
to encrypt the actual message under the session key. This approach works even in the context of chosen-
ciphertext attacks, see Appendix G.

KEY ENCAPSULATION. We will in fact show how to build a (randomized) key encapsulation mechanism
(KEM) [15] from any PRIV-secure deterministic encryption scheme. Using the KEM formulation is simpler
and sufficient: in conjunction with any (one-time secure) symmetric scheme, this provides an IND-CPA
scheme [15]. Formally, a key-encapsulation mechanism Ψ = (KK,KE ,KD) is a triple of algorithms. The
key generation algorithmKK takes input security parameter 1k and outputs a public key, secret key pair. The
key encapsulation algorithm KE takes input 1k and public key pk and outputs a session key K ∈ {0, 1}s(k)

and a ciphertext. The function s : N→ N specifies Ψ’s session-key length. The key decapsulation algorithm
KD takes as input 1k, a secret key sk, and a ciphertext and outputs a session key. A KEM-adversary A is a
non-uniform algorithm that takes inputs 1k, a public key, a bit string, and a ciphertext and outputs a bit. We
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Experiment Expkem
Ψ,A(k)

b←$ {0, 1} ; (pk, sk)←$KK(1k)
(K1, C)←$KE(1k, pk);K0←$ {0, 1}s(k)

b′←$ A(1k, pk,Kb, C)
Ret (b = b′)

Figure 7: Experiment defining advantage of a KEM adversary A.

define the KEM advantage of A against Ψ by

Advkem
Ψ,A(k) = 2 · Pr

[
Expkem

Ψ,A(k)⇒ true
]
− 1

where the kem experiment is defined in Figure 7.

THE CONSTRUCTION. Fix functions µ, s : N → N. Let Π = (K, E ,D) be a (deterministic) PKE scheme.
We say Π is suitable if it encrypts messages of length w(·) such that w(k) ≥ µ(k) + s(k) for all k ∈ N. Let
Ψ = (KK,KE ,KD) be the KEM with session key length s(·) defined by the subsequent three algorithms.

algorithm KK(1k):

(pk, sk)←$K(1k)
Ret (pk, sk)

algorithm KE(1k, pk):

R←$ {0, 1}µ(k) ; K←$ {0, 1}s(k)

c← E(1k, pk,R ‖K)
Ret (K, c)

algorithm KD(1k, sk, c):

R ‖K ← D(sk, c)
Ret K

The next theorem captures the security of Ψ.

Theorem 7.1 Let µ, s : N → N. Let Π = (K, E ,D) be a suitable PKE scheme. Let Ψ = (KK,KE ,KD)
be the associated KEM scheme as per our construction. Let A be a KEM-adversary. Then there exists an
IND-adversary I = (Ic, Im, Ig) ∈ IµME ∩ Iλ, outputting a single message, such that for all k ∈ N

Advkem
Ψ,A(k) ≤ Advind

Π,I(k) .

The running time of I is that of A. �

Proof: Below we write µ for µ(k) and s for s(k). We build I∗ = (I∗c , I
∗
m, I

∗
g ) using A, as shown below.

algorithm I∗c (1k):

K←$ {0, 1}s
Ret K

algorithm I∗m(1k, b,K):

R←$ {0, 1}µ
If b = 1 then Ret R ‖K
K ′←$ {0, 1}s
Ret R ‖K ′

algorithm I∗g (1k, pk, c,K):

b′←$ A(1k, pk,K, c)
Ret b′

I∗ has min-entropy µ because of the selection of R. It is straightforward to verify that

Pr
[
Expind-cpa

Π,I∗ (k)⇒ true
]

= Pr
[
Expkem

Ψ,A(k)⇒ true
]
.

Finally, let I be the IND-adversary with trivial state function that works just like I∗ except thatK is replaced
by a “best” value.

DISCUSSION. We make several observations about the construction. First, Ψ provides witness-recovering
public-key encryption: all the randomness used to generate a ciphertext is recovered within KD. Second,
we only require Π to be secure against adversaries that output a single message. This is notable because,
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as discussed in Section 3, security against single-message adversaries is strictly weaker than multi-message
adversaries. Finally, one might wonder if it is possible to dispense with the random padding R. In fact it is
requisite to meet KEM security. Let Ψ′ work just like our construction Ψ except that we omit R. But then
there exists an easy KEM-adversary against Ψ′: just compute c′ ← E(1k,pk,K) and output 1 iff c′ = c. If
E is deterministic the advantage of this adversary is 1− 2−s(k).
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A Message-based Partial Information

In our css and sss experiments, the information t computed by Am can depend on coins underlying the
generation of x rather than merely on x. Here we show that the two formulations are in fact equivalent and
then explore the implications for single versus multi-message security that motivated this question.

EQUIVALENCE. An SS-adversary A = (Ac, Am, Ag) is said to be separable if there are non-uniform
algorithms Ad, Ap called the message space and partial information function, respectively, such that the
outputs of the following are identically distributed for all k ∈ N and all st:

(x, t)←$ Am(1k, st)
Ret (x, t)

x←$ Ad(1k, st)
t←$ Ap(1k,x, st)
Ret (x, t)

Let Asep be the class of separable SS-adversaries. The following says that restricting attention to separable
adversaries leaves the class of secure schemes unchanged.

Theorem A.1 Let Π = (K, E ,D) be a PKE scheme. Let A = (Ac, Am, Ag) ∈ AµME be an SS-adversary
with information length `(·). Then there is a separable SS-adversary A′ = (Ac, A

′
m, A

′
g) ∈ AµME ∩ Asep

with information length `(·) such that for all k ∈ N
Advcss

Π,A(k) ≤ Advcss
Π,A′(k) .

The running time of A′ is that of A plus O(`+ µ). If A is in AδBB then so is A′. �

Proof: Let m(k) = dµ(k)e and let v(·) be the number of messages output by A. We obtain A′ =
(Ac, A

′
m, A

′
g), which will output v(·) + 1 messages, by defining

algorithm A′m(1k, st):
(x, t)←$ Am(1k, st)
r←$ {0, 1}m(k)

x[v(k) + 1]← t ‖ r
Ret (x, t)

algorithm A′g(1k,pk, c′, st):
c← (c′[1], . . . , c′[v(k)])
g←$ Ag(1k, pk, c, st)
Ret g

That is, A′m simply puts t into the message vector, randomizing it to ensure the min-entropy of the adversary
is not reduced. it is easy to see that A′ = (Ac, A

′
m, A

′
g) is separable and has the same advantage as A.

WHY SEPARABILITY? The following says that in the context of separable adversaries producing indepen-
dently distributed messages, security of single and multi message encryption are equivalent. The proof is a
simple hybrid argument.

Proposition A.2 Let Π = (K, E ,D) be a PKE scheme. Let A = (Ac, Am, Ag) ∈ AµME ∩ Asep ∩ A×
be an SS-adversary with information length `(·) outputting v(·) messages. Then there is an SS-adversary
A′ = (A′c, A

′
m, A

′
g) ∈ AµME ∩ Asep with information length `(·) outputting v′(·) = 1 message such that for

all k ∈ N

Advcss
Π,A(k) ≤ v(k) ·Advcss

Π,A′(k) .

The running time of A′ is that of A plus O(v). If A is in AδBB then so is A′. �

This leads to the following possible way to simplify the proof of Theorem 5.3. First, by Theorem A.1,
restrict attention to separable adversaries. Second, by Proposition A.2, assume v(·) = 1. The catch is that
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Theorem A.1 does not preserve message independence, meaning even if A ∈ A×, adversary A′ need not be
in A×. This is why Theorem 5.3 explicitly considers arbitrary v(·).

OPEN QUESTIONS. The above leads to several interesting open questions. The first is whether there is
a reduction to separated adversaries that preserves independence, meaning an analog of Theorem A.1 in
which A ∈ A× implies A′ ∈ A×. Barring this another open question is whether Proposition A.2 extends to
non-separable adversaries. In case that the answer to either question is “no” it would also be interesting to
see counter-examples.

B BB-CSS⇒ B-CSS: Proof of Theorem 4.2

Let n : N → N be a function to be specified later. Below we write n for n(k). Let H : {0, 1}s × {0, 1} →
{0, 1} be a family of pairwise independent hash functions where each key K ∈ {0, 1}s specifies a particular
function HK : {0, 1} → {0, 1}. (Specifically let s = 2 so that a key K = a ‖ b is a pair of bits and let
HK(x) = ax ⊕ b.) Let Sn = {0, 1}s × · · · × {0, 1}s where {0, 1}s is repeated n times. Since A ∈ Aλ
its state function Ac always outputs λ, which is the last input to both Am and Ag. Let A∗ = (A∗c , A

∗
m, A

∗
g)

where
algorithm A∗c(1k):
K←$ Sn

Ret K

algorithm A∗m(1k,K):
(x, t)←$ Am(1k, λ)
i←$ [1 .. n]
Ret (x, H(K[i], t))

algorithm A∗g(1k, pk, c,K):

g←$ Ag(1k, pk, c, λ)
j←$ [1 .. n]
Ret H(K[j], g)

For t ∈ {0, 1} let Zt(K) = Pr
[
H(K[i], t) = 0 : i←$ [1 .. n]

]
and let

G1 =
{
K ∈ Sn :

∣∣∣∣Zt(K)− 1
2

∣∣∣∣ ≥ 1
4

for some t ∈ {0, 1}
}
.

Claim B.1 Pr [ K ∈ G1 : K←$ Sn ] ≤ 4e−n/32 �

The proof of the above will use the following standard Chernoff bound.

Lemma B.2 Let X1, . . . , Xn be independent random variables taking values in [0, 1] and let X = X1 +
· · ·+Xn. Then for any a ≥ 0

Pr [ |X − E [X]| ≥ a ] ≤ 2e−a
2/2n �

Proof of Claim B.1: Let Xt,i(K) = 1 − H(K[i], t). Let Xt =
∑n

i=1Xt,i. Then E [Xt,i] = 1/2 and
E [Xt] = n/2. Observe that Zt(K) = Xt(K)/n. So, with probabilities taken over K←$ Sn,

Pr
[ ∣∣∣∣Zt − 1

2

∣∣∣∣ ≥ 1
4

]
= Pr

[ ∣∣∣Xt −
n

2

∣∣∣ ≥ n

4

]
= Pr

[ ∣∣Xt − E [Xt]
∣∣ ≥ n

4

]
.

But {Xt,i}ni=1 are independent so we can use Lemma B.2

Pr
[ ∣∣Xt − E [Xt]

∣∣ ≥ n

4

]
≤ 2e−(n

4 )2
/2n = 2e−n/32 .

Finally, we can apply a union bound to get

Pr [ K ∈ G1 : K←$ Sn ] ≤
∑

t∈{0,1}

Pr
[ ∣∣∣Xt −

n

2

∣∣∣ ≥ n

4
: K←$ Sn

]
≤ 4e−n/32 .

Claim B.3 Advcss
Π,A∗(k) =

1
2n

Advcss
Π,A(k) �
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Proof: Let P1 = Pr
[
Expcss-1

Π,A (k)⇒ true
]

and P0 = Pr
[
Expcss-0

Π,A (k)⇒ false
]
. Then

Pr
[
Expcss-1

Π,A∗(k)⇒ true
]

=
P1

n
·1 +

(
1− P1

n

)
1
2

and

Pr
[
Expcss-0

Π,A∗(k)⇒ false
]

=
P0

n
·1 +

(
1− P0

n

)
1
2

where we have used that H is pairwise independent and so

Advcss
Π,A∗(k) =

P1

n
− P0

n
+

1
2

[(
1− P1

n

)
−
(

1− P0

n

)]
=

1
2
P1

n
− 1

2
P0

n
=

1
2n
·Advcss

Π,A(k) .

Let Y (K) be the css advantage of A∗ when we do not choose st at random in the game but instead use K.
Then Advcss

Π,A∗(k) = E [Y ], where the expectation is over K←$ Sn. Let P = 2−sn be the probability of
picking a particular K. Then we use the definition of expectation and Claim B.1 to get that

E [Y ] =
∑

K/∈G1

Y (K) ·P +
∑

K∈G1

Y (K) ·P

≤
∑

K/∈G1

Y (K) ·P + Pr [ K ∈ G1 : K←$ Sn ] ≤
∑

K/∈G1

Y (K) ·P + 4e−n/32 .

Rearranging, applying Claim B.3, and recalling that ε = Advcss
Π,A(k) gives∑

K/∈G1

Y (K) ·P ≥ E [Y ]− 4e−n/32 = Advcss
Π,A∗(k)− 4

en/32
=

ε

2n
− 4
en/32

. (14)

Then choosing n so that 4e−n/32 ≤ ε/4n ensures that the difference in (14) is greater than or equal to ε/4n.
This ensures that there exists a K such that Y (K) ≥ ε/4n and also K /∈ G1. Let A′ be the adversary that
runs like A∗ except that it always uses such a K. Then A′ has trivial state function, is 1/4-balanced, and has
advantage at least ε/4n.

Now we determine a suitable value for n. We need that 4ne−n/32 ≤ ε/4. We can first find an N so that
4n ≤ en/64 for all n ≥ N . This holds for N = 485. We can then find an n ≥ 485 such that e−n/64 ≤ ε/4.
This concludes the proof.

C A-CSS⇒ A-SSS: Proof of Theorem 4.3

We define the simulator S below.

Algorithm S(1k, pk, λ):
(x0, t0)←$ Am(1k, st)
c←$ E(1k, pk,x0)
g←$ Ag(1k, pk, c, st)
Ret g

Then we have that
Pr
[
Expsss-1

Π,A,S(k)⇒ true
]

= Pr
[
Expcss-1

Π,A (k)⇒ true
]

because the experiments are exactly the same in the case that b = 1. By the construction of S we also have
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that
Pr
[
Expsss-0

Π,A,S(k)⇒ false
]

= Pr
[
Expcss-0

Π,A (k)⇒ false
]

by the same reasoning. The theorem statement follows.

D BB-SSS⇒ IND: Proof of Theorem 4.4

We define A = (Λ, Am, Ag) via

algorithm Am(1k, λ):
t←$ {0, 1}
x←$ Im(1k, t, λ)
Ret (x, t)

algorithm Ag(1k, pk, c, λ):
t′←$ Ig(1k, pk, c, λ)
Ret t′

Note that A is perfectly balanced since it chooses d uniformly. Let S be an arbitrary simulator. Let Ag⇒ t
be the event thatAg outputs t. in Expsss

Π,A,S(k). Let S ; t be the event that S outputs 1−t in Expsss
Π,A,S(k).

Then,

Advsss
Π,A,S(k) = 2 · Pr

[
Expsss

Π,A,S(k)⇒ true
]
− 1

= 2 · (Pr [Ag⇒ t | b = 1 ] · Pr [ b = 1 ] + Pr [ S ; t | b = 0 ] · Pr [ b = 0 ])− 1

= 2 ·
(

1
2

Pr
[
Expind

Π,I(k)⇒ true
]

+
1
2
· 1

2

)
− 1 (15)

= Pr
[
Expind

Π,I(k)⇒ true
]
− 1

2

=
1
2

+
1
2
·Advind

Π,I(k)− 1
2

(16)

=
1
2
·Advind

Π,I(k) .

In the case that b = 1, the experiment Expsss
Π,A,S(k) simulates for I exactly the experiment Expind

Π,I(k). In
the case that b = 0, the simulator S receives no information about the bit t. Thus, the probability that it
outputs a bit not equal to t is 1/2. Together these facts justify (15). Equation (16) is derived by applying
(7).

E IND⇒ BB-CSS: Proof of Theorem 4.5

First, to give an idea of the efficiency of the reduction relative to δ, note that for δ = 1/4, the running time
of I is increased over that of A by the time to perform 4k + 13 executions of Am.

Let n(·) : N → N to be defined later; below we write n for n(·). We define two IND-adversaries
I = (Λ, Im, Ig) and I ′ = (Λ, I ′m, Ig), both with trivial state functions and with the other algorithms defined
below.

Algorithm Im(1k, b, λ):

For i = 1, . . . , n do
(x, t)←$ Am(1k, λ)
If t = b then Ret x

Ret x

Algorithm I ′m(1k, b, λ):
Do (x, t)←$ Am(1k, λ)
Until (t = b)
Ret x

Algorithm Ig(1k, pk, c, λ):
g←$ Ag(1k, pk, c, λ)
Ret g

Note that I ′m may not be PT. Im is an approximation to it that is PT. We first state three claims and use them
to conclude, then proceed to prove the claims.
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Claim E.1 Advind
Π,I′(k) ≤ Advind

Π,I(k) + 4 ·
(

1
2

+ δ

)n−1

Claim E.2 Advcss
Π,A(k) ≤ 2 ·Advind

Π,I′(k)

Combining Claim E.1 and Claim E.2 gives that

Advcss
Π,A(k) = 2 ·Advind

Π,I(k) + 8
(

1
2

+ δ

)n−1

≤ 2 ·Advind
Π,I(k) + 2−k ,

the last part by setting

n(k) =

⌈
− 1

log
(

1
2 + δ

)⌉ · (k + 3) + 1 .

Our final claim is that the min-entropy of I is close to that of A.

Claim E.3 I has min-entropy µ′(k) = µ(k)− 2 + log(1− 2δ).

Before justifying the claims, we fix some notation. Let x ∈ [Am(1k, λ)] and let b ∈ {0, 1}. Let

p1 = Pr
[
t = 1 : (y, t)←$ Am(1k, λ)

]
p0 = Pr

[
t = 0 : (y, t)←$ Am(1k, λ)

]
= 1− p1

αb(x) = Pr
[

(y, t) = (x, b) : (y, t)←$ Am(1k, λ)
]

γb(x) = Pr
[
y = x : y←$ Im(1k, b, λ)

]
γ′b(x) = Pr

[
y = x : y←$ I ′m(1k, b, λ)

]
.

Then, we have

γb(x) = pn−1
1−b ·α1−b(x) +

n−1∑
i=0

pi1−b · αb(x) = pn−1
1−b ·α1−b(x) + αb(x) ·

n−1∑
i=0

pi1−b

= pn−1
1−b ·α1−b(x) + αb(x) ·

1− pn1−b
pb

.

and

γ′b(x) =
∞∑
i=0

pi1−b · αb(x) =
αb(x)
pb

.

So, ∣∣γ′b(x)− γb(x)
∣∣ =

∣∣∣∣αb(x)
pb
− pn−1

1−b ·α1−b(x)− αb(x) ·
1− pn1−b

pb

∣∣∣∣
=

∣∣∣∣αb(x)pn1−b
pb

− pn−1
1−b ·α1−b(x)

∣∣∣∣ .
We now turn to proving the claims.
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Proof of Claim E.1: For any b ∈ {0, 1},∣∣∣Pr
[
Expind-b

Π,I′ (k)⇒ true
]
− Pr

[
Expind-b

Π,I (k)⇒ true
]∣∣∣ ≤ SD

(
I ′m(1k, b), Im(1k, b)

)
and

SD
(
I ′m(1k, b), Im(1k, b)

)
=

∑
x

∣∣γ′b(x)− γb(x)
∣∣

=
∑
x

∣∣∣∣αb(x)pn1−b
pb

− pn−1
1−b ·α1−b(x)

∣∣∣∣
≤

∑
x

αb(x)pn1−b
pb

+
∑
x

pn−1
1−b ·α1−b(x)

= pn1−b

(∑
x

αb(x)
pb︸ ︷︷ ︸

=1

)
+ pn−1

1−b

(∑
x

α1−b(x)︸ ︷︷ ︸
≤1

)

≤ pn−1
1−b (p1−b + 1)

≤ 2pn−1
1−b

≤ 2 ·
(

1
2

+ δ

)n−1

where we have used the fact that pb ≤ 1/2 + δ, which follows from the fact that A is δ-balanced. The above
implies that

Advind
Π,I′(k)−Advind

Π,I(k) ≤ 4 ·
(

1
2

+ δ

)n−1

which proves the claim.

To prove Claim E.2 we will utilize the following lemma:

Lemma E.4 Let Π = (K, E ,D) be an encryption scheme and A = (Ac, Am, Ag) ∈ ASS ∩ Aλ ∩ AB be a
boolean ss-adversary. Consider the following experiment, where k ∈ N:

(x, t)←$ Am(1k, λ) ; (pk, sk)←$K(1k) ; c←$ E(pk,x) ; g←$ Ag(1k, pk, c, λ) .

Let a1 = Pr [ g = 1 | t = 1 ] and b1 = Pr [ g = 1 | t = 0 ] and c1 = Pr [ t = 1 ]. Then

Advcss
Π,A(k) = (a1 − b1)(2c1 − 2c2

1) �

Proof of Lemma E.4: We extend the experiment of the lemma statement with the additional step

(x′, t′)←$ Am(1k, λ) .

Then let

a0 = Pr [ g = 0 | t = 1 ] = 1− a1

b0 = Pr [ g = 0 | t = 0 ] = 1− b1
c0 = Pr [ t = 0 ] = 1− c1
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Then

Pr
[
Expcss-1

Π,A (k)⇒ true
]

= Pr [ g = t ]
= Pr [ g = 1 | t = 1 ] Pr [ t = 1 ] + Pr [ g = 0 | t = 0 ] Pr [ t = 0 ]
= a1c1 + b0c0 .

Also, using the fact that g, t, t′ ∈ {0, 1},

Pr
[
Expcss-0

Π,A (k)⇒ false
]

= Pr
[
g = t′

]
= Pr

[
g = t ∧ t = t′

]
+ Pr

[
g 6= t ∧ t 6= t′

]
= Pr

[
g = 1 ∧ t = 1 ∧ t′ = 1

]
+ Pr

[
g = 0 ∧ t = 0 ∧ t′ = 0

]
+ Pr

[
g = 1 ∧ t = 0 ∧ t′ = 1

]
+ Pr

[
g = 0 ∧ t = 1 ∧ t′ = 0

]
.

But the event “t′ = 1” is independent of its conjuncts, and similarly for “t′ = 0” so

Pr
[
Expcss-0

Π,A (k)⇒ false
]

= Pr [ g = 1 ∧ t = 1 ] Pr
[
t′ = 1

]
+ Pr [ g = 0 ∧ t = 0 ] Pr

[
t′ = 0

]
+

Pr [ g = 1 ∧ t = 0 ] Pr
[
t′ = 1

]
+ Pr [ g = 0 ∧ t = 1 ] Pr

[
t′ = 0

]
= Pr [ g = 1 | t = 1 ] Pr [ t = 1 ] Pr

[
t′ = 1

]
+

Pr [ g = 0 | t = 0 ] Pr [ t = 0 ] Pr
[
t′ = 0

]
+

Pr [ g = 1 | t = 0 ] Pr [ t = 0 ] Pr
[
t′ = 1

]
+

Pr [ g = 0 | t = 1 ] Pr [ t = 1 ] Pr
[
t′ = 0

]
= a1c

2
1 + b0c

2
0 + b1c0c1 + a0c1c0 .

The last equality uses the facts that Pr[t′ = 1] = Pr[t = 1] = c1 and Pr[t′ = 0] = Pr[t = 0] = c0. Now

Advcss
Π,A(k) = Pr

[
Expcss-1

Π,A (k)⇒ true
]
− Pr

[
Expcss-0

Π,A (k)⇒ false
]

= a1c1 + b0c0 − a1c
2
1 − b0c2

0 − b1c0c1 − a0c1c0

= a1(c1 − c2
1) + b0(c0 − c2

0)− (a0 + b1)c0c1

but c0c1 = c1 − c2
1 and also c0c1 = c0 − c2

0 so

Advcss
Π,A(k) = (a1 + b0 − b1 − a0)(c1 − c2

1)

= (2a1 − 2b1)(c1 − c2
1)

= (a1 − b1)(2c1 − 2c2
1) .

Proof of Claim E.2: Consider the experiment of Lemma E.4. Then Pr[Expind-1
Π,I′ (k) ⇒ true] = a1 and

Pr[Expind-0
Π,I′ (k)⇒ false] = b1 so Advind

Π,I′(k) = a1 − b1. By Lemma E.4

Advcss
Π,A(k) = Advind

Π,I′(k) ·(2c1 − 2c2
1) ≤ 2 ·Advind

Π,I′(k)

where we have used the fact that 2c1 − 2c2
1 is maximized when c1 = 1/2.
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Proof of Claim E.3: Fix b ∈ {0, 1}, x ∈ {0, 1}∗, and i ∈ [1..v(k)]. Let S(x, i) = { x : x[i] = x }. Then

Pr
[
x[i] = x : x←$ Im(1k, b)

]
=

∑
x∈S(x,i)

γb(x)

≤
∑

x∈S(x,i)

αb(x)
1− pn1−b

pb
+ pn−1

1−bα1−b(x)

=
1− pn1−b

pb
·
∑

x∈S(x,i)

αb(x) + pn−1
1−b ·

∑
x∈S(x,i)

α1−b(x)

≤ 1
pb

∑
x∈S(x,i)

(αb(x) + α1−b(x))

=
1
pb

Pr
[
x[i] = x : (x, t)←$ Am(1k)

]
≤ 1

pb
·2−µ(k)

≤ 1
1/2− δ

·2−µ(k)

= 2−µ(k)+1−log(1−2δ)

and since δ < 1/2 this is well-defined.

F Proof of Lemma 5.2

Let D = (Dc, Dp, Dg). The following allows us to reduce to the case v(·) = 1.

Claim F.1 There is a PRG-adversary D′ = (D′c, D
′
p, D

′
g) with help length `(·) such that for all k ∈ N

ε(k) ≤ v(k) ·Advprg-1
T P,D′,n(k) .

The running time of D′ is TD +O(nv) · TF . �

Proof: The proof is a simple hybrid argument. Adversary D′ is shown in Figure 8. We highlight the fact
that x, i need to be chosen by D′c and put into st′. This is important to ensure that the help-length of D′

stays equal to that of D. We omit the analysis.

A prediction adversary P = (Pc, Pp, Pg) is a triple of algorithms. We let

Advpre
T P,P (k) = 2 · Pr

[
Exppre

T P,P (k)⇒ true
]
− 1

where the experiment is shown in Figure 9. The running time of P is defined as the sum of the running times
of Pc and Pg, so that P is PT if Pc, Pg are PT. (Pp is not required to be PT.) We say that P has help-length
`(·) if the output of Pp(1k, ·, ·, ·) is always of length `(k).

Claim F.2 LetD′ = (Dc, Dp, Dg) be a PRG-adversary. Then there is a prediction adversaryP = (Pc, Pp, Pg)
such that for all k ∈ N

Advprg-1
T P,D′,n(k) ≤ n(k) ·Advpre

T P,P (k) .

The running time of P is TD′ +O(n) · TF . �
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algorithm D′c(1
k, φ):

i←$ {1, . . . , v(k)}
x←$ B

v(k)
k

st←$ Dc(1k, φ)
st′ ← (st,x, i)
Ret st′

algorithm D′p(1k, x, φ, st′):
(st,x, i)← st′

x[i]← x

t←$ Dp(1k,x, φ, st)
Ret t

algorithm D′g(1k, φ, y, ω, s, t):
(st,x, i)← st′

For j = 1, . . . , v(k) do
y[j]← F

n(k)
φ (x[j])

If j ≤ i− 1 then
ω[j]← GT P(1k, 1n(k), φ,x[j], s)

Else ω[j]←$ Bn(k)

y[i]← y ; ω[i]← ω

b′←$ Dg(1k, φ, st,y,ω, s, t)
Ret b′

Figure 8: Adversary D′ for proof of Claim F.1.

Experiment Exppre
T P,P (k)

(φ, τ)←$ G(1k) ; st←$ Pc(1k, φ)
x←$ {0, 1}k ; t←$ Pp(1k, x, φ, st)
y ← Fφ(x) ; s←$ {0, 1}k
c←$ Pg(1k, φ, st, y, s, t)
Ret (c = 〈x, s〉)

Figure 9: Experiment defining advantage of prediction adversary P = (Pc, Pp, Pg).

Proof: Adversary P is shown in Figure 10. We focus on the aspects related to help information, meaning
what is different from the standard argument. In this regard we note that Pp runs Dp but on a value x′

obtained by iterating Fφ backwards on x some number of times. This means Pp needs to invert Fφ and is
not PT, but we allowed that. (Its running time is not counted in that of P .) Also the guess index i is chosen
by Pc and put in st so that P can keep its help length equal to that of D′. We omit the hybrid argument used
in the analysis.

The final step uses the Goldreich-Levin theorem [24] whose core is captured by the following.

Lemma F.3 There is an algorithm REC such that for all k ∈ N and all x ∈ {0, 1}k the following is true.
Let B : {0, 1}k → {0, 1} be an oracle such that

2 · Pr
[

B(s) = 〈x, s〉 : s←$ {0, 1}k
]
− 1 ≥ δ > 0 . (17)

Let Eq be an oracle that on any input w returns true if x = w and false otherwise. Then

Pr
[

RECB,Eq(1k) = x
]
≥ 1

2
. (18)

The running time of REC is O(k3 ·δ−4). It makes O(k2 ·δ−2) calls to oracle B and O(kδ−2) calls to oracle
Eq. �

The running time above is in the model where an oracle call has unit cost. The probability in (18) is over the
coins of REC only, and that in (17) is over the choice of s only. (B is deterministic.) A proof of the above,
following Rackoff’s simplification to [24], can be found in [1]. Let P = (Pc, Pp, Pg) be the prediction
adversary given by Claim F.2 applied to the PRG-adversary D′ of Claim F.1. Let γ(·) = Advpre

T P,P (·) > 0.
Let I = (Pc, Pp, Is) where algorithm Is is shown in Figure 11. We claim that this inversion adversary
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adversary Pc(1k, φ):
i←$ {1, . . . , v(k)}
st′←$ D′c(1

k, φ)
st← (i, st′)
Ret st

adversary Pp(1k, x, φ, st):
(i, st′)← st

x′ ← F
−(i−1)
φ (x)

t←$ D′p(1k, x′, φ, st′)
Ret t

adversary Pg(1k, φ, st, y, s, t):
(i, st′)← st

For j = 1, . . . , n(k) do
If j ≤ i then ωj ←$ {0, 1}
Else ωj ← 〈F j−i−1

φ (y), s〉
ω ← ω1 · · ·ωn(k)

b′←$ D′g(1k, φ, st′, Fn(k)−i
φ (y), ω, s, t)

Ret b′ ⊕ ωi ⊕ 1

Figure 10: Prediction adversary P = (Pc, Pp, Pg) for proof of Claim F.2.

algorithm Is(1k, φ, st, y, t):
Rg←$ CoinsPg(1k)

oracle B(s):
c← Pg(1k, φ, st, y, s, t ; Rg)
Ret c

oracle Eq(w):
Ret (Fφ(w) = y)

x′←$ RECB,Eq(1k)
Ret x′

Figure 11: Algorithm Is for proof of Lemma 5.2, where CoinsPg(1k) is the space of coins for
Pg(1k, ·, ·, ·, ·, ·).

satisfies the conditions of Lemma 5.2. For the analysis let us enumerate the coins underlying Exppre
T P,P (k)

as RG, Rc, x,Rp, s, Rg where RG, Rc, Rp, Rg are the coins of G, Pc, Pp and Pg respectively. Let

Γ(RG, Rc, x,Rp, Rg) = 2 · Pr [ c = 〈x, s〉 ]− 1

where the probability is over the choice of s alone and the other coins in the experiment are fixed to the
given values. Then γ(k) = E [Γ]. So a standard averaging argument says there is a set Ω of choices of
(RG, Rc, x,Rp, Rg) that has probability at least γ(k)/2 and

Γ(RG, Rc, x,Rp, Rg) ≥
γ(k)

2
for all (RG, Rc, x,Rp, Rg) ∈ Ω. Now Lemma F.3 with δ = γ(k)/2 implies

Advowf
T P,I(k) ≥ γ(k)

2
· 1

2
=
γ(k)

4
.

Putting everything together we have

ε(k) ≤ v(k) ·Advprg-1
T P,D′,n(k)

≤ v(k) · n(k) ·Advpre
T P,P (k)

= v(k) · n(k) · γ(k)
≤ 4v(k) · n(k) ·Advowf

T P,I(k) .
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With regard to running time we have

TI = O(k3γ−4) +O(k2γ−2) ·TP +O(kγ−2) ·TF
= O(k3γ−4) +O(k2γ−2) · [TD +O(nv) ·TF ] +O(kγ−2) ·TF
= O(k2γ−2) ·TD +O(k2γ−2nv) ·TF +O(k3γ−4)
= O(k2(nv/ε)2) ·TD +O(k2(nv/ε)2nv) ·TF +O(k3(nv/ε)4)
= O(k3n4v4ε−4) +O(TD + nvTF )k2n2v2ε−2 .

G Deterministic Encryption under Chosen Ciphertext Attacks

The definitions of Section 3 lift in a natural way to model chosen-ciphertext attacks. We denote the CCA
versions of the experiments by a -CCA suffix. Let A = (Ac, Am, Ag) be an SS-adversary and let S be a
simulator. Then the css experiment is modified to give Ag access to a decryption oracle. The sss experiment
is modified to give both Ag and S access to a decryption oracle. We now say that adversary A is legitimate
if —in addition to the existing constraints detailed in Section 3— Ag(1k, pk, c, st) does not query the de-
cryption oracle on any c ∈ c. Let I = (Ic, Im, Ig) be an IND-adversary. The ind experiment is modified to
allow Ig access to a decryption oracle. The definition of legitimacy is similarly adapted. It is straightforward
to modify the theorem statements and proofs of our implications in Section 4 and Appendices B, C, D, and
E to the CCA setting.

The construction of randomized PKE from deterministic PKE in Appendix 7 also holds in the CCA
setting. Specifically, if Π is secure against IND-CCA adversaries, then Ψ is secure as a KEM against CCA
attacks. Modifying the proof just requires adding a decryption oracle in the appropriate places. As discussed
in the introduction, this is of particular interest because our construction implies that building a CCA-secure
deterministic encryption scheme is at least as hard as building a witness-recovering CCA encryption scheme.

H Related Work

To discuss prior work we let us say a that an adversary is efficient if it is polynomial time and a message space
is efficient if it is poly-time sampleable. Then a reduction is efficient if, whenever the starting adversary and
message space are efficient, so are the resulting adversary and message space. The reason efficient message
spaces are important is because they are necessary whenever one uses the definitions in computationally-
bounded settings. For example, the reductions in [3] require efficiently-sampleable message spaces.

ENTROPIC SECURITY. The core concern of Dodis and Smith’s work on entropic security [20] is the same as
ours, namely the encryption of high min-entropy plaintexts. But there are important differences between the
settings, namely that of entropic security is information theoretic and symmetric while ours is computational
and public-key. The first difference means that adversaries and message spaces in the entropic security
setting need not be efficient while in our setting, in contrast, they must be efficient. They introduce notions
that are analogous to our notions IND, B-SSS and BB-SSS, to complement the A-SSS-like definition of
Russell and Wang [28], and they show equivalences in their setting. Note that in their definitions adversaries
are restricted to seeing the encryption of a single message, which is not in general equivalent to our multi-
message definitions. It becomes equivalent when one restricts our definitions to the case of independent and
separable adversaries, as discussed in Appendix A. Below we implicitly mean our definitions so restricted.

Dodis and Smith [20] provide implications showing that IND, A-SSS, and BB-SSS are equivalent, but
their non-trivial reductions from BB-SSS to B-SSS and B-SSS to A-SSS are inefficient, so their results
do not imply equivalences in our setting. They do provide an efficient reduction from B-SSS to A-SSS
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B-CSS

BB-CSS

B-SSS

BB-SSS

IND B-SSS

BB-SSS

IND

A-SSSA-CSS

B-CSS

BB-CSS

B-SSS

BB-SSS

IND

A-SSSA-CSS

Figure 12: (Left) Diagram illustrating implications shown in [20]. Dashed lines are implications relying
on an inefficient reduction. The dotted line represents an implication relying on an unnatural adversarial
constraint. (Right) Diagram illustrating implications shown in [17, 18].

when the probability of the most likely output of the partial information function has a certain relation to
the adversary advantage, but this does not show that the one notion implies the other in general. The left
diagram in Figure 12 diagrams these results. Note that we show A-CSS, B-CSS, and BB-CSS and their
associated trivial implications in the diagram for completeness, but these were not considered in [20].

QUANTUM ENTROPIC SECURITY. Desrosiers [17] and Desrosiers and Dupuis [18] adapted entropic security
to the quantum setting. Moreover, they define notions analogous to A-CSS and B-CSS. As above, these are
single-message definitions. They provide an efficient reduction showing that A-CSS implies A-SSS. (For
completeness we also give a theorem and its proof for this straightforward implication; see Appendix C.)
They use a Goldreich-Levin predicate as the main tool of an efficient reduction showing that B-CSS implies
A-CSS. Of greater technical interest is their proof that IND implies B-CSS. Here they aim to build an
IND-adversary I = (Ic, Im, Ig) from a boolean SS-adversary A = (Ac, Am, Ag). Associate to Am the
(implicitly defined) message distribution M and the (implicitly defined) boolean function f . Let Mb be
M but conditioned on a message being in the preimage of f for b. Ideally, Im, when run with input bit
b, could sample a message from Mb and return it. However, since A, and therefore f , are not balanced,
Mb might be low entropy. Instead, they have Im sample from a convex combination ofMb andM, which
ensures high min-entropy, but nevertheless allows Ig to utilize Ag to infer the bit b with probability close to
A’s advantage. Note that this does not change the balance of f , but cleverly modifies the way messages are
chosen by Am to compensate for f ’s lack of balance. The reduction is efficient as long as the combination
ofMb andM is efficiently sampleable, which appears to be the case [29].

The right diagram of Figure 12 shows the relationships established in [17, 18]. Note that we show
BB-CSS, B-SSS, and BB-SSS and their associated trivial implications in the diagram for completeness, but
these were not considered in [17, 18]. Indeed, their implication that IND implies B-CSS (as sketched above)
side-steps the issue of balanced predicates entirely.

In light of the implications provided by [17, 18], one might ask why bother with the BB notions at all,
since IND can apparently be shown equivalent to the others without them. There are several reasons we
nevertheless consider them. The work of [20], and also our implications, highlight balance as a useful tool
for understanding the relationships between security notions for deterministic encryption. Most importantly,
the BB-CSS and BB-SSS notions are conceptually close to IND, and the balance feature allows an obviously
efficient reduction from IND to BB-CSS. (Whereas adapting the [17, 18] reduction from IND to B-CSS to
the computationally-efficient setting requires a non-obvious sampling algorithm.) Moreover, intuition might
predict that the BB notions are not as strong as their boolean or arbitrary counterparts. Our results show
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otherwise. Finally, we expect that these notions might be useful in future applications of deterministic
encryption.

PERFECTLY ONE-WAY HASH FUNCTIONS. Canetti introduced perfectly one-way hash functions (POWHF)
[13], which were further studied by Canetti, Micciancio, and Reingold [14]. These are randomized hash
functions that produce publically-verifiable outputs (i.e., given a message and a hash value, any party can
check if the hash corresponds to the message). The security required is that no adversary, given only the
output of the hash applied to some unpredictable message, should be able to compute any partial information
about the message. In [13] a notion analogous to B-SSS is introduced. Several other definitions are offered
in [13, 14], along with some equivalences, but these definitions, and the implications, are only meaningful
for randomized primitives. Our definitions and equivalences can be adapted to work in this setting.
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