Puppetnets: Misusing Web Browsers as a Distributed
Attack Infrastructure

* g .
V. T. Lam, S. Antonatos , P. Akritidis , K. G. Anagnostakis
Systems and Security Department, Institute for Infocomm Research
21 Heng Mui Keng Terrace, Singapore

(vtlam,antonat,akritid,kostas; @s3g.i2r.a-star.edu.sg

ABSTRACT

Most of the recent work on Web security focuses on prevent-
ing attacks that directly harm the browser’s host machine
and user. In this paper we attempt to quantify the threat of
browsers being indirectly misused for attacking third parties.
Specifically, we look at how the existing Web infrastructure
(e.g., the languages, protocols, and security policies) can
be exploited by malicious Web sites to remotely instruct
browsers to orchestrate actions including denial of service
attacks, worm propagation and reconnaissance scans. We
show that, depending mostly on the popularity of a mali-
cious Web site and user browsing patterns, attackers are able
to create powerful botnet-like infrastructures that can cause
significant damage. We explore the effectiveness of counter-
measures including anomaly detection and more fine-grained
browser security policies.

Categories and Subject Descriptors

D.4.6 [Operating Systems]|: Security and Protection—In-
vasive software

General Terms

Security, Measurement, Experimentation

Keywords

Web security, malicious software, distributed attacks

1. INTRODUCTION

In the last few years researchers have observed two signif-
icant changes in malicious activity on the Internet [48, 60,

*S. Antonatos is with FORTH-ICS and the University of
Crete, Greece. This work was done while visiting IR.

JfP. Akritidis is with FORTH-ICS, Greece. This work was
done while visiting I°R.

Permission to make digital or hard copies of all or part o twork for
personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyooiherwise, or
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

CCS'06,0ctober 30—November 3, 2006, Alexandria, Virginia, USA.
Copyright 2006 ACM 1-59593-518-5/06/001055.00.

52]. The first is the shift from amateur proof-of-concept at-
tacks to professional profit-driven criminal activity. The sec-
ond is the increasing sophistication of the attacks. Although
significant efforts are made towards addressing the underly-
ing vulnerabilities, it is very likely that attackers will try
to adapt to any security response, by discovering new ways
of exploiting systems to their advantage [39]. In this arms
race, it is important for security researchers to proactively
explore and mitigate new threats before they materialize.

This paper discusses one such threat, for which we have
coined the term puppetnets. Puppetnets rely on Web sites
that coerce Web browsers to (unknowingly) participate in
malicious activities. Such activities include distributed de-
nial-of-service, worm propagation and reconnaissance prob-
ing, and can be engineered to be carried out in stealth, with-
out any observable impact on an otherwise innocent-looking
Web site. Puppetnets exploit the high degree of flexibility
granted to the mechanisms comprising the Web architec-
ture, such as HI'ML and Javascript. In particular, these
mechanisms impose few restrictions on how remote hosts
are accessed. A malicious Web site can thereby transform
a collection of Web browsers into an impromptu distributed
system that is effectively controlled by the attacker. Pup-
petnets expose a deeper problem in the design of the Web.
The problem is that the security model is focused almost ex-
clusively on protecting browsers and their host environment
from malicious Web servers, as well as servers from mali-
cious browsers. As a result, the model ignores the potential
of attacks against third parties.

Web sites controlling puppetnets could be either legiti-
mate sites that have been subverted by attackers, malicious
“underground” Web sites that can lure unsuspected users
by providing interesting services (such as free Web stor-
age, illegal downloads, etc.), or Web sites that openly invite
users to participate in vigilante campaigns. We must note
however that puppetnet attacks are different from previous
vigilante campaigns against spam and phishing sites that
we are aware of. For instance, the Lycos “Make Love Not
Spam” campaign[53] required users to install a screensaver
in order to attack known spam sites. Although similar cam-
paigns can be orchestrated using puppetnets, in puppetnets
users may not be aware of their participation, or may be
coerced to do so; the attack can be launched stealthily from
an innocent-looking Web page, without requiring any extra
software to be installed, or any other kind of user action.

Puppetnets differ from botnets in three fundamental ways.
First, puppetnets are not heavily dependent on the exploita-
tion of specific implementation flaws, or on social engineer-

ing tactics that trick users into installing malicious software
on their computer. They exploit architectural features that
serve purposes such as enabling dynamic content, load dis-
tribution and cooperation between content providers. At
the same time, they rely on the amplification of vulnerabil-
ities that seem insignificant from the perspective of a single
browser, but can cause significant damage when abused by
a popular Web site. Thus, it seems harder to eliminate such
a threat in similar terms to common implementation flaws,
especially if this would require sacrificing functionality that
is of great value to Web designers. Additionally, even if we
optimistically assume that major security problems such as
code injection and traditional botnets are successfully coun-
tered, some puppetnet attacks will still be possible. Further-
more, the nature of the problem implies that the attack vec-
tor is pervasive: puppetnets can instruct any Web browser
to engage in malicious activities.

Second, the attacker does not have complete control over
the actions of the participating nodes. Instead, actions have
to be composed using the primitives offered from within the
browser sandbox — hence the analogy to puppets. Although
the flexibility of puppetnets seems limited when compared
to botnets, we will show that they are surprisingly powerful.

Finally, participation in puppetnets is dynamic, making
them a moving target, since users join and participate un-
knowingly while surfing the net. Thus, it seems easy for the
attackers to maintain a reasonable population, without the
burden of having to look for new victims. At the same time,
it is harder for the defenders to track and filter out attacks,
as puppets are likely to be relatively short-lived.

A fundamental property of puppetnet attacks, in contrast
to most Web attacks that directly harm the browser’s host
machine, is that they only indirectly misuse browsers to at-
tack third parties. As such, users are less likely to be vig-
ilant, less likely to notice the attacks, and have lesser in-
centive to address the problem. Similar problems arise at
the server side: if puppetnet code is installed on a Web site,
the site may continue to operate without any adverse conse-
quences or signs of compromise (in contrast to defacement
and other similar attacks), making it less likely that admin-
istrators will react in a timely fashion.

In this paper we experimentally assess the threat from
puppetnets. We discuss the building blocks for engineer-
ing denial-of-service attacks, worm propagation and other
puppetnet attacks, and attempt to quantify how puppet-
nets would perform. Finally, we examine various options for
guarding against such attacks.

2. PUPPETNETS: DESIGN AND ANALYSIS

We attempt to map out the attackers’ opportunity space
for misusing Web browsers. In lieu of the necessary for-
mal tools for analyzing potential vulnerabilities, neither the
types of attacks nor their specific realizations are exhaustive
enough to provide us with a solid worst-case scenario. Nev-
ertheless, we have tried to enhance the attacks as much as
possible, in an attempt to approximately determine in what
ways and to what effect the attacker could capitalize on the
underlying vulnerabilities. In the rest of this section, we ex-
plore in more detail a number of ways of using puppetnets,
and attempt to quantify their effectiveness.

2.1 Distributed Denial of Service
The flexibility of Web architecture provides many ways

Malicious Web server

Normal HTTP
request/ response

w/ attack instructions
piggybacked

Web clients

Figure 1: DDoS using puppetnets

for launching DoS attacks using puppetnets. The common
component of the attack in all of its forms is an instruction
that asks the remote browser to access some object from the
victim. There are several ways of embedding such instruc-
tions in an otherwise legitimate Web page. The simplest
way is to add an image reference, as commonly used in the
vast majority of Web pages. Other ways include opening
up pop-up windows, creating new frames that load a remote
object, and loading image objects through Javascript. We
are not aware of any browser that imposes restrictions on
the location or type of the target referenced through these
mechanisms.

We assume that the intention of the attacker is to max-
imize the effectiveness of the DDoS attack, at the lowest
possible cost, and as stealthily as possible. An attack may
have different objectives: maximize the amount of ingress
traffic to the victim, the egress traffic from the victim, con-
nection state, etc. Here we focus on raw bandwidth attacks
in both directions, but emphasize on ingress traffic as it
seems harder to defend against: the host has full control
over egress traffic, but usually limited control over ingress
traffic.

To create a large number of requests to the target site,
the attacker can embed a sequence of image references in
the malicious Web page. This can be done using either a
sequence of IMG SRC instructions, or a Javascript loop that
instructs the browser to load objects from the target server.
In the latter case, the attack seems to be much more effi-
cient in terms of attack gain, e.g., the effort (in terms of
bandwidth) that the attacker has to spend for generating a
given amount of attack traffic. This assumes that the at-
tacker either targets the same URL in all requests, or is able
to construct valid target URLs through Javascript without
wasting space for every URL. To prevent client-side caching
of requests, the attacker can also attach an invariant modi-
fier string to the attack URL that is ignored by the server but
considered by the client in the context of deciding whether
the object is already cached *.

Another constraint is that most browsers impose a limit
on the number of simultaneous connections to the same

!The URL specification [10] states that URLs have the form
http://host:port/path?searchpart. The searchpart is

ignored by Web servers such as Apache if included in a nor-
mal file URL.

server. For IE and Firefox the limit is two connections.
However, we can circumvent this limit using aliases of the
same server, such as using the DNS name instead of the IP
address, stripping the “www” part from or adding a trailing
dot to the host name, etc. Most browsers generally treat
these as different servers. Servers with “virtual hosting” are
especially vulnerable to this form of amplification.

To make the attack stealthy in terms of not getting noticed
by the user, the attacker can employ hidden (e.g., zero-size)
frames to launch the attack-bearing page in the background.
To maximize effectiveness the requests should not be ren-
dered within a frame and should not interfere with normal
page loading. To achieve this, the attacker can employ the
same technique used by Web designers for pre-loading im-
ages for future display on a Web page. The process of re-
questing target URLs can then be repeated through a loop
or in an event-driven fashion. The loop is likely to be more
expensive and may interfere with normal browser activity
as it may not relinquish control frequently enough for the
browser to be used for other purposes. The event-driven ap-
proach, using Javascript timeouts, appears more attractive.

2.1.1 Analysis of DDoS attacks

We explore the effectiveness of puppetnets as a DDoS
infrastructure. The “firepower” of a DDoS attack will be
equal to the number of users concurrently viewing the mali-
cious page on their Web browser (henceforth referred to as
site viewers) multiplied by the amount of bandwidth each of
these users can generate towards the target server. Consid-
ering that some Web servers are visited by millions of users
every day, the scale of the potential threat becomes evident.
We consider the size of a puppetnet to be equal to the site
viewers for the set of Web servers controlled by the same
attacker. Although it is tempting to use puppetnet size for
a direct comparison to botnets, a threat analysis based on
such a comparison alone may be misleading. Firstly, a bot
is generally more powerful than a puppet, as it has full con-
trol over the host, in contrast to a puppet that is somewhat
constrained within the browser sandbox. Secondly, a recent
study [17] observes a trend towards smaller botnets, suggest-
ing that such botnets may be more attractive, as they are
easier to manage and keep undetected, yet powerful enough
for the attacker to pursue his objectives. Finally, an attacker
may construct a hybrid, two-level system, with a small bot-
net consisting of a number of Web servers, each controlling
a number of puppets.

To estimate the firepower of puppetnets we could rely on
direct measurements of site viewers for a large fraction of
the Web sites in the Internet. Although this would be ideal
in terms of accuracy, to the best of our knowledge there is
no published study that provides such data. Furthermore,
carrying out such a large-scale study seems like a daunting
task. We therefore obtain a rough estimate using “second-
hand” information from Web site reports and Web statistics
organizations. There are several sources providing data on
the number of daily or monthly visitors:

e Many sites use tools such as Webalizer [8] and Web-
Trends [24] to generate usage statistics in a standard
format. This makes them easy to locate through search
engines and to automatically post-process. We have
obtained WebTrends reports for 249 sites and Webal-
izer reports for 738 sites, covering a one-month period
in December 2005. Although these sites may not be

entirely random, as the sampling may be influenced
by the search engine, we found that most of them are
non-commercial sites with little content and very few
visits.

e Some Web audit companies such as ABC Electronic
provide public databases for a fairly large number of
their customers [3]. These sites include well-known
and relatively popular sites. We obtained 138 samples
from this source.

e Alexa [5] tracks the access patterns of several mil-
lion users through a browser-side toolbar and provides,
among other things, statistics on the top-500 most
popular sites. Although Alexa statistics have been
criticized as inaccurate because of the relatively small
sample size [7], this problem applies mostly to less pop-
ular sites and not the top-500. Very few of these sites
are tracked by ABC Electronic.?

We have combined these numbers to get an estimate on
the number of visitors per day for different Web sites. Relat-
ing the number of visitors per day to the number of site view-
ers is relatively straightforward. Recall that Little’s law [35]
states that if A is the arrival rate of clients in a queuing
system and T the time spent in the system, then the the
number of customers active in the system N is N = AT

To obtain the number of site viewers we also need, for each
visit to a Web site, the time spent by users viewing pages on
that site. None of the sources of Web site popularity statis-
tics mentioned above provide such statistics. We therefore
have to obtain a separate estimate of Web browsing times,
making the assumption that site popularity and browsing
times are not correlated in a way that could significantly
distort our rough estimates.

Note that although we base our analysis on estimates of
“typical” Web site viewing patterns, the attacker may also
employ methods for increasing viewing times, such as in-
centivizing users (e.g., asking users to keep a pop-up win-
dow open for the download to proceed), slowing down the
download of legitimate pages, and providing more interest-
ing content in the case of a malicious Website.

Web session time measurements based entirely on server
log files may not accurately reflect the time spent by users
viewing pages on a particular Web site. These measure-
ments compute the session time as the difference between
the last and first request to the Web site by a particular user,
and often include a timeout threshold between requests to
distinguish between different users. The remote server usu-
ally cannot tell whether a user is actively viewing a page or
whether he has closed the browser window or moved to a
different site. As we have informally observed, many users
leave several browser instances open for long periods of time,
we were concerned that Web session measurements may not
be reliable enough by themselves for the purposes of this
study. We thus considered the following three data sources
for our estimates:

2 Alexa only provides relative measures of daily visitors as a
fraction of users that have the Alexa toolbar installed, and
not absolute numbers of daily visitors. To obtain the abso-
lute number of daily visitors we compare the numbers from
Alexa to those from ABC Electronic, for those sites that
appear on both datasets. This gives us a (crude) estimate
of the Internet population, which we then use to translate
visit counts from relative to absolute.

mean=f.49 min—

SZ b @ —mean=69.99 min
0.7 xg‘? —mean=74.62 min
g/l

0.5 %

0.4 mean=14.88 min
0.3 S
K
A (-
"
0.1 1 10 100 1000
Time (minutes - logscale)

KDDCUP frace
Browser-tracking
Google/Webtrends
JStracker

e
#

Cumulative fraction of sessions

o |+ K

10000

Figure 2: Web site viewing times

e We obtain real browsing times through a small-scale
experiment: we developed browser extensions for both
IE and Firefox that keep track of Web page viewing
times and regularly post anonymized usage reports
back to our server. The experiment involved roughly
20 users and resulted in a dataset of roughly 9,000 page
viewing reports.

e We instrumented all pages on the server of our insti-
tution to include Javascript code that makes a small
request back to the server every 30 seconds. This al-
lows us to infer how long the browser points to one of
the instrumented pages. We obtained data on more
than 3,000 sessions over a period of two months start-
ing January 2006. These results are likely to be opti-
mistic, as the instrumented Web site is not particularly
deep or content-heavy.

e We analyzed the KDD Cup 2000 dataset [29] which
contains clickstream and purchase data from a defunct
commercial Web site. The use of cookies, the size of
the dataset, and the commercial nature of the mea-
sured Website suggest that the data are reasonably
representative for many Web sites.

e We obtained, through a search engine, WebTrends re-
ports on Web session times from 249 sites, similar to
the popularity measurements, which provide us with
mean session time estimates per site.

The distributions of estimated session times, as well as the
means of the distributions, are shown in Figure 2. As sus-
pected, the high-end tail of the distribution for the more re-
liable browser-tracking measurements is substantially larger
than that for other measurement methods. This confirms
our informal observation that users tend to leave browser
windows open for long periods of time, and our concern that
logfile-based session time measurements may underestimate
viewing times. The Javascript tracker numbers also appear
to confirm this observation. As in the case of DDoS, we
are interested in the mean number of active viewers. Our
results show that because of the high-end tails, the mean
time that users keep pages on their browser is around 74
minutes, 6-13 times more than the session time as predicted
using logfiles.?

3Note that the WebTrends distribution seems to have much
lower variance and a much higher median than the other
two sources. This is an artifact, as for WebTrends we have
a distribution of means for different sites, rather than the
distribution of session times.

0.9 ‘
1/
0.7

//
0.5 f

0.4
0.3 ’ * Alexa Top-500

% ABCE dataset
0.2 ‘ + Google/Webtrend

0.1 Google/Webalizer
o |t l ——t——
1 10 100 1K 10K 100K 1M 10M
Estimated size of puppetnet (logscale)

Cumulative fraction of Web sites

Figure 3: Estimated size of puppetnets

From the statistics on daily visits and typical page viewing
times we estimate the size of a puppetnet. The results for the
four groups of Web site popularity measurements are shown
in Figure 3. The main observation here is that puppetnets
appear to be comparable in size to botnets. Most top-500
sites appear highly attractive as targets for setting up pup-
petnets, with the top-100 sites able to form puppetnets con-
trolling more than 100,000 browsers at any time. The sizes
of the largest potential puppetnets (for the top-5 sites) seem
comparable to the largest botnets seen [27], at 1-2M pup-
pets. Although one could argue that top sites are more likely
to be secure, the figures for sites other than the top-500 are
also worrying: More than 20% of typical commercial sites
can be used for puppetnets of 10,000 nodes, while 4-10% of
randomly selected sites can be popular enough for hosting
puppetnets of more than 1,000 nodes.

As discussed previously, however, the key question is not
how big a puppetnet is but whether the firepower is sufficient
enough for typical DDoS scenarios. To estimate the DDoS
firepower of puppetnets we first need to determine how much
traffic a browser can typically generate under the attacker’s
command.

We experimentally measure the bandwidth generated by
puppetized browsers, focusing initially only on ingress band-
width, since it is harder to control. Early experiments with
servers and browsers in different locations (not presented
here in the interest of space) show that the main factor af-
fecting DoS strength is the RTT between client and server.
We therefore focus on precisely quantifying DoS strength in
a controlled lab setting, with different line speeds and net-
work delays emulated using dummynet [43], and an Apache
Web server running on the victim host. We consider two
types of attacks: a simple attack aiming to maximize SYN
packets (maxSYN), and one aiming to maximize the ingress
bandwidth consumed (maxURL). For the maxSYN attack,
the sources of ten Javascript image objects are set to be
non-existent URLs repeatedly every 50 milliseconds. Upon
renewal of the image source, old connections are stalled and
new connections are established. For the maxURL attack we
load a page with several thousand requests for non-existent
URLs of 2048 bytes each (as IE can handle URLs of up to
2048 characters). The link between puppet and server was
set to 10 Mbit/s in all experiments.

In Figure 4, the ingress bandwidth of the server is plotted
against the RTT between the puppet and the server, for the
case of 3 aliases. The effectiveness of the attack decreases for
high RTTs, as requests spend more time “in-flight” and the

5000 —4—

— 2048 s :
% 1024] o, , [I Firefox | Explorer |
¥ 512 ~ SRl maxSYN 2 aliases 83.97 Mbit/s | 106.30 Mbit/s
5 256 %""\m maxSYN 3 aliases || 137.26 Mbit/s | 173.28 Mbit/s
3 12574 vewr ereion . maxURL 2 aliases || 664.74 Mbit/s | 502.06 Mbit/s
S 3 S i s maxURL 3 aliases || 1053.79 Mbit/s | 648.33 Mbit/s

16 - * MaxSYN (MSIE)

I O N

2 4 8 16 32 64 128 256 5121024 Figure 5: Estimated bandwidth of ingress DDoS from 1000
RTT (logscale — msec)

. . puppets
Figure 4: Ingress bandwidth consumed by one puppet vs.

RTT between browser and server

connection limit to the same server is capped by the browser.
For the maxSYN experiment, a puppet can generate up to
300 Kbit/s to 2 Mbit/s when close to the server, while for
high RTTs around 250 msec the puppet can generate only
around 60 Kbit/s. For the maxURL attack, these numbers
become 3-5 Mbit/s and 200-500 Kbit/s respectively. The
results seem to differ for both browsers: IE is more effective
for maxSYN, while Firefox is more effective for maxURL.
We have not been able to determine the cause of the differ-
ence, mostly due to the lack of source code for IE. The same
figures apply for slower connections, with RTTs remaining
the dominant factor determining puppet DoS performance.

Using the measurements of Figure 4, the distribution of
RTTs measured in [49] and the capacity distribution from
[47], we estimate the firepower of a 1000-node puppetnet,
for different aliasing factors, as shown in Table 5. From
these estimates we also see that around 1000 puppets are
sufficient for consuming a full 155 Mbit/s link using SYN
packets alone, and only around 150 puppets are needed for
a maxURL attack on the same link. These estimates sug-
gest that puppetnets can launch powerful DDoS attacks and
should therefore be considered as a serious threat.

Considering the analysis above, we expect the following
puppetnet scenarios to be more likely. An attacker own-
ing a popular Web page can readily launch puppetnet at-
tacks; many of the top-500 sites are highly suspect offering
“warez” and other illegal downloads. Furthermore, we have
found that some well-known underground sites, not listed
in the top-500, can create puppetnets of 10,000-70,000 pup-
pets (see [33]). Finally, the authors of reference [58] report
that by scanning the most popular one million Web pages
according to a popular search engine, they found 470 mali-
cious sites, many of which serve popular content related to
celebrities, song lyrics, wallpapers, video game cheats, and
wrestling. These malicious sites were found to be luring un-
suspected users with the purpose of installing malware on
their machines by exploiting client-side vulnerabilities. The
compromised machines are often used to form a botnet, but
visits to these popular sites could be used for staging a pup-
petnet attack instead.

Another way to stage a puppetnet attack is by compro-
mising and injecting puppetnet code to a popular Web site.
Although popular sites are more likely to be secure, checking
the top-500 sites from Alexa against the defacement statis-
tics from zone-h[61] reveals that in the first four months of
2006 alone, 7 pages having the same domain as popular sites
were defaced. For the entire year 2005 this number reaches
18. We must note, however, that the defaced pages were
usually not front pages, and therefore their hits are likely to
be less than those of the front pages. We also found many

of them running old versions of Apache and IIS, although
we did not go as far as running penetration tests on them
to determine whether they were patched or not.

2.2 Worm propagation

Puppetnets can be used to spread worms that target vul-
nerable Web sites through URL-encoded exploits. Vulner-
abilities in Web applications are an attractive target for
puppetnets as these attacks can usually be encoded in a
URL and embedded in a Web page. Web applications such
as blogs, wikis, and bulletin boards are now among the
most common targets of malicious activity captured by hon-
eynets. The most commonly targeted applications accord-
ing to recent statistics [41] are Awstats, XMLRPC, PHPBB,
Mambo, WebCalendar, and PostNuke.

A Web-based worm can enhance its propagation with pup-
petnets as follows. When a Web server becomes infected, the
worm adds puppetnet code to some or all of the Web pages
on the server. The appearance of the pages could remain
intact, just like in our DDoS attack, and each unsuspected
visitor accessing the infected site would automatically run
the worm propagation code. In an analogy to real-world
diseases, Web servers are hosts of the worm while browsers
are carriers which participate in the propagation process al-
though they are not vulnerable themselves. Besides using
browsers to increase the aggregate scanning rate, a worm
could spread entirely through browsers. This could be par-
ticularly useful if behavioral blockers prevent servers from
initiating outbound connections. Furthermore, puppetnets
could help worms penetrate NAT and firewall boundaries,
thereby extending the reach of the infection to networks that
would otherwise be immune to the attack. For example, the
infected Web server could instruct puppets to try propagat-
ing on private addresses such as 192.168.x.y. The scenarios
for worm propagation are shown in Figure 6.

2.2.1 Analysis of worm propagation

To understand the factors affecting puppetnet worm prop-

agation we first utilize an analytical model, and then pro-
ceed to measure key parameters of puppetnet worms and use
simulation to validate the model and explore the resulting
parameter space.
Analytical model: We have developed an epidemiolog-
ical model for worm propagating using puppetnets. The
details of our model are described elsewhere [33]. Briefly,
we have extended classical homogeneous models to account
for how clients and servers contribute to worm propagation
in a puppetnet scenario. The key parameters of the model
are the browser scanning rate, the puppetnet size, and the
time spent by puppets on the worm-spreading Web page.

)y
#. %/ Infected
s‘-jJJ

Web server

Bl

éim ja 18

attempts —

==

(a) client+server

Victim
sites

,,_Jﬂ iﬂ" Infected

’ Web server

\\

buppets 1 —. Lo

\il'! ga 181 e \‘”“’

\ Victim
\) sites
Worm infection
attompts / j \ S,

(b) client-only

*‘\

Figure 6: Two different ways that puppetnets could be used for worm propagation: (a) illustrates an infected server
that uses puppets to propagate the worm, and (b) a server that propagates only through the puppet browsers.

Scanning performance: If the attacker relies on simple
Web requests, the scanning rate is constrained by the de-
fault browser connection timeout and limits imposed by the
OS and the browser on the maximum number of outstand-
ing connections. In our proof-of-concept attack, we have
embedded a hidden HTML frame with image elements into
a normal Web page, with each image element pointing to a
random IP address with a request for the attack URL. Note
that the timeout for each round of infection attempts can
be much lower than the time needed to infect all possible
targets (based on RTTs). We assume that the redundancy
of the worm will ensure that any potential miss from one
source is likely to be within reach from another source.

Experimentally, we have found that both IE and Fire-

fox on an XP SP2 platform can achieve maximum worm
scanning rates of roughly 60 scans/min, mostly due to OS
connection limiting. On other platforms, such as Linux, we
found that a browser can perform roughly 600 scans/min
without noticeable impact on regular activities of the user.
These measurements were consistent across different hard-
ware platforms and network connections.
Impact on worm propagation: We simulate a puppet-
net worm outbreak and compare results with the prediction
of our analytical model. We consider CodeRed [12] as an
example of a worm targeting Web servers and use its pa-
rameters for our experiments. To simplify the analysis, we
ignore possible human intervention such as patching, quar-
antine, and the potential effect of congestion resulting from
worm activity.

We examine three different scenarios: (a) a normal worm
where only compromised servers can scan and infect other
servers, (b) a puppetnet-enhanced worm where both the
compromised servers and their browsers propagate the in-
fection, and (c) a puppetnet-only worm where servers only
push the worm solely through puppets to achieve stealth or
bypass defenses.

We have extended a publicly available CodeRed simula-
tor [62] to simulate puppetnet worms. We adopt the pa-
rameters of CodeRed as used in [62]: a vulnerable popula-
tion of 360,000 and a server scanning rate of 358 scans/min.
In the simulation, we directly use these parameters, while
in our analytical model, we map these parameters to an-
alytical model parameters and numerically solve the dif-
ferential equations. Note that our model is a special case
of the Kephart-White Susceptible-Infected-Susceptible (SIS)
model [28] with no virus curing. The compromise rate is

K = 3 x (k) where $3 is the virus birth rate defined on ev-
ery directed edge from an infected node to its neighbors,
and (k) is the average node out-degree. Assuming the Inter-
net is a fully connected network, (k)codered = 360,000 and
BCodeRed,server = 358/2327 we have K, = 0.03. Our simula-
tion and analytical model also include the delay in accessing
a Web page as users have to click or reload a newly-infected
Web page to start participating in worm propagation.

We obtain our simulation results by taking the mean over
five independent runs. For this experiment, we use typi-
cal parameters measured experimentally: browsers perform-
ing 36 scans/min (i.e., an order of magnitude slower than
servers), and Web servers with about 13 concurrent users,
and an average page holding time of 15 minutes. To study
the effect of these parameters, we vary their values and es-
timate worm infection time as shown in Figures 8 and 9.

Figure 7 illustrates the progress of the infection over time
for the three scenarios. In all cases the propagation process
obeys the standard S-shaped logistic growth model. The
simulated virus propagation matches reasonably well with
the analytical model. Both agree on a worm propagation
time of 50 minutes for holding times in the order of ¢, =
15min (that is, compared to the case of zero holding time).
A client-only worm can perform as well as a normal worm,
suggesting that puppetnets are quite effective at propagating
worm epidemics.

Figure 8 illustrates the time needed to infect 90% of the
vulnerable population for different browser scanning rates.
When browsers scan at 45 scans/min, the client-only sce-
nario is roughly equivalent to the server-only scenario. At
the maximum scan rate of this experiment (which is far more
than the scan rate for IE, but only a third of the scan rate
for Linux), a puppetnet can infect 90% of the vulnerable
population within 19 minutes. This is in line with Warhol
worms and an order of magnitude faster than CodeRed.

Figure 9 confirms that the popularity of compromised
servers plays an important role in worm performance. The
break-even point between the server-only and client-only
cases is when Web servers have 16 concurrent clients on
average. For large browser scanning rate or highly popu-
lar compromised servers, the client-only scenario converges
to the client-server scenario. That means that infection at-
tempts launched from browsers are so powerful that they
dominate the infection process.

Finally, in a separate experiment we found that if the
worm uses a small initial hitlist to specifically target busy

o]
(=]
o

=
e

1 Y 800
f erver only| ff? —_
0.9 0 .
7 8 700
4 0s / :
2 o7 i ViR £ 600
k5 clente shoer — |1 71 S 500 -
g 09 Vi i e \
£ 05 7 i 2 400
= \ / = \
2 0.4 5/\ < 300 - \\
S 03 4 g g NN
S 0. 7 CTent only =3 . ~
S o0 i v 4 2 200 —
[01 f Vi 4_Simulation g 100
.O % &#i — Analytical model I o
0 100 200 300 400 500 600 0 50 100

Time (minutes)

Client scan rate (scans/min)

& 700
* |Client gnly E + Clignt only
600
~ [Server pnly 3 R =~ Server only
+ [Client+senver E 500 “u‘\ + Client+server
3 400 =
£ \
X 300
é N \\
— o 200 R~y
T ey 2 100 Eamis = = = S0 S
]
0
150 200 250 300 0 50 100 150 200

Mean number of concurrent clients at web server

Figure 7: Worm propagation with Figure 8: Worm infection for differ- Figure 9: Worm infection versus pop-

puppetnet

Web servers with more than 150 concurrent visitors, the
infection time is reduced to less than two minutes, similar
to flash worms [50].

2.3 Reconnaissance probes

We discuss how malicious Web sites can orchestrate dis-
tributed reconnaissance probes. Such probes can be useful
for the attacker to locate potential targets before launch-
ing an actual attack. The attacker can thereby operate in
stealth, rather than risk triggering detectors that look for
aggressive opportunistic attacks. Furthermore, as in worm
propagation, puppets can be used to scan behind firewalls,
NATSs and detection systems. Finally, probes may also en-
able attackers to build hitlists that have been shown to result
in extremely fast-spreading worms[50].

As with DDoS, the attacker installs a Web page on the
malicious Web site that contains a hidden HTML frame
that performs all the attack-related activities. The secu-
rity model of modern browsers imposes restrictions on how
the attacker can set up probing. For instance, it is not pos-
sible to ask the browser to request an object from a remote
server and then forward the response back to the malicious
Website. This is because of the so-called “same domain”
(or “same origin”) policy [46], which is designed to prevent
actions such as stealing passwords and monitoring user ac-
tivity. For the same reason, browsers refuse access to the
contents of an inline frame, unless the source of the frame is
in the same domain with the parent page.

Unfortunately, there are workarounds for the attacker to
indirectly infer whether a connection to a remote host is
successful. The basic idea is similar to the timing attack of
[19]. We “sandwich” the probe request between two requests
to the malicious Web site.

We can infer whether the target is responding to a puppet
by measuring the time difference between the first and third
request. If the target does not respond, the difference will
be either very small (e.g., because of an ICMP UNREACH-
ABLE message) or very close to the browser request timeout.
If the target is responsive, then the difference will vary but
is unlikely to coincide with the timeout.

Because browsers can launch multiple connections in par-
allel, the attacker needs to serialize the three requests. This
can be done with additional requests to the malicious Web
site in order to consume all but one connection slots. How-
ever, this would require both discovering and also keeping
track of the available connection slots on each browser, mak-
ing the technique complex and error-prone. A more attrac-
tive solution is to employ Javascript, as modern browsers
provide hooks for a default action after a page is loaded

ent browser scan rates

ularity of Web servers

(the onLoad handler) and when a request has failed (the on-
Error handler). Using these controls, the attacker can easily
chain requests to achieve serialization without the complex-
ity of the previous technique. We therefore view the basic
sandwich attack as a backup strategy in case Javascript is
disabled.

We have tested this attack scenario as shown in Figure 10.
In a hidden frame, we load a page containing several image
elements. The script points the source of each image to
the reconnaissance target. Setting the source of an image
element is an asynchronous operation. That is, after we
set the source of an image element, the browser issues the
request in a separate thread. Therefore, the requests to the
various scan targets start at roughly the same time. After
the source of each image is set, we wait for a timeout to
be processed through the onLoad and onError handlers for
every image. We identify the three cases (e.g., unreachable,
live, or non-responsive) similar to the sandwich attack but
instead of issuing a request back to the malicious Web site to
record the second timestamp we collect the results through
the onLoad/onError handlers.

After the timeout expires, the results can be reported to
the attacker, by means such as embedding timing data and
IP addresses in a URL. The script can then proceed to an-
other round of scanning. Each round takes time roughly
equal to the timeout, which is normally controlled by the
OS. It is possible for the attacker to use a smaller time-
out through the setTimeout() primitive, which speeds up
scanning at the expense of false negatives. We discuss this
trade-off in Section 2.3.1.

There are both OS and browser restrictions on the num-
ber of parallel scans. On XP/SP2, the OS enforces a limit of
no more than ten “outstanding”* connection requests at any
given time [6]. Some browsers also impose limits on the num-
ber of simultaneous established connections. IE and Opera
on Windows (without SP2), and browsers such as Konqueror
on Linux, impose no limits, while Firefox does not allow
more than 24. The attacker can choose between using a
safe common-denominator value or employing Javascript to
identify the OS and browser before deciding on the number
of parallel scans.

The same process can be used to identify services other
than Web servers. When connecting to such a service, the
browser will issue an HTTP request as usual. If the remote
server responds with an error message and closes the con-
nection, then the resulting behavior is the same as probing

1A connection is characterized outstanding when the SYN
packet has been sent but no SYN+ACK has been received.

Web servers. This is the case for many services, including
SSH: the SSH daemon will respond with an error message
that is non-HTTP-compliant and cannot be understood by
the browser, the browser will subsequently display an er-
ror page, but the timing information is still relevant for re-
connaissance purposes. This approach, however, does not
work for all services, as some browsers block certain ports:
IE blocks ports FTP, SMTP, POP3, NNTP and IMAP to
prevent spamming through Web pages (we return to this
problem in Section 2.4); Firefox blocks a larger number of
ports[1]; interestingly, Apple’s Safari does not impose any re-
strictions. The attacker can rely on the “User-agent” string
to trigger browser-specific code.

It is important to note that puppetnets are limited to
determining only the liveness of a remote target. As the
same-domain policy restricts the attack to timing informa-
tion only, the attack script cannot relay back to the attacker
information on server software, OS, protocol versions, etc.,
which are often desirable. Although this is a major limi-
tation, distributed liveness scans can be highly valuable to
an attacker. An attacker could use a puppetnet to evade
detectors that are on the lookout for excessive numbers of
failed connections, and then use a smaller set of sources to
obtain more detailed information about each live target.

2.3.1 Analysis of reconnaissance probing

There is a subtle difference between worm scanning and
reconnaissance scanning. In worm scanning, the attacker
can opportunistically launch probes and does not need to
observe the result of each probe. In contrast, reconnaissance
requires data collection and reporting.

There are two parameters in the reconnaissance attack
that we need to explore experimentally: the timeout for con-
sidering a host non-responsive, and the threshold for consid-
ering a host unreachable. The attacker can tune the timeout
and trade off accuracy for speed of data collection. The un-
reachable threshold does not affect scanning speed, but if it
is too large it may affect accuracy, as it would be difficult to
distinguish between unreachable hosts and live hosts. Both
parameters depend on the properties of the network through
which the browser is performing the scans.

In our first experiment we examine how the choice of time-
out affects reconnaissance speed and accuracy and whether
the unreachable threshold may interfere with reconnaissance
accuracy. As most browsers under the attacker’s control are
expected to stay on the malicious page only for a few min-
utes, the attacker may want to maximize the scanning rate.
If the timeout is set too low, the attacker will not be able to
discover hosts that would not respond within the timeout.

Note that in the case of XP/SP2, the timeout must be
higher than the default connection timeout of the OS, which
is 25 seconds. The reason is that the scanning process has
to wait until outstanding connections of the previous round
are cleared before issuing new ones. The analysis below is
therefore more relevant to non-XP/SP2 browsers.

We measure the time needed to download the main index
file for roughly 50,000 unique Websites, obtained through
random queries to a search engine. We perform our mea-
surements from four hosts in locations with different network
characteristics. The distributions of the download times are
presented in Figure 11. We see that in all cases, a threshold
of 200-300 msec would result in a loss of around 5% of the
live targets, presumably those within very short RTT dis-

tance from the scanning browser. We consider this loss to
be acceptable.

Recall that the goal of the attacker may be speed rather
than efficiency. That is, the attacker may not be inter-
ested in finding all servers, but finding a subset of them
very quickly. We use simulation, driven by our measured
distributions, to determine the discovery rate for a puppet
using different timeout values, assuming 200 msec as the un-
reachable threshold. The results are summarized in Figure
12. For the four locations in our study, the peak discovery
rate differs in absolute value, and is maximized at differ-
ent points, suggesting that obtaining optimal results would
require effort to calibrate the timeout on each puppet. How-
ever, all sources seem to perform reasonably well for small
timeouts of 1-2 seconds.

In our second experiment we look at a 2-day packet trace
from our institution and try to understand the behavior of
ICMP unreachable notifications. We identify roughly 23,000
distinct unreachable events. The RTTs for these notifica-
tions were between 5 msec and 18 seconds. Nearly 50%
responded within 347 msec, which, considering the response
times of Figure 11, would result in less than 5% false neg-
atives if used as a threshold. The remaining 50% of un-
reachables that exceed the threshold will be falsely identi-
fied as live targets, but as reported in [9], only 6.36% of
TCP connections on port 80 receive an ICMP unreachable
as response. As a result, we expect around 3% of the scan
results to be false positives.

2.4 Protocols other than HTTP

One limitation of puppetnets is that they are bound to
the use of the HTTP protocol. This raises the question of
whether any other protocols can be somehow “tunneled” on
top of HT'TP. This can be done, in some cases, using the ap-
proach of [55, 13]. Briefly, it is possible to craft HTML forms
that embed messages to servers understanding other proto-
cols. The browser is instructed to issue an HTTP POST
request to the remote server. Although the request con-
tains the standard HTTP POST preamble, the actual post
data can be fully specified by the HTML form. Thus, if
the server fails gracefully when processing the HTTP part
of the request (e.g., ignoring them, perhaps with an error
message, but without terminating the session), all subse-
quent messages will be properly processed. Two additional
constraints for the attack to work is that the protocol in
question must be text-based (since the crafted request can
only contain text) and asynchronous (since all messages have
to be delivered in one pass).

In this scenario, SMTP tunneling is achieved by wrap-
ping the SMTP dialogue in a HTTP POST request that
is automatically triggered through a hidden frame on the
malicious Web page. For IRC servers that do not require
early handshaking with the user (e.g., the identd response),
a browser can be instructed to login, join IRC channels and
even send customized messages to the channel or private
messages to pre-selected list of users sitting in that channel.
This feature enables the attacker to use puppetnet for cer-
tain attacks such as triggering botnets, flooding and social
engineering. The method is pretty similar to SMTP. An ex-
ample of how a Web server could instruct puppets to send
spam is provided in [33].

Although this vulnerability has been discussed previously,
its potential impact in light of a puppetnet-like attack in-

time

Download time (logscale — seconds)

[RL1 | [uRz | [umes | [URLn | 100 2 4
Tt e s f 1 E] % I I 1
_1_200ms 90 e e o £65 4 .
unreachable . £ * Institution 1 E 6 N * Institution 1
£ 80 ! *Institution 2 255 7 NG *Institution 2
o 5 # L
17 sec £ 70 * Cable 245 s | cable
Talive timeout S 60 * ADSL/384 sy T * ADSL/384
timeout reachied timeout reached © a Hi
g 50 / o35 ni# N
‘URLn+1‘ ‘URLn+2 ‘URLn+3‘ ‘ URL 2n ‘ 8 a0 & i
8 301 E% -
5 3 i
aie 4 5€C & 20 w YT
—ive 12 sec 10 Qo5 B
timeout 0 g0 .
1 4 8 16 32 0105 1 2 4 8 16 25
timeout reached timeout reached

Timeout (logscale - seconds)

Figure 10: Illustration of reconnaissance Figure 11: CDF of time to get main Figure 12: Discovery rate, per pup-

probing method.

frastructure has not been considered, and vendors may not
be aware of the implications of the underlying vulnerability.
We have found that although IE refuses outgoing requests
to a small set of ports (including standard ports for SMTP,
NNTP, etc.) and Firefox blocks a more extensive list of
ports, Apple’s Safari browser as well as IE5.2 on Mac OSX
do not impose any similar port restrictions®. Thus, although
the extent of the threat may not be as significant as DDoS
and worm propagation, popular Web sites with a large Ap-
ple/Safari user base can be easily turned into powerful spam
conduits.

2.5 Exploiting cookie-authenticated services

A large number of Web-based services rely on cookies for
maintaining authentication state. A typical example is Web-
based mail services that offer a “remember me” option to
allow return visits without re-authentication. Such services
could be manipulated by a malicious site that coerces vis-
itors to post forms created by the attacker with the visi-
tors’ credentials. There are three constraints for this attack.
First, the inline frame needs to be able to post cookies; this
works on Firefox, but not IE. Second, the attacker needs to
have knowledge about the structure and content of the form
to be posted, as well as the target URL; this depends on the
site design. Finally, the attacker needs to be able to instruct
browsers to automatically post such forms; this is possible
in all browsers we tested.

We have identified sites that are vulnerable to this attack.®
As proof-of-concept, we have successfully launched an attack
to one of our own accounts on such a site. Although this
seems like a wider problem (e.g., it allows the attacker to
forward the victim’s email to his site, etc.), in the context of
puppetnets, the attacker could be on the lookout for visitors
that happen to be pre-authenticated to one of the vulnerable
Web sites, and could use them for purposes such as sending
spam or performing mailbomb-type DoS attacks.

Given the restriction to Firefox and the need to iden-
tify visitors that are pre-authenticated to particular sites,
it seems that this attack would only have significant impact
on highly popular sites, or moderately popular sites with
unusually high session times, or sites that happen to have
an unusually large fraction of Firefox visitors. Consider-
ing these constraints, the attack may seem weak compared
to the ubiquitous applicability of DoS, scanning, and worm

SWe have informed Apple about this vulnerability.

5These sites include a very popular Web-based mail service,
the name of which we would prefer to disclose only upon
request.

index from different sites. pet.

propagation. Nevertheless, none of these three scenarios can
be safely dismissed as unlikely.

2.6 Distributed malicious computations

So far we have described scenarios of puppetnets involved
in network-centric attacks. However, besides network-centric
attacks, it is easy to imagine browsers unwillingly participat-
ing in malicious computations. This is a form of Web-based
computing which, to the best of our knowledge, has not been
considered as a platform for malicious activity. Projects
such as RC5 cracking [21], use the Web as a platform for
distributed computation but this is done with the users’ con-
sent. Most large-scale distributed computing projects rely
on stand-alone clients, similar to SETI@home [30].

It is easy to instruct a browser to perform local computa-
tions and send the results back to the attacker. Computa-
tion can be done through Javascript, Active-X or Java ap-
plets. By default, Active-X does not appear attractive as it
requires user confirmation. Javascript offers more stealth as
it is lightweight and can be made invisible. Sneaking Java
applets into hidden frames on malicious Web sites seems
easy, and although the resources needed for instantiating
the Java VM might be noticeable (and an “Applet loaded”
message may be displayed on the status bar), it is unlikely
to be considered suspect by a normal user.

To illustrate the extent of the problem we measured the
performance of Javascript and Java applets for MD5 compu-
tations. On a low-end desktop, the Javascript implementa-
tion can perform around 380 checksums/sec, while the Java
applet within the browser can compute roughly 434K check-
sums/sec — three orders of magnitude faster than Javascript.
Standalone Java can achieve up to 640K checks/sec. In com-
parison, an optimized C implementation computes around
3.3M checks/sec. Hence, a 1,000-node puppetnet can crack
an MD5 hash as fast as a 128-node cluster.

3. DEFENSES

In this section we examine potential defenses against pup-
petnets. The goal is to determine whether it is feasible to
address the threat by tackling the source of the problem,
rather than relying on techniques that attempt to mitigate
the resulting attacks, such as DDoS, which may be hard to
implement right at a global scale.

We discuss various defense strategies and the tradeoffs
they offer. We concentrate on defenses against DDoS, scan-
ning and worm propagation. Detecting malicious compu-
tations seems hard, and well beyond the scope of this pa-
per. Cookie-authenticated services seem trivial to protect

by adding non-cookie session state that is communicated to
the browser when the user wishes to re-authenticate.

Disabling Javascript.The usual culprit, when it comes
to Web security problems, is Javascript, and it is often sug-
gested that many problems would go away if users disable
Javascript and/or Web sites refrain from using it. However,
the trade-off between quality content and security seems
unfavorable: the majority of Web sites employ Javascript,
there is growing demand for feature-rich content, especially
in conjunction with technologies such as Ajax[20], and most
browsers are shipped with Javascript enabled. It is interest-
ing to note, however, that a recently-published Firefox ex-
tension that selectively enables Javascript only for “trusted”
sites [36] has been downloaded 7 million times roughly one
month after its release on April 9th, 2006.

In the case of puppetnets, disabling Javascript could in-
deed alter the threat landscape, but it would only reduce
rather than eliminate the threat. The development of our
attacks suggests that even without Javascript, it would still
be feasible to launch DDoS, perform reconnaissance probes
and propagate worms, although the effectiveness of the at-
tacks would be at least one order of magnitude less than
with Javascript enabled. Considering these observations,
disabling Javascript does not seem like an attractive propo-
sition towards completely eliminating the puppetnet threat.

Careful implementation of existing defens&s. ob-
serve that in most cases the attacks we developed were quite
sensitive to minor tweaks. That is, although simple versions
of the attack were quite easy to construct, maximizing their
effectiveness required a lot more effort. Particularly the con-
nection rate limiter implemented in XP/SP2 had a profound
effect on the performance of worm propagation and recon-
naissance. Unfortunately, we were able to demonstrate that
the rate limiter can be partially bypassed. In particular, by
reloading the core attack frame we were able to clear the
TCP connection cache, presumably because a frame reload
results in the underlying socket being closed and the TCP
connection state entry being removed.

In this particular case it appears easy to address the prob-
lem by means of separating the actual connection state table
from the state of the connection rate limiter. The rate lim-
iter could either mirror the regular connection state table
but choose to retain entries for closed sockets up to a time-
out, or keep track of aggregate connection state statistics.
This could reduce the effectiveness of worm propagation of
up to an order of magnitude.

Another case that suggests that existing defenses are not
always properly implemented is the Spam distribution at-
tack described in Section 2.4. Although both IE and Fire-
fox have mitigated this problem, at least in part, through
blocking certain ports, Apple’s Safari and the OSX version
of IE5.2 did not properly address this known vulnerability.

However, careful implementation of existing defenses is
insufficient for addressing the whole range of threats posed
by puppetnets.

Filtering using attack signatureswe consider whether
it is practical to develop IDS/IPS signatures for puppetnet
attacks. In some cases it seems fairly easy to construct such
a signature. For example, in the case of puppetnet-delivered
spam it is easy to scan traffic for messages to the SMTP port

10

that contain evidence of both a HT'TP POST request and
legitimate SMTP commands. This should cover most other
protocols tunneled through POST requests.

Can we develop signatures for puppetnet DoS attacks?
We could consider signatures of malicious Web pages that
contain unusually high numbers of requests to third-party
sites. However, our example attack suggests that there are
many possible variations to the attack, making it hard to
obtain a complete set of signatures. Additionally, because
the attacks are implemented in HTML and Javascript, it ap-
pears unlikely that simple string matching or even regular
expressions would be sufficient for expressing the attack sig-
natures. Instead, more expensive analyzers, such as HI'ML
parsers, would be needed.

Furthermore, obfuscation of HTML and Javascript seems
to be both feasible and effective [51, 44], allowing the at-
tacker to compose obfuscated malicious Web page on-the-fly.
For example, one could use the document.write() method to
write the malicious page into an array in completely ran-
dom order before execution. This makes the attack difficult
to detect using static analysis alone, a problem that is also
found in shellcode polymorphism [14, 31, 42]. Although we
must leave room for the possibility that such a unusual use
of document.write() or similar approaches may be amenable
to detection, such analysis seems complex and is likely to be
expensive and error-prone.

Client-side behavioral controlsAnother possible defense
strategy is to further restrict browser policies for accessing
remote sites. It seems relatively easy to have a client-side
solution deployed with a browser update, as browser devel-
opers seem to be concerned about security, and the large
majority of users rely on one among 2-3 browsers.

One way to restrict DoS, scanning and worm propagation
is to establish bounds on how a Web page can instruct the
browser to access “foreign” objects, e.g., objects that do
not belong to the same domain. These resource bounds
should be persistent, to prevent attackers from resetting the
counters using page reloads. For similar reasons, the bounds
should be tied to the requesting server, and not to a page
or frame instance, to prevent attackers from evading the
restriction through multiple frames, chained requests, etc.

We consider whether it makes sense to impose controls on
foreign requests from a Web page. We attempt to quantify
whether such a policy would break existing Web sites, and
what impact it would have on DDoS and other attacks. We
first look at whether we can limit the total number of differ-
ent objects (e.g., images, embedded elements and frames)
that the attacker can load from foreign servers, consider-
ing all servers to be foreign except for the one offering the
page. This restriction should be enforced across multiple au-
tomatic refreshes or frame updates, to prevent the attacker
from resetting the counters upon reaching the limit. (Coun-
ters would only be reset only when a user clicks on a link.)
Of course, this is likely to “break” sites such as those that
use automatic refresh to update banner ads. Given that ads
are loaded periodically, e.g., one refresh every few minutes,
it seems reasonable to further refine the basic policy with
a timeout (or leaky bucket mechanism) that occasionally
resets or tops-up the counters.

To evaluate the effectiveness of this policy, we have ob-
tained data on over 70,000 Web pages by crawling through
a search engine. For each Web page we obtain the number

100000 o 09 Distribution Firepower
) () . -
2 “”‘»\\ g os KDDCUP 47.03 Kbit/sec
=3 & o7 .
< 10000 ~ 5 0 Google/Webtrends | 14.39 Kbit/sec
3 \“ £ 05 JSTracker 3.05 Kbit/sec
£ 1000 S 04 3 i
& . Limit on total number \\ £ oo ‘Web tracking 2.87 Kbit/sec
3 of non-local objects R\ g2 o2
g 100 + - Limit on max. number of objeet: \“ 8 0.1

from same non-local server b '0

0.001 0.1 0.1 1 10 100 0 10 15 20

Percentage of sites affected

5
Number of foreign domains

Figure 13: Effectiveness of remote re- Figure 14: Cumul. histogram of for- Figure 15: Impact of ACT defense on

quest limits

of non-local embedded object references. We then compute
for each upper bound N of non-local references, the frac-
tion of sites that would be corrupted should such a policy
be implemented, against the effective DoS bandwidth of a
1000-node puppetnet under the same policy. A variation of
the above policy involves a cap on the maximum number of
non-local references to the same non-local server.

The results are shown in Figure 13. We observe that this
form of restriction is somewhat effective when compared to
the DDoS firepower of Figure 5, providing a 3-fold reduc-
tion in DDoS strength when trying to minimize disruption
to Web sites. The strength of the attack, however, remains
significant, at 50 Mbit/s for 1000 puppets. Obtaining a 10x
reduction in DDoS strength would disrupt around 0.1% of
all Web sites, with DDoS reduced to 10 Mbit/s. Obtaining
a further 10x reduction seems impractical, as the necessary
request cap would negatively affect more than 10% of Web
pages. The variation limiting the max. number of requests
to the same non-local server also does not offer any notable
improvement. Given the need to defend against not only
1000-node but even larger puppetnets, we conclude that al-
though the improvement offered is significant, this defense
is not good enough to address the DDoS threat.

The above policy only targets DDoS. To defend against
worms and reconnaissance probes, we look at the feasibility
of imposing limits on the number of distinct remote servers
to which embedded object references are made. The cumu-
lative histogram is shown in Figure 14. We see that most
Web sites access very few foreign domains: around 99% of
Web sites access 11 or less foreign domains; around 99.94%
of Web sites access less than 20 foreign domains. Not visible
on the graph is a handful of Web sites, typically “container”
pages, that access up to 33 different domains. Based on
this profile, it seems reasonable to implement a restriction
of around 10 foreign domains, keeping in mind that the limit
should be set as low as possible, given that a large fraction
of puppets have a very short lifetime in the system. Note
that sites that are out of profile could easily avoid violat-
ing the proposed policy, by proxying requests to the remote
servers. We repeated the worm simulation of Section 2.2.1
to determine the impact of such a limit on worm propaga-
tion. As expected, this policy almost completely eliminates
the speed-up for the client-server worm compared to server-
only, as puppets can perform only a small fraction of the
scans they could perform without this policy. Similar ef-
fects apply to scanning as well.

Unfortunately, the above heuristic can be circumvented if
the attacker has access to a DNS server. The attacker could
map all foreign target hosts to identifiers that appear to be

11

eign domains referenced by Web sites 1000-puppet DDoS attack

in the same domain but are translated by the attacker’s DNS
server to IP addresses in the foreign domain. Attacks aiming
at consuming egress bandwidth from servers that rely on the
“Host:” tagin the HTTP request would be less effective, but
all other attacks are not affected.

Server-side controls and puppetnet tracif@unsidering
the DoS problem and the difficulty in coming up with uni-
versally acceptable thresholds for browser-side connection
limiting, one could argue that it is the Web developers who
should specify how their sites are accessed by third parties.

One way for doing that is for servers to use the “Referer”
tag of HTTP requests to determine whether a particular
request is legitimate and compliant, similar to [57]. The
server could consult the appropriate access policy and decide
whether to honor a request. This approach would protect
servers against wasting their egress bandwidth, but does not
allow the server to exercise any control over incoming traffic.

Another use of referrer information can be to trace the
source of the puppetnet attack, and take action to shutdown
the control Web site. That is, puppetnets have a single point
of failure. However, this process is relatively slow as it in-
volves human coordination. Thus, attackers may already
have succeeded in disrupting service. Moreover, even when
the controlling site has been taken down, existing puppets
will continue to perform an attack — the attack will only sub-
side once all puppet browsers have been pointed elsewhere,
which is likely to be in the order of 10-60 minutes, based on
the viewing time estimates of Section 2.1.1.

However, as shown in [33], we have been able to circum-
vent the default behavior of browsers that set referrer in-
formation, making puppetnet attacks more difficult to filter
and trace. It is unclear at this point if minor modifica-
tions could address the loss of referrer-based defenses. Thus,
referrer-based filtering does not currently offer much protec-
tion and may not be sufficient, even in the longer-term, for
adequately protecting against puppetnet attacks.

Server-directed client-side control$o protect against
unauthorized incoming traffic from puppets, we examine the
following approach. If we assume that the attacker cannot
tamper with the browser software, a server can communi-
cate site access policies to a browser during the first request.
In our implementation, we embed Access Control Tokens
(ACTSs) in the server response through an extension header
(“X-ACT:”) that is either a blanket “permit/deny” or a
Javascript function, similar to proxy autoconfiguration[38].
This script is executed on the browser side for each request

to the server to determine whether a request is legitimate or
not. The use of Javascript offers flexibility for site developers
to design their own policies, without having to standardize
specific behaviors or a new policy language.

Perhaps the simplest policy would be to ask browsers to
completely stop issuing requests if the server is under attack.
More fine-grained policies might restrict the total number
or rate of requests in each session, or may impose custom
restrictions based on target URL, referrer information, nav-
igation path, etc. One could envision a tool for site owners
to extract behavioral profiles from existing logs, and then
turn these profiles into ACT policies. For a given policy,
the owners can also compute the exposure in terms of poten-
tial puppetnet DDoS firepower, using the same methodology
used in this paper. The specifics of profiling and exposure
estimation are beyond the scope of this paper.

ACTSs require at least one request-response pair for the
defense to kick in, given that the browser may not have
communicated with the server in the past. After the first
request, any further unauthorized requests can be blocked
on the browser side. Thus, ACTs can reduce the DoS at-
tack strength to one request per puppet, which makes them
quite attractive. On the other hand, this approach requires
modifications to both servers and clients.

To illustrate the effectiveness of this approach, we es-
timate, using simulation, the firepower of a 1000-puppet

DDoS attack where all users support ACT's on their browsers.

The puppet viewing time on the malicious site is taken from
the distributions shown in Figure 2. The victim site follows
the most conservative policy: if a request comes from a non-
trusted referrer then user is not allowed to make any further
requests. The results are summarized in Table 15. As the
attack is restricted to one request per user, the firepower is
limited to only a few Kbit/sec.

In theory, it is possible to prevent the first unauthorized
request to the target if policies are communicated to the
browser out-of-band. One could directly embed ACTs in

URL references, through means such as overloading the URL.

Given that an ACT needs to be processed by the browser,
it must fully specify the policy “by value”. To prevent the
attacker from tampering with the ACT, it must be crypto-
graphically signed by the server. Besides being cumbersome,
this also requires the browser to have a public key to verify
the ACTs, which makes this proposal less attractive.

4. RELATED WORK

Web security has attracted a lot of attention in recent
years, considering the popularity of the Web and the ob-
served increase in malicious activity. Rubin et al. [45] and
Claessens et al. [16] provide comprehensive surveys of prob-
lems and potential solutions in Web security, but do not
discuss any third-party attacks like puppetnets. Similarly,
most of the work on making the Web more secure focuses
on protecting the browser and its user against attacks by
malicious Web sites (c.f., [32, 25, 18, 15, 26]).

The most well-known form of HTML tag misuse is known
as cross-site scripting (or XSS) and is discussed in a CERT
advisory in 2000 [11]. The advisory focuses primarily on the
threat of attackers injecting scripts into sites such as message
boards, and the implications that such scripts could have on
users browsing those sites, including potential privacy loss.
Although XSS and puppetnet attacks both exploit weak-
nesses of the Web security architecture, there are two fun-

12

damental differences. First, puppetnet attacks require the
attacker to have more control over a Web server, in order
to maximize exposure of users to the attack code. Inject-
ing puppetnet code on message boards in a XSS fashion is
also an option, but is less likely to be effective. The second
important difference is that puppetnets exploit browsers for
attacking third parties, rather than attacking the browser
executing the malicious script.

During the course of our investigation we became aware of
a report [56] describing a DDoS attack that appears to be
very similar to the one described in this paper. The report,
published in early December 2005, states that a well-known
hacker site was attacked using a so-called “xflash” attack
which involves a “secret banner” encoded on Web sites with
large numbers of visitors redirecting users to the target. Ac-
cording to the same report, the attack generated 16,000 SYN
packets per second towards the target. As we have not been
able to obtain a sample of the attack code, we cannot di-
rectly compare it to the one described here. However, from
the limited available technical information, it seems likely
that attackers are already considering puppetnet-style tech-
niques as part of their arsenal.

Another example of a puppetnet-like attack observed in
the wild is “referer spamming” [23], where a malicious Web
site floods some other site’s logs to make its way into top
referer lists. The purpose of the attack is to trick search en-
gines that rank sites based on link counts, since the victims
will include the malicious sites in their top referer lists.

The work that is most closely related to ours is a short
paper by Alcorn[4] discussing “XSS viruses”, developed in-
dependently and concurrently[2] to our investigation. The
author of this work imagines attacks similar to ours, focus-
ing on puppetnet-style worm propagation and also mentions
the possibility of DDoS and spam distribution. The main
difference is that our work offers a more in-depth analy-
sis of each attack as well as concrete experimental assess-
ment of the severity of the threat. For instance, a proof-of-
concept implementation of an XSS virus that is similar to
our puppetnet worm is provided albeit without analyzing its
propagation characteristics. Similarly, DDoS and spam are
mentioned as potential attacks but without any further in-
vestigation. The author discusses referer-based filtering as a
potential defense, which, as we have shown, can be currently
circumvented and is also unlikely to be sufficient in the long
term. One major difference in the attack model is that we
consider popular malicious or subverted Web sites as the pri-
mary vector for controlling puppetnets, while [4] focuses on
first infecting Web servers in order to launch other types of
attacks. Similar ideas are also discussed in [37]. While the
work of [4] and [37] are both interesting and important, we
believe that raising awareness and convincing the relevant
parties to mobilize resources towards addressing a threat
requires not just a sketch or proof-of-concept artifact of a
potential attack, but extensive analysis and experimental
evidence. In this direction, we hope that our work provides
valuable input.

The technique we used for sending spam was first de-
scribed by Jochen [55], although we independently devel-
oped the same technique as part of our investigation on
puppetnets. Our work goes one step further by exploring
how such techniques can be misused by attackers that con-
trol a large number of browsers. A scanning approach that
is somewhat similar to how puppets could propagate worms

is imagined by Weaver et al. in [59], but only in the con-
text of a malicious Web page directing a client to create
a large number of requests to nonexistent servers with the
purpose of abusing scan blockers. The misuse of Javascript
for attacks such as scanning behind firewalls was indepen-
dently invented by Grossman and Niedzialkowski[22] while
our study was in review[2].

The reconnaissance technique relies on the same principle
used for timing attacks against browser privacy [19]. Similar
to our probing, this attack relies on timing accesses to a
particular Web site. In our case, we use timing information
to infer whether the target site exists or is unreachable. In
the case of the Web privacy attack, the information is used
to determine if the user recently accessed a page, in which
case it can be served instantly from the browser cache.

Puppetnets are malicious distributed systems, much like
reflectors and botnets. Reflectors have been analyzed exten-
sively by Paxson [40]. Reflectors are regular servers that, if
targeted by appropriately crafted packets, can be misused
for DDoS attacks against third parties. The value of re-
flectors lies both in allowing the attacker to bounce attack
packets through a large number of different sources, hereby
making it harder for the defender to develop the necessary
packet filters, as well as acting as amplifiers, given that a
single packet to a reflector can trigger the transmission of
multiple packets from the reflector to the victim.

There are several studies discussing botnets. Cooke et
al. [17] have analyzed IRC-based botnets by inspecting live
traffic for botnet commands as well as behavioral patterns.
The authors also propose a system for detecting botnets
with advanced command and control systems using corre-
lation of alerts. Other studies of botnets include [54, 34].
From our analysis it becomes evident that botnets are much
more powerful than puppetnets and therefore a much larger
threat. However, they are currently attracting a lot of atten-
tion, and may thus become increasingly hard to setup and
manage, as end-point and network-level security measures
continue to focus on botnets.

5. CONCLUDING REMARKS

We have explored a new class of Web-based attacks that
involve malicious Web sites manipulating their visitors to-
wards attacking third parties. We have shown how attackers
can set up powerful malicious distributed systems, called
Puppetnets, that can be used for distributed DoS, recon-
naissance probes, worm propagation and other attacks. We
have attempted to quantify the effectiveness of these attacks,
demonstrating that the threat of puppetnets is significant.
We have also discussed several directions for developing de-
fenses against puppetnet attacks. None of the strategies
were completely satisfying, as most of them offered only par-
tial solutions. Nevertheless, if implemented, they are likely
to significantly reduce the effectiveness of puppetnets.

Acknowledgments

We thank S. Sidiroglou, S. Ioannidis, M. Polychronakis, E.
Athanasopoulos, E. Markatos, M. Greenwald, the members
of the Systems and Security Department at IR and the
anonymous reviewers for very insightful comments and sug-
gestions on earlier versions of this work. We also thank Blue
Martini Software for the KDD Cup 2000 data.

13

6. REFERENCES

(1] Mozilla Port Blocking. http:
//www.mozilla.org/projects/netlib/PortBanning.html,
December 2004.

[2] PuppetNet Project Web Site.
http://s3g.i2r.a-star.edu.sg/proj/puppetnets, September
2005.

[3] ABC Electronic. ABCE Database. http://wuw.abce.org.
uk/cgi-bin/gen5?runprog=abce/abce&noc=y, 2006.

[4] W. Alcorn. The cross-site scripting virus.

http://www.bindshell.net/papers/xssv/xssv.html.

Published: 27th September, 2005. Last Edited: 16th

October 2005.

Alexa Internet Inc. Global top 500.

http://www.alexa.com/site/ds/top_500, 2006.

[6] S. Andersen and V. Abella. Changes to Functionality in
Microsoft Windows XP Service Pack 2, Part 2: Network
Protection Technologies. Microsoft TechNet,
http://www.microsoft.com/technet/prodtechnol/
winxppro/maintain/sp2netwk’.mspx, November 2004.

[7] Anonymous. About the Alexa Toolbar and traffic
monitoring service: How accurate is Alexa? http:
//www.mediacollege.com/internet/utilities/alexa/,
2004.

[8] B. L. Barrett. Home of the webalizer.

http://www.mrunix.net/webalizer, August 2005.

V. Berk, G. Bakos, and R. Morris. Designing a framework

for active worm detection on global networks. In

Proceedings of the IEEE International Workshop on

Information Assurance, March 2003.

T. Berners-Lee, L. Masinter, and M. McCahill. Uniform

Resource Locators (URL). RFC 1738, Dec. 1994.

CERT. Advisory CA-2000-02: Malicious HTML Tags

Embedded in Client Web Requests.

http://www.cert.org/advisories/CA-2000-02.html,

February 2000.

CERT. Advisory CA-2001-19: ‘Code Red” Worm Exploiting

Buffer Overflow in IIS Indexing Service DLL.

http://www.cert.org/advisories/CA-2001-19.html, July

2001.

CERT. Vulnerability Note VU#476267: Standard HTML

form implementation contains vulnerability allowing

malicious user to access SMTP, NNTP, POP3, and other
services via crafted HTML page.

http://www.kb.cert.org/vuls/id/476267, August 2001.

R. Chinchani and E. V. D. Berg. A fast static analysis

approach to detect exploit code inside network flows. In

Proceedings of the International Symposium on Recent

Advances in Intrusion Detection (RAID), Sept. 2005.

N. Chou, R. Ledesma, Y. Teraguchi, and J. Mitchell.

Client-side defense against web-based identity theft. In

Proceedings of the 11th Annual Network and Distributed

System Security Symposium (NDSS ’04), February 2004.

J. Claessens, B. Preneel, and J. Vandewalle. A tangled

world wide web of security issues. First Monday, 7(3),

March 2002.

E. Cooke, F. Jahanian, and D. McPherson. The Zombie

Roundup: Understanding, Detecting, and Disrupting

Botnets. In Proceedings of the 1st USENIX Workshop on

Steps to Reducing Unwanted Traffic on the Internet

(SRUTI 2005), July 2005.

E. W. Felten, D. Balfanz, D. Dean, and D. S. Wallach. Web

Spoofing: An Internet Con Game. In Proceedings of the

20th National Information Systems Security Conference,

pages 95-103, October 1997.

E. W. Felten and M. A. Schneider. Timing attacks on Web

privacy. In Proceedings of the 7th ACM Conference on

Computer and Communications Security (CCS’00), pages

25-32, New York, NY, USA, 2000. ACM Press.

J. J. Garrett. Ajax: A New Approach to Web Applications.

http://www.adaptivepath.com/publications/essays/

archi-ves/000385.php, February 2005.

5

[9

(10]

11]

(12]

13]

[14]

[15]

[16]

(17)

(18]

(19]

20]

(21]

(22]

(23]

[24]

25]

[26]

27]

28]

29]

(30]

(31]

(32]

(33]

(34]

(35]
(36]
(37)

(38]

(39]

[40]

[41]

P. Gladychev, A. Patel, and D. O’Mahony. Cracking RC5
with Java applets. Concurrency: Practice and Ezrperience,
10(11-13):1165-1171, 1998.

J. Grossman and T. Niedzialkowski. Hacking intranet
websites from the outside - javascript malware just got a lot
more dangerous. Blackhat USA, August 2006.

M. Healan. Referer spam.
http://www.spywareinfo.com/articles/referer_spam/,
Sept. 2003.

W. Inc. Webtrends web analytics and web statistics.
http://www.webtrends.com, 2006.

S. Ioannidis and S. M. Bellovin. Building a Secure Browser.
In Proceedings of the Annual USENIX Technical
Conference, Freenix Track, June 2001.

C. Jackson, A. Bortz, D. Boneh, and J. C. Mitchell.
Protecting browser state from Web privacy attacks. In
Proceedings of the WWW Conference, 2006.

G. Keizer. Dutch botnet bigger than expected.
http://informationweek.com/story/showArticle. jhtml?
articleID=172303265, October 2005.

J. O. Kephart and S. R. White. Directed-graph
epidemiological models of computer viruses. In Proceedings
of the 1991 IEEE Computer Society Symposium on
Research in Security and Privacy, May 1991.

R. Kohavi, C. Brodley, B. Frasca, L. Mason, and Z. Zheng.
KDD-Cup 2000 organizers’ report: Peeling the onion.
SIGKDD Ezplorations, 2(2):86-98, 2000.

E. Korpela, D. Werthimer, D. Anderson, J. Cobb, and

M. Lebofsky. SETI@home — Massively Distributed
Computing for SETI. Computing in Science & Enginering,
3(1):78-83, 2001.

C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and

G. Vigna. Polymorphic worm detection using structural
information of executables. In Proceedings of the
International Symposium on Recent Advances in Intrusion
Detection (RAID), Sept. 2005.

C. Kruegel and G. Vigna. Anomaly detection of Web-based
attacks. In Proceedings of the 10th ACM Conference on
Computer and Communications Security (CCS’03), pages
251-261, New York, NY, USA, 2003. ACM Press.

V. T. Lam, S. Antonatos, P. Akritidis, and K. G.
Anagnostakis. Puppetnets: Misusing web browsers as a
distributed attack infrastructure (extended version).
Technical Report,
http://s3g.i2r.a-star.edu.sg/proj/puppetnets, August 2006.
J. Li, T. Ehrenkranz, G. Kuenning, and P. Reiher.
Simulation and analysis on the resiliency and efficiency of
malnets. In Proceedings of the 19th Workshop on
Principles of Advanced and Distributed Simulation
(PADS’05), pages 262—-269, Washington, DC, USA, 2005.
IEEE Computer Society.

J. D. C. Little. A Proof of the Queueing Formula L = AW .
Operations Research, (9):383-387, 1961.

G. Maone. Firefox add-ons: Noscript.
https://addons.mozilla.org/firefox/722/, May 2006.

D. Moniz and H. Moore. Six degrees of xssploitation.
Blackhat USA, August 2006.

Mozilla.org. End User Guide: Automatic Proxy
Configuration (PAC). http://www.mozilla.org/catalog/
end-user/customizing/enduserPAC.html, August 2004.

C. Nachenberg. Computer virus-antivirus coevolution.
Commun. ACM, 40(1):46-51, 1997.

V. Paxson. An analysis of using reflectors for distributed
denial-of-service attacks. ACM Computer Communication
Review, 31(3):38-47, 2001.

Philippine Honeynet Project. Philippine Internet Security
Monitor - First Quarter of 2006. http:
//www.philippinehoneynet.org/docs/PISM20061Q.pdf

14

[42]

[43]

[44]

[45]

[46]

[47)

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57)

(58]

[59]

[60]

[61]

[62]

M. Polychronakis, K. G. Anagnostakis, and E. P. Markatos.
Network-level polymorphic shellcode detection using
emulation. In Proceedings of the GI/IEEE SIG SIDAR
Conference on Detection of Intrusions and Malware and
Vulnerability Assessment (DIMVA), July 2006.

L. Rizzo. Dummynet: a simple approach to the evaluation
of network protocols. ACM Computer Communication
Review, 27(1):31-41, 1997.

B. Ross, C. Jackson, N. Miyake, D. Boneh, and J. C.
Mitchell. Stronger password authentication using browser
extensions. In Proceedings of the 14th Usenixz Security
Symposium, 2005.

A. D. Rubin and D. E. G. Jr. A Survey of Web Security.
IEEE Computer, 31(9):34-41, 1998.

J. Ruderman. The Same Origin Policy.
http://www.mozilla.org/projects/security/components/
same-origin.html, August 2001.

S. Saroiu, P. Gummadi, and S. Gribble. A measurement
study of peer-to-peer file sharing systems. In Proceedings of
Multimedia Computing and Networking (MMCN), 2002.
B. Schneier. Attack trends 2004 and 2005. ACM Queue,
3(5), June 2005.

F. Smith, J. Aikat, J. Kapur, and K. Jeffay. Variability in
TCP round-trip times. In Proceedings of the 3rd ACM
SIGCOMM Conference on Internet measurement, 2003.

S. Staniford, D. Moore, V. Paxson, and N. Weaver. The top
speed of flash worms. In Proc. ACM WORM, Oct. 2004.
Stunnix. Stunnix javascript obfuscator - obfuscate
javascript source code.
http://www.stunnix.com/prod/jo/overview.shtml, 2006.
Symantec. Internet Threat Report: Trends for January
05-June 05. Volume VIII. Available from
www.symantec.com, September 2005.

TechWeb.com. Lycos strikes back at spammers with dos
screensaver.
http://www.techweb.com/wire/security/54201269, 2004.
The Honeynet Project. Know your enemy: Tracking
botnets. http://www.honeynet.org/papers/bots/, March
2005.

J. Topf. HTML Form Protocol Attack.
http://www.remote.org/jochen/sec/hfpa/, August 2001.
VNExpress Electronic Newspaper. Website of largest
Vietnamese hacker group attacked by DDoS. http:
//vnexpress.net/Vietnam/Vi-tinh/2005/12/3B9E4A6D/,
December 2005.

D. Wang. HOWTO: ISAPI Filter which rejects requests
from SF_NOTIFY_PREPROC_HEADERS based on HTTP
Referer. http://blogs.msdn.com/david.wang, July 2005.
Y.-M. Wang, D. Beck, X. Jiang, R. Roussev, C. Verbowski,
S. Chen, and S. Kin. Automated Web Patrol with Strider
HoneyMonkeys: Finding Web Sites That Exploit Browser
Vulnerabilities. In Proceedings of the 13th Annual Network
and Distributed System Security Symposium (NDSS ’06),
February 2006.

N. Weaver, S. Staniford, and V. Paxson. Very Fast
Containment of Scanning Worms. In Proceedings of the
13t USENIX Security Symposium, pages 29-44, August
2004.

A. T. Williams and J. Heiser. Protect your PCs and Servers
From the Bothet Threat. Gartner Research, ID Number:
G00124737, December 2004.

zone-h. Digital attacks archive.
http://www.zone-h.org/en/defacements/, 2006.

C. C. Zou, W. Gong, and D. Towsley. Code Red Worm
Propagation Modeling and Analysis. In Proceedings of the
9th- ACM Conference on Computer and Communications
Security (CCS), pages 138-147, November 2002.

