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Abstract
Optical scan voting systems are ubiquitous. Unfortu-

nately, optical scan technology is vulnerable to failures
that can result in miscounted votes and lost confidence.
While manual counts may be able to detect these failures,
counting all the ballots by hand is in many situations im-
practical and prohibitively expensive. In this paper, we
present a novel approach for examining a large set of bal-
lot images to verify that they were properly interpreted
by the opscan system. Our system allows the user to si-
multaneously inspect and verify many ballot images at
once. In this way, our scheme is significantly more effi-
cient than manually recounting or inspecting ballots one
at a time, providing the accuracy associated with human
inspection at reduced cost. We evaluate our approach on
approximately 30,000 ballots cast in the June 2008 Hum-
boldt County Primary Election and demonstrate that our
approach improves the efficiency of human verification
of ballot images by an order of magnitude.

1 Introduction

In recent years, optical scan systems, where paper bal-
lots are marked by a voter and read by a machine, have
seen increasing adoption throughout the U.S. At present,
nearly two-thirds of voters vote using optical scan tech-
nology [19]. Unfortunately, there is sometimes a discon-
nect between the way a voter (or election official) might
interpret a mark and the way a machine interprets it. This
disconnect can lead to lost or miscounted votes and even
to a loss of trust if these errors become too frequent.

At a high level, optical scan systems work by scan-
ning a paper ballot, determining its layout by reading a
machine-readable code on the ballot (e.g., a barcode),
and then interpreting the voter-marked regions on the
ballot associated with each vote (the voting targets) [10].
Depending on the ballot layout, a filled voting target may
indicate a vote for “Yes” or “No” on a contest or a vote
for a particular candidate.

A simple and common approach to mechanically de-
tect whether a voting target is marked is to compute the
average pixel intensity value of the area inside the vot-
ing target, classifying it as marked if the average falls
beyond a predetermined threshold. Typically, the vast
majority of voting targets fall into one of two cleanly
separated distributions, according to whether the voting
target was marked or not (as in Figure 15). However, the
threshold that optical scanners and their software use to
determine whether a voting target is filled or empty can
be somewhat arbitrary and is unknown to the end user.
In addition, not all marks fall cleanly into the “filled”
and “empty” classes. In the sample of 60,000 voting tar-
get images that we analyze in this paper, 150 (0.25% of
the total) are marginal, in that their average intensity is
neither near the typical value for a filled target nor near
the typical value for an empty target (for examples, see
Figure 1). Current opscan systems often have trouble in-
terpreting these marginal marks accurately.

Another serious problem is that the classification of
voting targets as filled or empty is not a perfect indica-
tion of the voter’s intent. For example, a voter, perhaps
unaware of the mechanical process used to interpret his
or her ballot, may have marked the ballot reasonably, but
in a way that is misinterpreted by the scanner. We call
these mark-sensing failures. See Figure 2 for two ex-
amples of mark-sensing failures. Mark-sensing failures
have impacted elections in the past [1, 4].

A second category of optical scan system failures is
configuration failures. Beyond sensing marks, an optical
scan system must determine which candidate or contest
choice each mark corresponds to, and whether the marks
should be counted as valid votes. For example, in a vote-
for-one contest, marking two selections should count as
vote for neither (i.e., an overvote). The logic regulating
these decisions can get complex, leading to inadvertent
errors. Errors in the opscan configuration can cause votes
to be attributed to the wrong candidate, cause valid votes
to be mistakenly treated as overvotes, or cause overvotes



Figure 1: Examples of marginal marks from our data set
according to our classification procedure (see Figure 15).
Commercial opscan systems generally do not make clear
where the boundary lies between marks that will be clas-
sified as filled and those that will be interpreted as empty.
Marks near that boundary, such as these, may not be re-
liably (or even consistently) classified the way the voter
intended.

Figure 2: Three real-life examples of “No” votes: a
correctly classified filled voting target (left), a marginal
mark (center), and a mark that was incorrectly classified
as an empty voting target because there is little ink inside
the voting target itself (right). The latter two cases are
examples of potential mark-sensing failures of an optical
scan system.

to be mistakenly interpreted as valid votes. Configuration
failures have impacted elections in the past [16, 21, 2].

These kinds of failures have the potential to change
election outcomes, so it is important to have some way
to detect and correct them. For example, the 2008
Minnesota Senate race was initially decided by a mar-
gin of 206 votes out of 2.9 million optical scan ballots
cast [14, 5]. After a lengthy recount of all the ballots and
challenges over voter intent, the outcome of the election
was reversed.

As in Minnesota, one approach to verifying an elec-
tion is to count the paper ballots manually in either a full
recount or a statistical random audit [6]. Unfortunately,
full recounts are expensive and rare, and random audits
do not detect all instances of mark-sensing and configu-
ration failures.

Another approach (pioneered by the Humboldt County
Election Transparency Project [7]) is to independently

rescan the paper ballots with an off-the-shelf document
scanner and publish the digitized images. While now the
digitized images must be trusted, this allows other inter-
ested parties to verify the classification of these images
into votes, either manually, or by writing their own soft-
ware to do so.

Publication of ballot images enables an independent
automated recount or manual analysis of the ballots. The
hope is that two independent systems will fail indepen-
dently, thus reducing the risk of undetected errors. How-
ever, this hope is not always borne out in practice, due
to the risk of common-mode failures and correlated er-
rors. For example, two systems that both interpret voting
targets as filled or empty based on the image intensity in-
side the voting target may both fail to correctly identify
the voter’s intent when the voter has expressed his or her
intent in an unanticipated way (see Figure 2).

In this paper, we focus on trying to confirm whether
the opscan system has accurately interpreted a set of bal-
lot images. For this paper, we define accuracy in terms
of how a human examining those images would interpret
the voter’s intent on each ballot. The difference between
human interpretation and machine interpretation can be
significant, particularly when interpreting marginal or
ambiguous marks. Unfortunately, while human interpre-
tation can be very effective at ascertaining voter intent,
it is also time-consuming and prohibitively expensive to
perform at large scale. Reducing the cost of human in-
terpretation is the goal of this work.

1.1 Problem statement

Given a set of ballot images of an election and the op-
scan system’s interpretation of each ballot, we want to
allow the user of our system to efficiently check the ma-
chine’s interpretations. We want to detect every error that
would have been found through individual inspection of
every ballot image, but we want to do this more effi-
ciently. In other words, our goal is to make it easier for
a user to confirm that all ballot images were interpreted
accurately, verifying for him or herself that all votes have
been counted correctly and that all anomalous ballots are
accounted for. The user should not have to take it on faith
that the optical scanner interpreted the ballots correctly:
the user should be able to detect any and all ballots that
may have been interpreted inaccurately, whether due to
buggy code or to imperfect classification algorithms.

Currently, the most rigorous way to establish that a set
of ballot images has been counted accurately is to count
them one by one. However, manual recounts are time-
consuming and difficult. It is possible to develop soft-
ware to analyze and automatically classify votes, flag-
ging anomalous or marginal votes for later inspection.
However, the accuracy of the software’s interpretation of
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the ballots and the effectiveness of the software’s algo-
rithms must be trusted by the user. In addition, such soft-
ware is also subject to the same mark-sensing and config-
uration failures as optical scanners, because everything is
automated. We seek some way for the voter to confirm
that the software interpreted the ballots accurately. It is
hard to establish the accuracy of the count without actu-
ally inspecting the ballots.

We make a few assumptions for the purposes of this
work. First, we assume that the given ballot images are
authentic, and that they accurately represent the complete
set of ballots to be investigated. Verifying this is an or-
thogonal issue best addressed through other mechanisms
(e.g., random auditing and chain-of-custody protections).
Second, we assume our user’s subjective interpretation of
a ballot is the ground truth. Our goal is simply to present
the data efficiently for the user to verify. We make no
attempt to determine how other users might interpret the
ballot images, and we do not claim that our techniques
will resolve disputes in cases where different people in-
terpret the same ballot differently.1 Third, we make no
attempt to defend against malicious code, malicious in-
siders, or malicious attacks on the voting system. Our
focus is on detecting common errors that may occur de-
spite the best intentions of all parties.

Contributions of this paper. We propose a method of
visualizing and checking for errors in the interpretation
of a collection of ballot images, by applying simple oper-
ators to the images and displaying them in superimposed
form. We develop an interactive verification process that
significantly improves efficiency and reduces the burden
on the user of the system while at the same time allow-
ing individual treatment of each anomalous ballot. We
demonstrate the effectiveness of our approach by using it
to obtain a human-verified interpretation of 30,000 votes
cast in Proposition 98 in Humboldt County, California.
We use this interpretation to identify a number of anoma-
lies and unusual marks found in these ballots and quan-
tify their prevalence.

2 Superimposing ballot images

The primary contribution of this paper is a method of ver-
ifying a large set of ballot images by inspecting a small
number of superimposed images. In this section we in-
troduce the idea and theory of two types of superimposed
images, min-images and max-images, and how they ap-
ply to verification. To introduce this concept we briefly
review the basics of digital images.

1It is not unusual for two people to differ in their interpretation of
voter intent when the stakes are high, as is evident in the 2008 Min-
nesota Senate election recount [14].

0 64 128 192 255

Min
(Darkest)

Max
(Lightest)

Figure 3: An image represented by a matrix of pixels
(top). The intensity at each pixel is represented by an
8-bit value ranging from 0 to 255 (bottom). The mini-
mum of a set of pixel values is therefore the darkest pixel,
while the maximum is the lightest.

A digital image (e.g., a scanned paper ballot) may be
thought of as a matrix of pixels, each corresponding to
the color or intensity of the image at that position. In 8-
bit grayscale images, pixel values are numbers between 0
and 255 that represent the brightness, or luminance inten-
sity, of the pixel (see Figure 3). Color images are similar,
except that they are usually composed of multiple chan-
nels (e.g., red, green, and blue channels), instead of just
one (luminance).

2.1 Min-images and max-images
Consider a set of N grayscale images of the same con-
test, each I × J pixels in size and aligned to one another
(or registered). Two interesting operations we can con-
sider on these images are the minimum and maximum
operations. As shown in Figure 4, for each pixel posi-
tion (i, j), we compute the minimum and maximum at
that position in each of the N images. The result of these
operations are stored in the min-image and max-image,
respectively.

If all the images are identical, the value of the min-
and max-images would also be identical. However, vari-
ation in any pixel of the N images will result in differing
minimum and maximum images, and the difference be-
tween the minimum and maximum at any pixel location
defines a range in which all pixels in the set necessarily
lie (see Figure 5).

We can think of how the minimum and maximum op-
erations would appear visually for a given pixel loca-
tion: because pixel values correspond to luminance in-
tensity, the smaller the value, the darker the pixel be-
comes. Therefore, the minimum operator on a set of pix-
els is equivalent to taking the darkest pixel in the set. For
example, if even just one pixel is black, the resulting min-
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MIN-AND-MAX-IMAGES(images)
1 min image← new solid white image of size I × J
2 max image← new solid black image of size I × J
3 for j ← 0 to J − 1
4 do for i← 0 to I − 1
5 do for image in images
6 do min imagei,j ← min(imagei,j ,min imagei,j)
7 max imagei,j ← max(imagei,j ,max imagei,j)
8 return (min image, max image)

Figure 4: Pseudocode for calculating min- and max-images.

0 255
A

0 255
C

0 255
B

Range of possible member values
Min and max values of set of pixels 

Figure 5: Three example cases, representing the mini-
mum and maximum intensity values of a set of images
at three pixel locations, A, B and C. In cases A and B,
the min- and max-images have almost the same value at
that pixel location, indicating that there is little variation
among the pixel values at that location from image to im-
age. Case C gives us fewer guarantees about the member
values; all we know is that there is broad variation be-
tween at least one pair of images at that pixel location.
For instance, this variation could be due to a stray mark
at that pixel location in one ballot image, which might
warrant further investigation.

imum pixel will be black. Similarly, the maximum pixel
value corresponds to the lightest among a set of pixels.
If any pixel in the set is white, the maximum will also be
white.

2.2 Using superimposed ballot images for
verification

We leverage the min- and max-images for simultaneous
verification of large sets of aligned ballot images.

The min-image. If we make the assumption that when
a voter marks a blank ballot, he or she darkens the image,
we can consider the min-image to consist of the union of
all of the voters’ marks, superimposed on a single image.

In other words, if one ballot image contains an extra-
neous mark, the min-image will also contain that mark,
as well as any other marks that exist in the set of ballot
images.

If we see no questionable stray marks in the min-
image, we are guaranteed that none of the ballot images
contain stray marks. If we do see one or more question-
able marks, we know that there exists at least one stray
mark in the ballot images and we must investigate them
further.

Beware: a min-image that looks like a correctly
marked ballot (e.g., a valid “Yes” vote) does not guaran-
tee that all (or any) of the ballots in the set are correctly
marked. The min-image can be used to verify the ab-
sence of any marks at a given location across all of the
ballots, but it cannot be used to verify the presence of a
mark in all ballot images.

The max-image. While the min-image can be consid-
ered the union of all voter marks, the max-image can be
thought of as the intersection. In other words, if any bal-
lot is white at a particular location, then the max-image
will also be white at that location. This property can be
used to detect whether the collection contains a ballot
with whitespace where it should not be, such as an in-
completely filled voting target or missing text that was
supposed to be printed on the ballot but is not present in
the scanned image. Therefore, if we see a valid mark in
the max-image, we are guaranteed that all ballots in the
set also contain that mark.

Verifying ballot images. The use of min-images and
max-images can thus let us establish strong guarantees
about the superimposed ballots:

• If we see a pair of min- and max-images that are
similar (or identical) we know that all ballots con-
tained are similar. For example, see Figure 6.

• If we see a pair of min- and max-images that are
dissimilar (e.g., because of a stray mark or under-
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Three aligned images
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Figure 6: A visual example of the min and max image
operators. From the min-image we notice a subtle check
mark, indicating the existence of such a stray mark in one
of the superimposed ballots. We also notice that none
of the superimposed images have any marks whatsoever
that could be construed as a “No” vote. The max-image
shows us what the ballots have in common: that they
all have a significant amount of ink in the “Yes” voting
target. From the two superimposed images, we can rea-
sonably conclude that all three ballots are unambiguous
“Yes” votes.

filled voting target) then we cannot verify the ballot
images, and further investigation is required. For
example, see Figure 7.

The min/max operations can be applied to any number
of images. For example, take the two images shown in
Figure 7. From the image on the left we learn that at
least one of the 800 ballots contains an anomalous arrow
pointing to the “Yes” label. Similarly we see that at least
one ballot appears to contain the initials “CC” We also
see that at least one ballot contains a hesitation mark in
the “No” voting target.

From the image on the right we learn that all 800 bal-
lots contain at least as much shading in the “Yes” voting
target as is shown in that image. We also learn that all
800 ballots correctly contain the same textual content;
no ballot in the set omits or alters any text.

From these two images, barring the extraneous marks
that we may want to investigate, we can reasonably con-
clude that all votes in the stack should be classified as
“Yes” votes. Through the use of these two images we are
able to establish bounds on the amount of variation that
exists in the 800 images. This enables a user to efficiently
verify a large set of ballot images simultaneously.

2.3 Overlay images
One slightly unwieldy aspect of examining min- and
max-images is that the operator must examine two
images at the same time. However, it is possible to im-
prove the presentation by summarizing all the informa-
tion in a single image: the overlay image. The key ob-
servation is that the max-image is a “subset” of the min-
image: every pixel in the min-image is at least as dark as
the corresponding pixel in the max-image. Because we
have elected to work with grayscale images, it is possible
to combine the min- and max-images into a single im-
age by assigning one color to the max-image and another
color to the min-image and superimposing the two (see
Figure 8). We call the superimposed false-color image
an overlay image. Example overlay images are shown in
Figure 9.

The examples in this paper use red for the min-image
and blue for the max-image.2 Therefore, blue regions
of the overlay image correspond to locations where ev-
ery ballot is equally dark (e.g., due to marks or printing
present on every ballot in the set), and red regions corre-
spond to locations where at least one ballot is dark and
at least one is light (e.g., due to stray marks or variation
from ballot to ballot). Text printed on the blank ballot
appears in blue on the overlay image. The surrounding
red “halo” is due to imperfect registration and alignment
of images.

3 Verifying elections using overlay images

We envision that overlay images could form part of a
system for auditing and verifying the interpretation of
marked ballots. The process, illustrated in Figure 10,
can be split into three parts, each with a different set of
considerations:

1. Image scanning: This is the process of taking paper
ballots and scanning them into an image format for
use by our system. Several factors here may influ-
ence accuracy later, such as skew angle, image reso-
lution, scanner noise, and artifacts from image com-
pression. The details of how images are scanned is
beyond the scope of this paper, and we consider the
scanned images as inputs into our system.

2. Image analysis: This is the process of grouping and
aligning the ballots, identifying and segmenting the
regions for each contest of interest, and tentatively
classifying the marks of the voter. Note that auto-
matic classification of voter marks is not the pri-
mary focus of this paper; our goal is to verify the

2Note that red and blue are parameters to our overlay image ap-
proach; any two colors may be used instead to account for the percep-
tual needs or preferences of the user.
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800 ballots superimposed with
min (darkening) operator

800 ballots superimposed with max 
(lightening) operator

Figure 7: A superposition of 800 ballots, all initially classified as “Yes” votes. The min-image is shown on the left,
and the max-image on the right. From these two images we conclude that further investigation is required to identify
the ballots with stray marks. However, we also learn from the left image that none of the 800 voters (completely) filled
the “No” choice, and we learn from the right image that all 800 voters filled the “Yes” choice at least that much, so we
can reasonably predict that the superimposed ballots are all “Yes” votes.

OVERLAY-IMAGE(min image,max image, min color,max color)
1 overlay image← new I × J color image
2 for j ← 0 to J − 1
3 do for i← 0 to I − 1
4 do αmin ← min imagei,j / 255
5 αmax ← max imagei,j / 255
6 t← (1− αmin) ·min color + αmin · white
7 overlay imagei,j ← (1− αmax) ·max color + αmax · t
8 return overlay image

Figure 8: Pseudocode for creating a single overlay image from a given min- and max-image. An overlay image is
created by interpolating or alpha blending first between the background color (white) and the min-color, and then
between the resulting color and the max-color, in other words treating the min- and max-images as alpha layers. In
Appendix A we describe and compare this to an alternate overlay image algorithm.
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800 ballot images

3 ballot images

Examples of overlay images with
min in red and max in blue 

Figure 9: Three images from Figure 6 represented by a
single overlay image (top). The result of superimposing
the min-image (as red) and max-image (as blue) from
Figure 7, to obtain an overlay image (bottom).

accuracy of such a subsystem. We could have, for
instance, replaced the classification procedure with
another software component or with the official op-
tical scan system.

3. Image verification: In the image verification stage,
the user (e.g., a voting official certified to make
judgment calls) checks the accuracy of the interpre-
tations made in the image analysis stage. Our sys-
tem provides an interactive tool that enables the user
to review, verify, and if necessary correct the inter-
pretation of ballot images as votes. We implement a
simple user interface to let the user efficiently vali-
date large batches of ballots and hone in on problem
or anomalous ballots. The image verification stage
is the core of our contribution, and we expand be-
low on the major elements of this approach to image
verification.

Ballot images 
analyzed

Ballots 
independently 

scanned

Intermediate 
results 
stored

Ballots images 
verified interactively

Figure 10: The proposed workflow for our system. Bal-
lots are first scanned and analyzed. The ballot images are
tentatively classified as votes for a particular choice or
candidate (see Section 4.2). The tentative classifications
are then verified using our interactive image-overlay tool
(see Section 3).

3.1 Grouping ballots into verifiable sets

Given a set of aligned and classified ballot images, we
turn our attention to the process of verifying the classifi-
cation of each image as a set of votes.

Before we can verify ballots using our min/max over-
lay approach, we must group ballots into visually similar
sets. For instance, we group all the “Yes” votes, “No”
votes, overvotes, and undervotes together. We will verify
each of these four groups separately. Note, each group
may have many images in it. In our experiment described
below there were over 10,000 ballots in each of the “Yes”
and “No” groups.

If the ballot images are very well aligned, and if there
is very little noise in the images, it may be possible to
overlay all the ballots in one group simultaneously. How-
ever, in practice, there is a limit to the number of images
that can be superimposed before the noise becomes too
great. Thus, it is helpful to break down each group into
smaller groups (e.g., of maximum size 200). This still
lets us verify many ballots at a time, while limiting the
effect of noise.

3.2 User interface to verify ballot groups

Once we have grouped ballot images into visually sim-
ilar groups, our tool allows the user to step through
them, one group at a time, to verify them. To do so
we created a graphical user interface that sequentially
presents the user with the min/max overlay image for
each group.
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100 ballots superimposed 
with at least one anomaly

The anomalous ballot 
identified in one action

Remaining 99 ballots with 
anomaly removed

Figure 11: Our user interface showing how an anomaly can be easily identified and separately verified. 1.) An overlay
of 100 “No” ballots presented; the user notices an anomaly (a written “Yes!”) and selects it by drawing a box (left).
2.) Our system finds the one ballot containing the highlighted anomaly and displays it for the user to verify separately
(center). 3.) The user verifies the remaining 99 ballots, now clean of any questionable marks (right).

The verification tool begins with all the ballot groups
in a queue, presenting the overlay image for each group
one at a time. If the overlay image looks correct to the
user, he or she can verify the group of ballots with one
click. When a group is verified, it is removed from the
queue. When the queue is empty, all ballots have been
verified. The interesting part of the process happens
when an anomaly is detected, or when a group cannot
immediately be verified.

3.3 Dealing with anomalies

In Figure 11 we see an example of the user interface dis-
playing the overlay image for a group with an anomaly in
it. We see that at least one ballot has a big “Yes!” written
on it. In order to verify this group we need to deal with
this anomalous ballot.

We approach this problem by letting the user easily
partition groups of ballots based on a region of inter-
est. We allow the user to select a rectangular region in
the overlay image, and then we split the group of bal-
lot images into two subgroups based upon their contents
within this rectangular region. In the example shown
in Figure 11, when the user draws a rectangle around
the “Yes!”, the initial group of 100 ballots is split into
two groups (in this case, one group of one ballot, shown
center, and one group of 99 ballots, shown right). This
can be effectively accomplished by examining the aver-
age intensity for each ballot in the region of interest. A

standard clustering algorithm can be used to partition the
group. We used K-means [12], with the number of clus-
ters equal to two. The algorithm for partitioning ballot
groups is given in Figure 12. The original group becomes
two disjoint groups in the queue of unverified ballots.

This approach is quite general. The user, for example,
is not limited to selecting regions with stray marks. Be-
cause K-means simply clusters images by similarity in
average image intensity at a region, the user may select
any region as a basis for clustering. This approach allows
a user to interactively partition a large set of images, if
necessary, into smaller groups that can then be verified.
It is important to note that the quality of the initial bal-
lot groupings affects only the efficiency of verification—
not the correctness—because the user may repartition
groups into smaller and smaller groups (individual bal-
lots, if necessary) until he or she is satisfied with the ver-
ifiability of the resulting groups.

4 Evaluation

In this section we discuss an experiment we ran to eval-
uate the practicality of our approach.

4.1 Dataset
We evaluate our system using ballot image data from
the June 2008 Humboldt County California Primary
Election. The ballot scans are JPEG-compressed color
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PARTITION-IMAGES(images, region)
1 sum intensities← new ASSOCIATIVE-ARRAY
2 for image in images
3 do sum intensities[image]← 0
4 for j ← region.y to (region.y + region.height− 1)
5 do for i← region.x to (region.x + region.width− 1)
6 do sum intensities[image]← sum intensities[image] + imagei,j

7 (cluster1, cluster2)← K-MEANS(sum intensities, k = 2)
8 return (cluster1, cluster2)

Figure 12: Pseudocode for the approach we use to find a group of anomalous ballots, given a set of images and a
region of interest. In this code, K-MEANS refers to the standard clustering algorithm that, in this case, partitions a set
of scalar values into two clusters centered around two group means in a way that best explains the data [12].

Ballots 
independently 

scanned

Workflow of our analysis stage

Ballot images 
registered

Ballot images 
grouped by 
layout type

Form structure 
determined

Proposition 98 
segmented

Votes classified and 
grouped by similarity

Figure 13: An illustration of the techniques we use for
analyzing ballot images and interpreting the marks on
these images. The images are registered (mapped to a
universal coordinate system and aligned), classified by
ballot layout type, segmented into regions for each con-
test and voting position, classified as votes for candi-
dates, and finally broken down into smaller groups, op-
tionally by image similarity.

images at a resolution of 150 DPI, which we ob-
tained from the Humboldt County Election Transparency
Project [7]. They include scans of both mail-in and
precinct-cast ballots for a Diebold/Premier optical scan
system. As this was a primary election, they include bal-
lots for multiple parties. We limit our scope to evaluat-
ing one statewide contest, Proposition 98, that appears in
each of the 29,949 ballot images in our data set.

4.2 Image analysis

The goal of the image analysis stage is to register the
images to the same coordinate system, locate the contest

of interest on each image (Proposition 98 in our case),
and classify the votes as Yes, No, undervote, or overvote
(see Figure 13). These classifications will be verified in
the verification stage.

Image registration. For our overlay approach to work
we require precise alignment (or registration) of the
images to one another. To register the images, we first
select features we expect to appear in the same place
on all our ballots. The features we used in our experi-
ment were the inside corners of the four outermost hash
marks (as depicted in Figure 14). Next, for each ballot
image, we locate the selected features and compute an
affine transformation that best maps these points to the
four corners of the common coordinate space. We then
apply this transformation to the ballot image, which ac-
complishes the necessary rotation, translation, and scal-
ing necessary to align all the images. Note that an in-
correct transformation can be detected in the verification
stage.3

We took the approach of registering the entire ballot,
and then cropping it to retain the region of interest (i.e.,
Proposition 98 in our example). In hindsight, it may
have been beneficial to re-register the images after crop-
ping, because small errors introduced in locating the var-
ious regions accumulate when the cropped images are
overlaid.

Form extraction. After registering the images, we de-
termine the structure of the ballots through form extrac-
tion [3], and use this to locate the coordinates of every
box in the image. In our case study, we used a heuris-
tic to identify the location of Proposition 98 on each bal-

3We also found we could reliably detect mis-registered ballots be-
fore the verification stage, by examining the residual of the affine trans-
formation; the residual was high whenever our simple feature detection
algorithm failed to locate the correct features, typically due to the exis-
tence of stray marks. This affected 26 of the 29, 949 ballots, which we
then manually registered.
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Registration 
feature

Figure 14: To precisely register the ballot images in our
set, we first locate the innermost corners of the four out-
ermost hash marks. Given the location of these four
points we compute an affine transformation that best
maps these four points to corresponding locations in a
known coordinate system.

lot. We made an assumption (subsequently verified using
our approach) that the size and shape of the contest box
was constant, no matter where it appeared on the ballot.4

For Proposition 98, we use the size of the contest box
to locate it on the page, but it may be useful to exam-
ine other information as well, such as voting target posi-
tions, OCR’d text, or other pattern-matching techniques.
Finally, given the coordinates of the contest of interest,
we crop the image and identify the voting targets.

Initial classification. To classify the ballot images, we
calculated the average pixel intensity within each voting
target region, and applied a threshold to classify that vot-
ing target as filled or empty. A histogram of the average
pixel intensities is shown in Figure 15. The threshold we
used in our experiments was the halfway-point between
labels B and C.

We initially categorized each Proposition 98 contest
into a predicted category: yes, no, undervote, or over-
vote. The classification here is not meant to be final, as it
will be verified later. We use the classifications to create
overlay images of similarly voted ballots for the user to
more efficiently verify.

4In our case study, Proposition 98 appeared in exactly six loca-
tions on the ballot, despite there being many more ballot types (784
as counted by unique barcodes); experimentally, the box dimensions
for Proposition 98 varied from ballot to ballot by 1–2 pixels.
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Figure 15: Histogram of average pixel intensity val-
ues of 59,898 voting target images taken from Proposi-
tion 98 of the June 2008 Primary Election in Humboldt
County, California. Despite the apparent separation be-
tween modes, 150 (or 0.25%) voting target images fall
between labels B and C.

Grouping ballots into verifiable sets. Within each of
the four categories, we further grouped the ballots into
groups of 200 randomly selected images. The number
200 here was heuristically chosen to balance efficiency
and minimize the effect of noise. We did not attempt
to optimize the group size for this work. We expect
we could gain more efficiency by grouping ballots in a
smarter way, for instance by clustering images based on
visual similarity, as we discuss later.

After grouping the images into smaller, visually simi-
lar groups, our system has all the information it needs to
present the results to the user for interactive verification
using our overlay image method. In the next section, we
evaluate this approach.

4.3 Evaluating verification efficiency
We ran two experiments. First, we counted all ballots us-
ing our proposed method and user interface. Second, we
compared this to counting the ballots individually. For
the latter case, for the sake of time, we visually inspected
1,000 of the 29,949 ballots. We extrapolate from this an
estimate of the total time it would take to individually
inspect all ballots.

Results counting one by one. To have something to
compare our results to, one of the authors examined
1,000 ballot images, one by one. This took 23 minutes.
Extrapolating that rate to the full data set means we could
have verified the entire set in 11 or 12 hours.

Results using our system. Using our system, the same
author visually inspected all the Proposition 98 ballot
images. We inspected the ballot images in groups of
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Figure 16: The results of our verification of the Hum-
boldt County Proposition 98 ballot images. The ini-
tial tallies from our image analysis stage are compared
with the tallies after human verification. The results are
further broken down by whether they include marginal
marks, as described in Section 1. By verifying all votes
visually we are able to more accurately interpret some
votes that would otherwise have been miscounted.

at most 200 images at a time, superimposed using the
min/max overlay method described in Section 2.3. For
every anomaly we discovered, we used the group parti-
tion method from Section 3.3 to identify the anomalous
ballots and interpret them individually.

We visually inspected all the Proposition 98 ballot
images in 1 hour and 23 minutes. This represents over
an 8× improvement in the time it would take to inspect
ballots one at a time. We examined 1,326 images in to-
tal, representing a 22× improvement over examining the
29,949 ballot images individually. The results of our ver-
ification are shown in Figure 16. We acknowledge these
are preliminary results—we did not conduct a compre-
hensive user study—but we argue this is good evidence
that our method indeed improves human verification time
by an order of magnitude.

Figure 17: An overlay image that shows at least one
anomaly in the “o” in “No.”

4.4 Observations

Using our approach, we were able to verify all steps of
the image analysis stage: the image registration, the form
extraction, and the vote classification. Had a step failed
for any one of the ballots, an anomaly would have been
evident in its overlay image. In addition, we detected
several interesting patterns of anomalies in the ballots.

One curious pattern was a tendency for a number of
voters to fill the incorrect oval when voting for the “No”
choice. In particular, they seem to have confused the “o”
in “No” for the voting target. These ballots were classi-
fied as undervotes by our initial classification, and most
likely also interpreted as undervotes in the official can-
vass. Figure 17 shows an example of how this appeared
to us in our user interface. This was not an isolated case.
Figure 18 shows examples of ten voters who consistently
mistook the “o” for the voting target.

Another pattern of anomalies we noticed was the re-
curring tendency to make corrections by drawing arrows
to a voting target then annotating it with either “Yes” or
“No” (see Figure 19). The voter’s intent in some of these
cases is unclear.

Last we also noticed cases where extraneous marks ap-
pear to be identifying. In Figure 20 we show two cases
where the voter appears to have initialed their changes,
which arguably should invalidate their ballot.
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Figure 18: A pattern of anomalies we discovered while
visually verifying all ballots. This example shows marks
that were clearly intended as “No” votes, where the voter
filled in the “o” in “No” rather than filling in the voting
target (top). We found evidence that this is a replicable
failure of ballot design: the “o” in “No” is mistaken for a
voting target by a fraction of the voting public. The top
two rows show all 10 examples of this phenomenon we
found among the undervotes in this race. Some voters
even filled in both the “o” in “No” as well as the voting
target (bottom).

5 Discussion

In this section we discuss some of the results and conse-
quences of our approach to verification.

5.1 Trust in ballot images

We acknowledge that our approach still requires trust
in the ballot images, and in the software displaying
them [15]. Other techniques must be used to gain con-
fidence that the set of ballot images accurately reflects
the paper ballots as they were marked by voters. Our
approach is designed to minimize the complexity of the
software required for verification, and is designed to
be intuitive enough for a user to comprehend what is
going on. In particular, the minimization and maxi-
mization operators were chosen to be simple operations
for a machine, as well as simple for a person to rea-
son about. While the software in the image analysis
stage—the stage that determines the structure of the bal-
lot images and performs the initial vote classifications—
may be complicated, the software necessary to verify a
set of images is separable, and can be kept simple. In
this way, our system strives to be transparent, a necessity
when approaching the problem of verifying elections.

5.2 Applications

Our system lets a person efficiently interpret a large set of
ballot images. As such, it can be used to detect and cor-
rect many common failure modes under typical-case as-

Figure 19: Examples of potentially ambiguous votes we
found in our data set. In each example, the voter ap-
pears to be overriding or correcting his or her first mark.
However, the interpretation of votes remains highly sub-
jective. The initials in red (CC, TW, and MJ) are from
voting officials who judged the voter intent and enhanced
the ballots by covering some regions with tape. In each
example, both voting targets are filled and one is crossed
out; during the enhancement process, one of these targets
was covered with tape and thus is only faintly visible in
the images above. Because enhancement was performed
before the ballots were scanned, we have only the scans
of enhanced ballots, not the original ballots.

sumptions,5 such as mark-sense failures—failures of ma-
chines to correctly recognize marks made by the voter—
and configuration failures—failures of machines to inter-
pret the detected marks correctly (see Section 1).

The primary benefit of our approach is that it greatly
increases the number of ballots an individual can reason-
ably inspect for him or herself, enabling each interested
individual to arrive at his or her own interpretation of
an entire contest. This can lead to interesting possibili-
ties. For instance, because the output of our verification
scheme is a classification—from the user—of every indi-
vidual ballot, if multiple people examine the same con-
test, their classifications of individual ballots could be
compared. Ballots for which the users’ interpretations
disagree could be easily discovered.

Another application of our approach may be to enable
researchers to efficiently establish ground truth for eval-
uating novel opscan systems. For instance, researchers
studying the accuracy of a new voter-intent classifica-
tion scheme, or a stray-mark detector, could use our
approach to test their system on an order-of-magnitude
more human-verified ballot images than before.

5We make a distinction between typical-case assumptions in which
the optical scan system may fail non-maliciously, for instance as a
result of operator or programmer error or imperfect algorithms, and
worst-case assumptions in which the scanning equipment and opera-
tors (among other stakeholders in the election) may act maliciously.
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Figure 20: Examples of potentially identifying initials
we discovered while verifying the election. The initials
in black (DG, faintly visible on top after ballot enhance-
ment, and RH on the bottom) appear to come from the
voter. The initials in red (TW on top and MJ on the bot-
tom) are from officials who judged voter intent.

Our approach may also make it feasible to do post-
election logic and accuracy tests of current optical scan
equipment by analyzing the equipment’s interpretation
of ballot images. Today, logic and accuracy testing typ-
ically uses a relatively small sample of test ballots, and
test ballots are often marked in an unrealistically accu-
rate fashion (e.g., test ballots may come pre-marked by
the ballot printer, saving time but failing to anticipate and
exhaust all the ways a voter will interact with a ballot). It
would be possible for an election official to use our tech-
nique to verify the opscan system’s interpretation of all
ballot images, after the election, and use this to detect
configuration errors and assess the system’s accuracy.
This may provide a better foundation for post-election
logic and accuracy testing.

5.3 Limitations

Our approach is based on verifying ballot images, and
is thus limited by the accuracy of this representation.
In particular, our approach requires us to trust that the
images are faithful and authentic scans of the paper bal-
lots. As such, we do not suggest our approach as a re-
placement for manual audits of paper ballots. While one
can envision auditing the scanning process to establish
stronger trust in the images, we consider this an orthog-
onal issue and leave it as future work.

Working with ballot images poses other limitations as
well. For instance, artifacts like ink bleed-through or
damage to the paper ballot may be more difficult to rec-
ognize or diagnose from a scanned image than from the
original paper ballot. In these cases, examining the phys-
ical paper ballot would remain important.

Some types of contests also pose issues for our ap-
proach. For example, a “vote-for-N” contest, in which
the voter is allowed to mark more than one choice, com-

Figure 21: Two example anomalous ballots we discov-
ered with our overlay approach that are not enhanced by
voting officials, indicating that they went undetected. A
potential explanation for this is that the opscan system
detected these as “Yes” votes—rather than overvotes—
triggering no further review of the ballots. (In our eval-
uation both votes were subjectively labeled “Yes” votes,
after initially being classified as overvotes.)

plicates grouping ballots into a small number of visu-
ally similar groups that can be verified simultaneously.6

While our system would still yield accurate results, its
efficiency would be affected.

Similarly, issues such as ballot rotations—in which the
order of choices may vary ballot by ballot—also compli-
cate our approach. In this case, it is no longer safe to as-
sume the position of a voting target corresponds to a par-
ticular choice or candidate, so ballots must be grouped
taking into account the particular voting arrangement.
However, because groupings are verified visually, this
again only results in a loss of speed, and not correctness.

A specific limitation of our evaluation is that the bal-
lots in our data set were enhanced by voting officials
prior to scanning. In other words, many anomalous bal-
lots discovered by the officials (e.g., overvotes rejected
by the scanner) have been corrected either with felt pen
or tape. While this prevented us from working with the
original anomalies in those cases, we note that we can
easily detect enhancements due to the initials that ac-
company them,7 and our data set also contains anomalies
that went undetected—or at least were not enhanced—by
voting officials (see Figure 21).

Another specific limitation of our evaluation is that the
number of images given to us did not exactly match the
number of ballots cast in the official canvass [8]. The
official canvass included 74 additional ballots not in our
data set. This limited our ability to compare our human-
verified results with the results of the official canvass.

5.4 Future work and open problems
It is an interesting open problem to further reduce the
time needed to verify a set of ballot images, without sac-

6In the worst case there can be n! combinations, where n is the
number of candidates (though this is bounded by the total number of
ballots).

7Enhancements are initialed by the official making the correction.
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rificing accuracy. One possible improvement would be to
implement a clustering algorithm when selecting ballots
to overlay. Instead of placing ballots into groups ran-
domly, we could cluster these images into groups of vi-
sually similar ballots. The hope is that if all ballots in a
group are largely consistent in marking, it will be easier
to verify the group of ballots, and it will be possible to
increase the number of ballots in each group. In prac-
tice, we suspect the number of anomalous ballots will be
small, and consistently marked ballots large, enabling the
user to step through large groups quickly.

While this paper focuses on verifying a set of ballot
images, another area for future improvement is in the ini-
tial image analysis stage of our system. For example, it
may be possible to automatically predict which ballots
will need to be treated individually because they con-
tain interesting anomalies. Similarly, machine learning
techniques could be applied to better classify marginal
or otherwise interesting marks. It is possible that analyz-
ing the ballot images more thoroughly in advance may
enable verification to proceed more efficiently.

6 Related work

Others have proposed using scanned images of ballots to
analyze and independently recount ballots. The Hum-
boldt County Election Transparency Project rescanned
all ballots cast in Humboldt County in several elections
using a commercial off-the-shelf document scanner [7].
Our evaluation relies upon a collection of ballot images
scanned by the Humboldt County Election Transparency
Project. We are indebted to them for making this data set
available to us.

Mitch Trachtenberg developed BallotBrowser, open-
source software to independently recount all contests by
analyzing these ballot images. BallotBrowser introduces
a novel technique to help the user quickly examine and
verify BallotBrowser’s interpretation of many marks, by
displaying a cropped version of the voting target from
many ballots simultaneously on the screen. This lets Bal-
lotBrowser display many marks on the screen at once,
exploiting human parallelism. However, the user must
still visually examine each such mark to gain confidence
that all were properly interpreted. We superimpose bal-
lot images to reduce the number of images that the user
must examine. Like other optical scan systems, Ballot-
Browser relies on configuration information that tells it
where on the ballot to look for voter marks and how to
interpret each mark.

VotoScope is an early open-source software project for
analyzing a collection of ballot images from an optical
scan system to provide an independent tally of the bal-
lots [9]. Like other optical scan systems, both VotoScope
and BallotBrowser are susceptible to mark-sensing and

configuration failures. We were inspired and motivated
by VotoScope and BallotBrowser. Our work is comple-
mentary to their work, as our techniques could be used
to efficiently verify the results produced by their sys-
tems. In some cases, if the official optical scan system
can export the set of all ballot images as well as its in-
terpretation of those ballot images, our techniques could
be applied directly to the output of the official opscan
system, thus potentially taking the place of VotoScope or
BallotBrowser.

Recently, the PERFECT project has pioneered the
application of document analysis techniques to auto-
mated analysis and interpretation of optical scan bal-
lots [20, 17, 13]. Our work is distinguished from theirs
largely by our focus on interactive tools (as opposed
to entirely automated algorithms for interpreting ballot
images) as well as our focus on verifying the accuracy
of a set of ballot interpretations presented to us (rather
than building algorithms to produce those interpretations
in the first place).

Our work was also inspired by research on interactive
computer vision [11, 18], which solves hard computer
vision problems by letting the user of a tool give interac-
tive hints to the algorithm. We take a similar approach:
instead of attempting to perfectly infer the correct inter-
pretation of every single ballot, we allow the user to in-
teractively guide his or her examination of ballot images
through the partitioning operations.

7 Conclusion

This paper introduces techniques to help a human verify
the interpretation of a large collection of ballot images,
allowing the user to confirm that all ballots were inter-
preted accurately and to identify anomalies and ambigu-
ous cases. While our approach requires trust in the ballot
images and in the software displaying them, it has the
benefit of significantly reducing the cost of recounts.

Our experiments suggest that the approach has
promise. We found that our approach provides an order-
of-magnitude improvement in speed, compared to a
ballot-by-ballot recount. We also demonstrated that our
approach is able to find a variety of anomalous ballots,
many of which would have been undetected and possi-
bly misinterpreted by an optical scan machine. These re-
sults suggest that our approach is practical and has the
potential to improve the accuracy and transparency of
elections.
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OVERLAY-IMAGE(min image,max image, min color,max color)
1 overlay image← new I × J color image
2 for j ← 0 to J − 1
3 do for i← 0 to I − 1
4 do α← (max imagei,j −min imagei,j) / (255−min imagei,j)†

5 hue← α ·min color + (1− α) ·max color
6 β ← min imagei,j / 255
7 overlay imagei,j ← β · white + (1− β) · hue
8 return overlay image

Figure 22: Pseudocode for an alternative approach to create an overlay image from a pair of min- and max-images.
Pixels in the resulting overlay image will vary in hue between max-color (i.e., blue in our examples) and min-color
(i.e., red) depending on how far apart the darkest and lightest pixels are at a particular location. The whiteness of an
overlay pixel depends on the intensity of the darkest pixel at a particular location. †In the case that min imagei,j =
max imagei,j = 255, let α = 0 (hue drops out anyway on line 7).

Appendix A Alternate overlay algorithm

Two requirements for an overlay image are that it cap-
ture the intensity of the min- and max-images, and that
they be differentiable from one another. When we plot
the spectrum of possible colors that result from our pro-
posed algorithm we get the graph on the left in Figure 23.
In particular, note the three corners of the spectrum that
denote the common cases: the bottom-left corner is blue,
corresponding to a region of foreground where all the
pixels in the set are black; the top-right corner is white,
corresponding to a background region where all pixels
are white; and the top-left corner is red, corresponding to
the case where at least one pixel is black and another is
white, commonly because of a stray mark.

Another property of this spectrum to consider, how-
ever, is the interpolation of colors between corners. In
particular, consider the edges. Ideally, along the top
edge, we would like a smooth interpolation between red
and white, which corresponds to regions that are white
in at least one ballot, but dark in another—likely stray
marks. The gradient on the diagonal, on the other hand,
corresponds to regions that are identical in all ballots,
even if they vary in shade between black and white. In
this case, we would like a smooth interpolation between
blue and white.

Our original overlay algorithm does not vary smoothly
from blue to white along the diagonal, resulting in a more
conservative overlay image: images that are possibly
identical may be perceived as containing more variation
than present, requiring more work to verify.8 To address
this shortcoming, we have designed an alternative algo-
rithm (see Figure 22) to ensure that the diagonal varies

8The difference between both algorithms is most evident on images
with a lot of gray; in practice, though, both algorithms resulted in sim-
ilar looking overlay images as our ballots contained mainly black and
white features.
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Figure 23: A comparison of the resulting range of col-
ors a pixel may take, as produced by our two proposed
OVERLAY-IMAGE algorithms. The image on the left is
produced by the algorithm in Figure 8. The image on
the right is produced by the algorithm in Figure 22. Note
the differences in color, particularly along the diagonal:
the left image shows a gradient from blue to purple to
white, while the right image shows a gradient from blue
to white.

smoothly from blue to white, with no red, as we see in
the graph on the right in Figure 23. Our experiments in
Section 4 used the algorithm in Figure 8, but in hindsight
the algorithm in Figure 22 may have been a better choice.
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