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Abstract

The classical Direct-Product Theorem for circuits says that if a Boolean function f : {0, 1}n →
{0, 1} is somewhat hard to compute on average by small circuits, then the corresponding k-wise
direct product function fk(x1, . . . , xk) = (f(x1), . . . , f(xk)) (where each xi ∈ {0, 1}n) is sig-
nificantly harder to compute on average by slightly smaller circuits. We prove a fully uniform
version of the Direct-Product Theorem with information-theoretically optimal parameters, up
to constant factors. Namely, we show that for given k and ε, there is an efficient random-
ized algorithm A with the following property. Given a circuit C that computes fk on at least
ε fraction of inputs, the algorithm A outputs with probability at least 3/4 a list of O(1/ε)
circuits such that at least one of the circuits on the list computes f on more than 1 − δ frac-
tion of inputs, for δ = O((log 1/ε)/k); moreover, each output circuit is an AC0 circuit (of size
poly(n, k, log 1/δ, 1/ε)), with oracle access to the circuit C. Using the Goldreich-Levin decoding
algorithm [GL89], we also get a fully uniform version of Yao’s XOR Lemma [Yao82] with optimal
parameters, up to constant factors. Our results simplify and improve those in [IJK06].

Our main result may be viewed as an efficient approximate, local, list-decoding algorithm for
direct-product codes (encoding a function by its values on all k-tuples) with optimal parameters.
We generalize it to a family of “derandomized” direct-product codes, which we call intersection
codes, where the encoding provides values of the function only on a subfamily of k-tuples. The
quality of the decoding algorithm is then determined by sampling properties of the sets in this
family and their intersections. As a direct consequence of this generalization we obtain the first
derandomized direct product result in the uniform setting, allowing hardness amplification with
only constant (as opposed to a factor of k) increase in the input length. Finally, this general
setting naturally allows the decoding of concatenated codes, which further yields nearly optimal
derandomized amplification.
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1 Introduction

Applications of complexity theory such as cryptography and derandomization require reliably
hard problems that cannot be solved by any algorithm with a non-trivial advantage over ran-
dom guessing. Direct-product theorems are a primary tool in hardness amplification, allowing
one to convert problems that are somewhat hard into problems that are more reliably hard. In
a direct-product theorem, we start with a function f such that any feasible algorithm has a non-
negligible chance of failing to compute f(x) given a random x. We then show that no feasi-
ble algorithm can, given multiple instances of the problem x1, . . . , xk, compute all of the values
f(xi), with even a small probability of success. (Usually, the xi’s are chosen independently, but
there are also derandomized direct-product theorems where the xi’s are chosen pseudo-randomly.)
Many strong direct product theorems are known for non-uniform models, such as Boolean circuits
[Yao82, Lev87, GNW95, Imp95, IW97, STV01]. Unfortunately, in general, direct-product theorems
fail in completely uniform models such as probabilistic computation.

However, Trevisan [Tre05] pointed out that proofs of direct product theorems correspond to
(approximate) error-correction of sparse codes. Using this view, we think of a function f as being
encoded by Code(f) = fk, its values on all k-tuples. We seek a decoding algorithm which will
generate efficient circuit(s) for f , given access to C ′ which is a highly corrupted codeword, agreeing
with fk only on an ε-fraction of all k-tuples.

The strictly uniform direct-product theorem fails because these codes are not uniquely decod-
able: one can easily imagine such a circuit C ′ which agrees on ε-fraction of each of 1/ε different
functions. Thus list decoding is essential, and one can quantify uniformity in terms of the list
size. In particular, all non-uniform direct-product theorems, yield list size which is exponential in
1/ε. In contrast, uniform direct-product theorems should have the list size which is polynomial in
1/ε. [IJK06] gave the first such proof of the direct-product theorem; however, the proof was quite
complex and fell short of the information-theoretic bounds in many respects.

Here, we give a new uniform direct-product theorem that has the following features:

• Optimality: The parameters achieved by our list decoding algorithm are information theo-
retically optimal (to within constant factors).

• Efficiency: The decoding algorithm is simply a projection, namely implementable in uniform
NC0 with oracle access to the corrupted circuit C ′. The circuits it produces are implementable
in uniform AC0. Thus, our hardness amplification applies to much simpler uniform classes
than P.

• Simplicity: Both the decoding algorithm and the proof of correctness are extremely simple
(even when compared with proofs in the non-uniform setting!).

• Generality: The decoding algorithm algorithm and its proof turns out to work without
change for a general family of codes of which the above direct-product code is just an example.
We define this class of intersection codes, which is simply specified by the family of k-subsets
used to record values of f in Code(f). We explain how the quality of the decoding (and thus
of the amplification) depend on the sampling properties of the family of sets, and of their
pairwise intersections.

• Derandomization: As an immediate bonus of the above setting we get the first deran-
domized direct-product theorems in the uniform setting. A direct application of the above
intersection codes to subspaces yields amplification with input size O(n), instead of the trivial
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bound of O(kn) when using all subsets. In a more sophisticated application, using a concate-
nation of two intersection codes, we get similar savings in randomness, but with hardly any
loss in other parameters.

• Consequences: As observed by [TV02, Tre05], efficient list-decoding has the same conse-
quences as unique decoding in terms of hardness amplification within many natural complexity
classes, e.g., NP,PNP‖,#P,PSPACE and EXP.

1.1 Statement of the Uniform Direct-Product theorem

Let us describe now the hardness amplification results in computational complexity terms. For this
we need the following terminology. We say that a circuit C ε-computes a function F if C(z) = F (z)
for at least ε fraction of inputs z. A function F is (1− ε)-hard for size t(n) if no circuit of size t(n)
ε-computes F .

Following [TV02], we define the “semi-uniform” class BPP// log as the class of probabilistic
algorithms with advice of length O(log n) that depends on the random coin tosses of the algorithm,
but not on the input. We can view such an algorithm as producing a polynomial-sized list of
polynomial-size circuits: the algorithm then is judged by how well the best circuit on its list does.
A probabilistic polynomial-time algorithm with advice, A(x, r, z), ε-computes F if, for every length
n, there is a function z(r) taking a polynomial-size string r to a logarithmic length output, so that
Prx,r[A(x, r, z(r)) = F (x)] ≥ ε. A function F is (1 − ε)-hard for BPP// log if no such algorithm
and function z(r) exist. For superpolynomial time complexity t = t(n), we can generalize in the
obvious way to the class BPTIME(poly(t))//O(log t).

Given a Boolean function f : {0, 1}n → {0, 1}, the k-wise direct-product function fk is mapping
every k-set (x1, . . . , xk) of n-bit strings (ordered according to some fixed ordering of the universe
{0, 1}n) to the k-tuple (f(x1), . . . , f(xk)).1

One of our main results is the following.

Theorem 1.1 (Uniform Direct-Product Theorem). There is an absolute constant c > 0 so that for
any functions δ = δ(n), k = k(n), t = t(n), and ε = ε(n) ≥ e−δk/c and ε > t−1/c, if f is δ-hard for
BPTIME(t)// log t , then fk is (1− ε)-hard for BPTIME(t1/c)//(1/c) log t.

The proof is via the following reconstruction algorithm, which is information-theoretically op-
timal up to constant factors.

Theorem 1.2 (Approximate list-decoding algorithm). There is a constant c and a probabilistic
algorithm A with the following property. Let k ∈ N, and 0 < ε, δ < 1 be such that ε > e−δk/c. Let C ′

be a circuit that ε-computes the Direct-Product fk, for some Boolean function f : {0, 1}n → {0, 1}.
Given such a circuit C ′, algorithm A outputs with probability Ω(ε) a circuit C that (1−δ)-computes
f . The algorithm A is a uniform randomized NC0 algorithm (with one C ′-oracle gate), and the
produced circuit C is an AC0 circuit of size poly(n, k, log 1/δ, 1/ε) (with C ′-oracle gates).

In our proof, the circuit output by algorithm A will have the following structure. Fix s = k/2.
Let A = (a1, . . . , as) be an (ordered) s-subset of {0, 1}n, and let v = (v1, . . . , vs) be an s-bit string.
For intuition, imagine that vi = f(ai) for all 1 6 i 6 s.

We define the following randomized circuit CA,v:

1This is slightly different from the usual definition of k-wise direct product where one allows as inputs to fk all
k-tuples (x1, . . . , xk) rather than k-sets; the case of k-tuples can be easily deduced from the case of k-sets.
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“On input x ∈ {0, 1}n, check if x = ai for some ai ∈ A; if so, then output vi. Otherwise, repeatedly
sample random k-sets B such that A ∪ {x} ⊆ B, discarding any B where C ′ is inconsistent with
our answers v for A (i.e., where C ′(B)|A 6= v). For the first consistent B, output C ′(B)|x. Produce
some default (error) output if no consistent B is found even after 100 · (ln 1/δ)/ε iterations.”

The algorithm CA,v makes sense when vi = f(ai) for all 1 6 i 6 s. This alone would not be
sufficient to ensure that CA,v is a good circuit for f . We will need a stronger property of the set A
(that for many sets B consistent with A, the values C ′(B) are mostly correct), which will still be
ensured with reasonable probability for a random choice of (A, v) as described above.

Here is the complete description of our algorithm A:

“Pick at random a k-set B0, an s-subset A ⊆ B0. Set v = C ′(B0)|A. Output the circuit CA,v.”

1.2 Generalized direct-product encoding: intersection codes

Our proof technique will allow us to analyze a certain generalized direct-product code, which we
define below. Let f : U → R, where U is some universe. Usually, U will be {0, 1}n, or Fmq , an
m-dimensional vector space over a finite field Fq. The range R is an arbitrary set (R = {0, 1} for
Boolean f). We assume some fixed ordering of the elements of U , and identify a size-s subset of U
with the s-tuple of ordered elements.

For a parameter k ∈ N, we specify a k-wise direct-product encoding of f by two families of
subsets of U . Let T be a family of k-subsets of U , and let S be a family of s-subsets of U (with
s < k); the family S is only used in the analysis. The intersection code Code = Code(T ,S) is
defined by Code(f) : T → Rk, giving for every k-set B ∈ T the values f(b) for all b ∈ B.

Our two running examples of these families are:

• Independent: T are all k-subsets of U , and S are all s-subsets of U . Here we fix s = k/2.

• Subspaces: We identify U with the vector space Fmq . For positive integers d > 8 and r = d/2,
we take T to be all d-dimensional affine subspaces of U , and S to be all r-dimensional affine
subspaces of U . Here we have k = qd and s = qr =

√
k.

The Independent example is the k-wise direct-product function considered earlier. The Sub-
spaces example will give us a derandomized version of the direct-product theorem, where inputs
of fk will be all points in a given affine d-dimensional subspace of U . Note that to specify k = qd

such points, we only need to specify the d + 1 vectors of U that define the d-dimensional affine
subspace (d basis vectors plus a shift vector). In our case, d and r will be constants, and so these
affine subspaces are specified with only O(n) bits.

The code Code is δ-approximately (ε, `)-list decodable if for every function C ′ : T → Rk there is
a collection of at most ` functions g1, g2, · · · , g` such that, for every function f : U → R, if Code(f)
ε-agrees with C ′, then f will (1− δ)-agree with some gi, for 1 6 i 6 `. The code Code is efficiently
locally decodable if there is an efficient algorithm that uses oracle access to C ′ to generate circuits
for the functions gi’s (which also use that oracle).

Our decoding algorithm for Code(S, T ) is exactly the same as the algorithm A described in the
previous section, with sets A coming from S, and sets B from T . We show that this algorithm A
produces a good circuit for f , provided that families S, T satisfy certain sampling conditions. In
particular, we prove the following.

Theorem 1.3. Both Independent and Subspaces codes are efficiently, locally, δ-approximately
(ε, O(1/ε))-list decodable, where
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• Independent: δ = O((log 1/ε)/k),

• Subspaces: δ = O(1/(ε2k1/4)).

Moreover, the decoder for the Independent code is a uniform randomized NC0 algorithm that outputs
AC0 circuits.2

We use very little about the set systems S and T . The following is an informal summary of the
properties we need.

Computational assumptions: It is possible to efficiently sample from the following distributions:
B uniformly chosen in T ; Given B ∈ T , uniformly pick A ∈ S with A ⊂ B; Given A ∈ S and
x ∈ U \A, uniformly pick B ∈ T with A ∪ {x} ⊂ B.

Symmetry: For a fixed B ∈ T , for a random A ∈ S with A ⊂ B, the elements of A are individually
uniform over B. For a fixed A ∈ S, and random B ∈ T with A ⊂ B, the elements in B \ A
are individually uniform over U \A.

Sampling: For a fixed B ∈ T and any sufficiently large subset W ⊂ B, with high probability over
a random A ∈ S, A ⊂ B, |A ∩W |/|A| is approximately the same as |W |/|B|. For a fixed
A ∈ S, and any sufficiently large subset H ⊂ U \ A, with high probability over a random
B ∈ T , A ⊂ B, we have that |(B \A)∩H|/|B \A| is approximately the same as |H|/|U \A|.

1.3 Concatenated codes and hardness condensing

We also prove a stronger version of Theorem 1.3 for the case where we allow an oracle circuit C ′ for
the direct-product fk to be only approximately correct on at least ε fraction of inputs to fk. More
precisely, we allow a circuit C ′ such that, for at least ε fraction of T ∈ T , C ′(T ) and fk(T ) agree on
at least (1 − δ′) fraction of elements of T . Note that the usual version of direct-product decoding
assumes δ′ = 0. Given such a circuit C ′, we show how to obtain a circuit C which (1− δ)-computes
f , for δ = O(δ′).

This relaxed notion of approximate list decoding can be formalized as follows. The code Code
is (δ, δ′)-approximately (ε, `)-list decodable if for every function C ′ : T → Rk there is a collection
of at most ` functions g1, g2, · · · , g` such that, for every function f : U → R, if the k-tuples fk(T )
and C ′(T ) (1 − δ′)-agree on at least ε fraction of sets T ∈ T , then f will (1 − δ)-agree with some
gi, for 1 6 i 6 `. Efficient local decodability means, as before, that a collection of circuits for such
gi’s can be efficiently generated, given oracle access to a circuit C ′.

We prove the following “approximate” version of Theorem 1.3.

Theorem 1.4. Both Independent and Subspaces codes are efficiently, locally, (δ,Ω(δ))-approximately
(ε, O(1/ε))-list decodable, where

• Independent: δ = O((log 1/ε)/k),

• Subspaces: δ = O(1/(ε2k1/4)).

While interesting in its own right, Theorem 1.4 will also allow us to obtain a strong derandomized
version of uniform direct product theorem for a Boolean function f : {0, 1}n → {0, 1}. The k-wise
direct-product encoding based on affine subspaces already yields a harder function on inputs of size

2This yields a much simpler construction of non-binary codes, locally list-decodable in uniform randomized AC0,
than the one given by [GGH+07].
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O(n). However, Theorem 1.3 says that to obtain hardness ε from constant hardness δ, one needs
to take k = poly(1/ε), which is too big when ε is exponentially small in n. The best one can hope
for, by analogy with the non-uniform derandomized hardness amplification [IW97, STV01], is a
derandomized direct-product encoding h of f such that h has hardness ε = e−Ω(n), while the input
size of h is O(n) and the output size k = O(log 1/ε). We will be able to meet this goal partially:
we define a function h of hardness ε = e−Ω(

√
n) with input size O(n) and k = O(log 1/ε).

The function h is a concatenation of two encodings: first we encode a given Boolean function
f : {0, 1}n → {0, 1} with the Subspaces K-wise direct-product code, obtaining a function g :
T → {0, 1}K , where K = O(1/(εδ)8) and T is the collection of all d-dimensional affine subspaces
of Fmq ; here we identify {0, 1}n with Fmq . Then we encode each output g(B), for B ∈ T , with
the Independent k-wise direct-product code, for the universe {0, 1}K and k = O((log 1/ε)/δ).
Theorem 1.4 is needed to handle possible errors created in the decoding of the inner code.

Theorem 1.5 (Uniform Derandomized Direct-Product Theorem). There is an absolute constant
c > 0 so that for any constant 0 < δ < 1, and any functions t = t(n), k = k(n), ε = ε(n) ≥
max{e−δk/c, e−Ω(

√
n), t−1/c}, and K = K(n) = O(1/(εδ)8), if f : {0, 1}n → {0, 1} is δ-hard for

BPTIME(t)// log t , then the function h defined from f as described above is (1 − ε)-hard for
BPTIME(t1/c)//(1/c) log t. The input size of h is O(n).

We give an interpretation of Theorem 1.5 in terms of “hardness condensing” in the spirit
of [BOS06]. We obtain some form of “hardness condensing” with respect to BPTIME(t)// log t. For
an affine subspace B ∈ T , think of g(B) = f |B as the truth table of the Boolean function mapping
b ∈ B to f(b). Since B is an affine d-dimensional subspace, each element of B can be described by
a d-tuple of field elements (α1, . . . , αd) ∈ Fdq , and so each f |B : Fdq → {0, 1} is a Boolean function
on d log q-size inputs. Also, each B ∈ T can be described with (d + 1)m log q bits, and so each
function in the function family {f |B}B∈T has a short description.

Consider the problem: Given (a description of) B ∈ T , construct a circuit that computes f |B
well on average. We show the following.

Theorem 1.6 (Hardness condensing). For an absolute constant c > 0, if a function f is δ-hard
for BPTIME(t)// log t, then every probabilistic t1/c-time algorithm C has probability at most ε =
max{q−d/16, t−1/c} (over random B ∈ T and the internal randomness of C) of producing a circuit
that (1− Ω(δ))-computes f |B.

Intuitively, for almost every B, the function f |B has almost the same hardness as f , but is
defined on inputs of smaller size. Thus the reduction from f to fB can be thought of as “hardness
condensing”.

Finally, we also consider a truncated version of the Hadamard code, and argue that it is ap-
proximately, efficiently, locally, list-decodable, with information-theoretically optimal parameters,
up to constant factors. For a Boolean function f : {0, 1}n → {0, 1} and a parameter k ∈ N,
the k-XOR encoding of f is defined as the function f⊕k mapping each k-subset of n-bit strings
(x1, . . . , xk) to the value ⊕ki=1f(xi). This binary encoding of f is essentially the encoding used in
Yao’s XOR Lemma [Yao82], with the only difference that we consider k-sets rather than k-tuples
of n-bit strings.

We have the following.

Theorem 1.7. The k-XOR code is efficiently, locally, δ-approximately (1/2 + ε, O(1/ε2))-list de-
codable, for δ = O((log 1/ε)/k).
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1.4 Relation to previous work

1.4.1 Non-uniform Direct Product Theorem

The classical Direct-Product Theorem (and closely related Yao’s XOR Lemma [Yao82]) for circuits
has many proofs [Lev87, Imp95, GNW95, IW97]. The basic idea behind all these proofs is the
following: If a given circuit C ′ ε-computes fk(x1, . . . , xk), for some δ-hard function f : {0, 1}n →
{0, 1}, with ε > (1 − δ)k, then it must be the case that the correctness of the answers of C ′ at
some position i is correlated with the correctness of its answers in the remaining positions (since
otherwise it would be the same as trying to compute f(x1), . . . , f(xk) independently sequentially,
which obviously cannot be done with probability greater than (1− δ)k).

This correlation of C ′’s answers can be exploited in various ways to get a circuit (1 − δ)-
computing f from the circuit C ′ (yielding different proofs of the direct-product theorem in [Lev87,
Imp95, GNW95, IW97]). Usually, one takes a random k-tuple (x1, . . . , xk) containing a given input
x in some position i, runs C ′ on that tuple, and checks how well C ′ did in positions other than
i. To perform such a check, one obviously needs to know the true values of f at the inputs xj for
j 6= i; these are provided in the form of non-uniform advice in the circuit model. Then one decides
on the guess for the value f(x) based on the quality of C ′’s answers for xj , j 6= i. For example,
in [IW97], one flips a random coin with probability that is some function of the number of incorrect
answers given by C ′ outside position i.

1.4.2 Uniform Direct Product Theorem, and decoding vs. testing

To get a uniform algorithm for f , we need to remove (or at least minimize the amount of) the
non-uniform advice f(xj), j 6= i. The first result of that type was obtained in [IJK06]. Their idea
was to use the circuit C ′ itself in order to get enough labeled examples (x, f(x)), and then run the
direct-product decoding algorithm of [IW97] on C ′ and the obtained examples.

To get sufficiently many examples, [IJK06] use a method they called direct product amplifica-
tion, which is to take an algorithm solving the k-wise direct product to one that (approximately)
solves the k′-wise direct product problem with k′ � k. This amplification is essentially equivalent
to approximate list decoding when there are only k′ possible instances in the domain of the func-
tion f . Their list-decoding algorithm used one random “advice set” (where the algorithm produced
correct answers) as a consistency check for another set that contains the instance to be solved.
To be a meaningful consistency check, the advice set and instance-containing set need to have a
large intersection. For independent random sets, this implies by the birthday-paradox bounds, that
k′ � k2. Because of this constraint, [IJK06] had to use direct-product amplification iteratively, to
cover the whole domain size of 2n instances. These iterations complicated the construction and
made the parameters far from optimal.

We instead pick the instance-containing set conditioned on having a large intersection with the
advice set. This can be done at one shot, on any domain size, so no iterations are needed.

This idea is similar in spirit to the direct-product testing methods used by [GS00, DR06], and
we were inspired by these papers. However, while they showed that this is sufficient in the unique
decoding regime (where the algorithm is computing the direct product with high probability), we
were surprised that this one idea sufficed in the list-decoding case as well. Our derandomized
subspace construction was also inspired by [RS97, AS03], who list-decode functions correlated to
multi-variable polynomials by using consistency checks on small dimensional subspaces.

While our results were inspired by similar results on direct-product testing, we have not found
any formal connection between the testing and decoding problems. In particular, passing the
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consistency test with non-negligible probability is not sufficient to test non-negligible correlation
with a direct-product function. It would be very interesting to find such a connection.

Remainder of the paper. Section 2 contains some background facts, and basic sampling prop-
erties of graphs used in decoding of intersection codes. The analysis of our algorithm A is given
in Section 3. where we state the conditions on the pair (S, T ) that are sufficient for A to produce
a good circuit CA,v. Section 4 contains the proofs of Theorems 1.4, 1.5, and 1.6. Theorem 1.7 is
proved in Section 5. Section 6 contains concluding remarks and open questions.

2 Preliminaries

2.1 Concentration bounds

The standard form of the Hoeffding bound [Hoe63] says that, for any finite subset F of measure α
in some universe U , a random subset R of size t is very likely to contain close to αt points from F .
The following is a natural generalization for the case where F is any [0, 1]-valued function over U .

Lemma 2.1 (Hoeffding [Hoe63]). Let F : U → [0, 1] be any function over a finite universe U with
the expectation Expx∈U [F (x)] = α, for any 0 6 α 6 1. Let R ⊆ U be a random subset of size
t. Define a random variable X =

∑
x∈R F (x). Then the expectation of X is µ = αt, and for any

0 < γ 6 1, Pr [|X − µ| > γµ] 6 2 · e−γ2µ/3.

Lemma 2.2. Let X1, . . . , Xt be random variables taking values in the interval [0, 1], with expec-
tations µi, 1 6 i 6 t. Let X =

∑t
i=1Xi, and let µ =

∑t
i=1 µi be the expectation of X. For any

0 < γ 6 1, we have the following:

• [Chernoff-Hoeffding] If X1, . . . , Xt are independent, then Pr[|X − µ| > γµ] 6 2 · e−γ2µ/3.

• [Chebyshev] If X1, . . . , Xt are pairwise independent, then Pr[|X − µ| > γµ] 6 1/(γ2µ).

2.2 Pairwise independence of subspaces

Let U = Fmq be an m-dimensional linear space over a finite field Fq. An affine d-dimensional
subspace A of U is specified by a collection of d linearly independent vectors a1, . . . , ad ∈ U and an
arbitrary vector b ∈ U so that A = {b +

∑d
i=1 αiai | αi ∈ Fq, 1 6 i 6 d}. Thus the elements of A

are in one-to-one correspondence with d-tuples of scalars (α1, . . . , αd).
We will use the following easy fact.

Claim 2.3. A sequence of all qd elements of a randomly chosen d-dimensional affine subspace of
U are pairwise independent and uniform over U .

A linear d-dimensional subspace A of U is specified by a collection of d linearly independent
vectors a1, . . . , ad ∈ U so that A = {

∑d
i=1 αiai | αi ∈ Fq, 1 6 i 6 d}. It is no longer the

case that all elements of a random linear subspace A are pairwise independent. For example, if
vectors ᾱ = (α1, . . . , αd) and β̄ = (β1, . . . , βd) are scalar multiples of each other (i.e., are linearly
dependent), then in every random subspace A the two corresponding elements of A will also be
scalar multiples of each other.

However, if we restrict our attention to any sequence ᾱ1, . . . , ᾱt of d-tuples ᾱi ∈ Fdq such that
every two of ᾱi’s are linearly independent, we get that the corresponding elements in a random
d-dimensional linear subspace A are pairwise independent and uniform over U . It is easy to see
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that one can choose t = (qd − 1)/(q − 1) nonzero vectors ᾱ1, . . . , ᾱt ∈ Fdq such that every two of
them are linearly independent. Thus we get the following.

Claim 2.4. For t = (qd − 1)/(q − 1), let ᾱ1, . . . , ᾱt ∈ Fdq be pairwise linearly independent vectors.
Let A be a random d-dimensional linear subspace of U . Then the t vectors of A that correspond to
ᾱ1, . . . , ᾱt are pairwise independent and uniform over U .

2.3 Graphs

We will consider bipartite graphs G = G(L,R) defined on a bipartition L∪R of vertices; we think
of L as left vertices, and R as right vertices of the graph G. For a vertex v of G, we denote by
NG(v) the set of its neighbors in G; if the graph G is clear from the context, we will drop the
subscript and simply write N(v). We say that G is bi-regular if the degrees of vertices in L are the
same, and the degrees of vertices in R are the same.

2.3.1 Auxiliary graphs for (S, T )-codes

The following three graphs will be useful for the analysis of our intersection codes. Let U be any
finite set. Let T be a family of k-subsets of U , and let S be a family of s-subsets of U , for some
s < k.

Definition 2.5 (inclusion graph). The inclusion graph I(S, T ) is the bipartite graph that has an
edge (A,B) for every A ∈ S and B ∈ T such that A ⊆ B.

The inclusion graph I(S, T ) is called transitive if, for every B,B′ ∈ T , there is a permutation
π of U which moves B to B′ and induces an isomorphism of I, and similarly, for every A,A′ ∈ S,
there is a permutation σ of U which moves A to A′ and induces an isomorphism of I.

Definition 2.6 (S-graph). For every B ∈ T , the S-graph H(B,NI(B)) is the bipartite graph that
has an edge (x,A) for every x ∈ B and A ∈ NI(B) such that x ∈ A.

Definition 2.7 (T -graph). For every A ∈ S, the T -graph G(U \ A,NI(A)) is the bipartite graph
that has an edge (x,B) for every x ∈ U \A and B ∈ NI(A) such that x ∈ B \A.

Note that if I(S, T ) is transitive, then the structure of the S-graph H(B,N(B)) is independent
of the choice of B, and similarly, the structure of the T -graph G(U \ A,N(A)) is independent of
the choice of A. This will simplify the analysis of the properties of these graphs. One can easily
check that the inclusion graph I for both of our running examples of families (S, T ), Independent
and Subspaces, is transitive.

2.3.2 Samplers

Let G = G(L,R) be any bi-regular bipartite graph. For a function λ : [0, 1]→ [0, 1], we say that G is
a (β, λ(β))-sampler if, for every function F : L→ [0, 1] with the average value µ def= Expx∈L[F (x)],
there are at most λ(µ) · |R| vertices r ∈ R where∣∣∣Expy∈N(r)[F (y)]− µ

∣∣∣ > µ/2.

Note that the case of a Boolean function F : L→ {0, 1} with the average µ corresponds to the
property that all but λ(µ) fraction of nodes r ∈ R have close to the expected number of neighbors
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in the set {x | F (x) = 1} of measure µ. The sampler defined above is a natural generalization
to the case of [0, 1]-valued F ; it is also a special case of an oblivious approximator [BGG93] or
approximating disperser [Zuc97].

For the analysis of intersection codes Code(S, T ) based on families S and T , we will need that
the corresponding S-graphs and T -graphs be samplers. We show that this is true for both of our
running examples. Since both our inclusion graphs (for Independent and Subspaces cases) are
transitive, the structure of the S-graphs and T -graphs is independent of the choices of B ∈ T and
A ∈ S, respectively.

Lemma 2.8. For both Independent and Subspaces families (S, T ), the S-graph H is (α, ν(α))-
sampler, where

• Independent: ν(α) = 2 · e−αk/24,

• Subspaces: ν(α) = 4/(α
√
k).

Proof. For Independent, we use the Hoeffding bound of Lemma 2.1. For Subspaces, we use the
fact that points in a random affine subspace of a given affine space are uniformly distributed and
pairwise independent (cf. Claim 2.3), and then apply Chebyshev’s bound of Lemma 2.2.

Lemma 2.9. For both Independent and Subspaces families (S, T ), the T -graph G is (β, λ(β))-
sampler, where

• Independent: λ(β) = 2 · e−βk/24,

• Subspaces: λ(β) = 4q2/(β
√
k).

Proof. For Independent, we use the Hoeffding bound of Lemma 2.1.
For subspaces, we use pairwise independence and the Chebyshev bound. Fix an affine subspace

A of dimension r. Suppose A is V + v, for some r-dimensional linear subspace V of U = Fmq , and a
vector v ∈ U . To choose a random d = 2r-dimensional affine subspace B containing A, we choose
a random r-dimensional subspace W of U such that W is orthogonal to V , and define our affine
2r-dimensional subspace B = A+W .

Note that all of U \A can be represented as the disjoint union of cosets A+ u, over all distinct
nonzero vectors u in the orthogonal subspace V ⊥. A function F : (U \ A) → [0, 1] with the
expectation β yields [0, 1]-valued functions Fu where Fu is the restriction of F to the coset A+ u,
for every nonzero vector u ∈ V ⊥. Let βu denote the average value of Fu over the points in A+ u.
Clearly, the average of βu’s is exactly β.

If we pick t nonzero vectors u1, . . . , ut ∈ V ⊥ independently at random, we would obtain by the
Chernoff-Hoeffding bound that the average (1/t)

∑t
i=1 βui is very likely to be close to β. Similarly,

if these t vectors were chosen pairwise independently, we could argue the concentration around
the expectation β by Chebyshev’s bound. The intuition is that vectors in a random r-dimensional
subspace W are essentially pairwise independent, and hence we can argue that our random affine
subspace B is likely to be a good sample for estimating the average of F .

More precisely, let w1, . . . , wt ∈ Frq be any fixed collection of t = (qr − 1)/(q − 1) nonzero
vectors such that every two of them are linearly independent. By Claim 2.4, in a random W the t
corresponding vectors of W are pairwise independent and uniform over V ⊥. Let us denote by ωi,
1 6 i 6 t, the element of W corresponding to wi (i.e., ωi is a linear combination of the basis vectors
of W with scalar coefficients being the r field elements of wi).

For each field element i ∈ Fq, define Bi = ∪tj=1(A + i · ωj). Note that B = ∪i∈FqBi. Fix
any nonzero i ∈ Fq. For a random W , the vectors i · ω1, . . . , i · ωt are pairwise independent.
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By Chebyshev’s bound of Lemma 2.2, the probability that (1/|Bi|) ·
∑

x∈Bi
F (x) is less than β/2

or more than 3β/2 is at most 4/(βt). By the union bound, the probability that at least one
of Bi’s deviates from the expectation is at most 4(q − 1)/(βt). Thus, with probability at least
1 − 4/(βqr−2) = 1 − 4q2/(βs), a random affine subspace B containing A is a good sample for
estimating the expectation of F . Since s =

√
k for Subspaces, we get the desired claim.

2.3.3 Properties of samplers and their subgraphs

Here we prove two properties of samplers, which will be useful for the analysis of our decoding
algorithm. These properties basically show that samplers are “robust” to deletions of vertices.

The first property says that for any two large vertex subsets W and F of a sampler, the fraction
of edges between W and F is close to the product of the densities of W and F .

Lemma 2.10. Suppose G = G(L,R) is a (β, λ)-sampler. Let W ⊆ R be any set of measure ρ, and
let F ⊆ L be any set of measure β. Then we have

Prx∈L,y∈N(x)[x ∈ F & y ∈W ] > β(ρ− λ)/2.

Proof. We need to estimate the probability of picking an edge between F and W in a random
experiment where we first choose a random x ∈ L and then its random neighbor y. Since the graph
G is assumed to be bi-regular, this probability remains the same in the experiment where we first
pick a random y ∈ R and its random neighbor x ∈ N(y). The latter is easy to estimate using the
sampling property of the graph G, as we show next.

Let F ′ ⊆ F be of density exactly β. Let W ′ ⊆ W be the subset of vertices that have at least
β/2 fraction of their neighbors in F . Since G is a (β, λ)-sampler and W is of measure ρ, we get
that W ′ is of measure at least ρ−λ. Then conditioned on picking a vertex y ∈W ′, the probability
that its random neighbor is in F is at least β/2. The lemma follows.

The second property deals with edge-colored samplers. Suppose that all edges in a bi-regular
graph G = G(L,R) are colored with two colors, red and green, so that the number of red edges is
at most t, for some t > 0. Since G is bi-regular, picking a random vertex x ∈ L and its random
incident edge is the same as picking a random y ∈ R and its random incident edge, and clearly, the
probability of getting a red edge in both cases is t/|E|, where E is the edge set of G. Now suppose
that we are given a subgraph G′ obtained from G by removing some vertices from R (and all the
edges incident upon the removed vertices). Let W ⊆ R be a subset of the remaining vertices in G′,
and suppose that G′ has at most t red edges. Since G′ is still right-regular (i.e., all vertices w ∈W
have the same degree), sampling a random incident edge of a random vertex w ∈ W still yields
a red edge with probability at most t/|E′|, where E′ is the edge set of G′. For general graphs G,
we can’t say that the probability of getting a red edge remains the same when we pick a random
incident edge of a random vertex x ∈ L (since G′ may not be bi-regular). However, we prove that
this is approximately true when G is a sampler.

Lemma 2.11. Suppose G = G(L,R) is a (β, λ)-sampler, with the right degree D. Let W ⊆ R
be any subset of density ρ, and let G′ = G(L,W ) be the induced subgraph of G (obtained after
removing all vertices in R \W ), with the edge set E′. Let Col : E′ → {red, green} be any coloring
of the edges of G′ such that at most αD|W | edges are colored red, for some 0 6 α 6 1. Then

Prx∈L,y∈NG′ (x)[Col({x, y}) = red] 6 max{2α/(1− λ/ρ), β}.
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Proof. We need to estimate the probability of picking a red edge in G′ when we first pick a random
x ∈ L and then pick its random neighbor y in G′. For every x ∈ L, let dx be the degree of x in G′,
and let ξ(x) be the fraction of red edges incident to x in G′. The probability we want to estimate
is exactly µ = Expx∈L[ξ(x)]. If µ 6 β, then we are done. So for the rest of the proof, we will
suppose that µ > β.

Let W ′ ⊆ W be the subset of those vertices w where Expx∈N(w)[ξ(x)] > µ/2. (Here we use
N(w) to denote the neighborhood NG′(w) of w in G′, which is the same as NG(w) by the definition
of G′.) Since G is a (β, λ)-sampler and W has measure ρ in G, we get that W ′ has measure at least
ρ− λ in G, and hence measure 1− λ/ρ in G′. Hence, we have∑

y∈W
Expx∈N(y)[ξ(x)] >

∑
y∈W ′

Expx∈N(y)[ξ(x)] > |W |(1− λ/ρ)µ/2. (1)

On the other hand,
∑

y∈W

(
D ·Expx∈N(y)[ξ(x)]

)
is simply the summation over all edges (x, y)

in G′ where each edge (x, y) with x ∈ L contributes ξ(x) to the sum. Since the degree of each x is
dx, each x ∈ L contributes exactly dxξ(x), which is the number of incident red edges at x. Hence,
the total sum is exactly the number of red edges in G′, which is at most αD|W | by assumption. It
follows that ∑

y∈W
Expx∈N(y)[ξ(x)] = (1/D)

∑
x∈L

dxξ(x) 6 |W |α. (2)

Finally, comparing the bounds in Eqs. (1) and (2), we conclude that µ 6 2α/(1− λ/ρ).

3 Decoding intersection codes

Let (S, T ) be a pair of families of subsets of U , and let Code(S, T ) be the intersection code defined
for these families. Fix a function f : U → R. Let C ′ be a circuit that ε-computes Code(f). We will
show how to compute from C ′ a deterministic circuit C that (1 − δ)-computes f , for δ > 0 being
the parameter that depends on ε and (S, T ).

Our decoding algorithm A for Code(S, T ) can be defined in terms of the inclusion and T -graphs.
Fix any edge (A,B) of the inclusion graph I(S, T ). Let v = C ′(B)|A be the values that the circuit
C ′(B) gives for the elements in A.

Let G = G(U \ A,N(A)) be the T -graph for A. Let Cons ⊆ N(A) be the subset of those
B′ ∈ N(A) for which C ′(B′)|A = v. We will say that such sets B′ are consistent with B.

Define the circuit CA,v:
“On input x ∈ U , if x ∈ A, then output the corresponding value vx. Otherwise, repeatedly sample
random neighbors B′ of x in the T -graph G, discarding any B′ 6∈ Cons, until the first B′ ∈ Cons
is obtained. For this B′ ∈ Cons, output the value C ′(B′)|x. Produce the default (error) output if
no B′ ∈ Cons is found even after O((ln 1/δ)/ε) steps.”

Define the decoding algorithm A:
“On an input circuit C ′, pick a random edge (A,B) of the inclusion graph I(S, T ), set v = C ′(B)|A,
and output the circuit CA,v.”

Remark 3.1. For the described algorithm CA,v to be efficient, we need an efficient procedure for
sampling random neighbors of a given left vertex in the T -graph G(U \A,N(A)). For both of our
running examples, one can easily argue that such efficient sampling is possible.
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We now state the main technical result of our paper: the conditions on (S, T ) under which the
decoding algorithm A produces a good circuit CA,v. For the rest of this section, we set ε′ = ε/2.

Theorem 3.2. Suppose that the inclusion graph I(S, T ) is transitive (and hence also bi-regular),
the S-graph H is a (µ, δε′2/(128µ))-sampler for every µ > δ/64, and the T -graph G is a (δ/16, ε′/2)-
sampler. Then the algorithm A produces with probability ε′/2 a randomized circuit CA,v satisfying

Pr[CA,v computes f ] > 1− δ/4,

where the probability is over the inputs and the internal randomness of CA,v.

Remark 3.3. Note that if a randomized circuit CA,v satisfies the conclusion of Theorem 3.2, then
by randomly fixing its internal randomness we get (with probability at least 3/4) a deterministic
circuit C that (1− δ)-computes f .

We postpone the proof of Theorem 3.2, and use it to prove Theorem 1.3.

Proof of Theorem 1.3. For Independent, we get by Lemmas 2.8 and 2.9 that both H and G are
(µ, λ(µ))-samplers for λ(µ) 6 e−Ω(µk). For µ > δ/64, write µ = cδ where c = µ/δ > 1/64. For the
graph H, we get that µ ·λ(µ) 6 cδe−Ω(cδk). For δ = d log(1/ε)/k for large enough constant d, we get
e−Ω(cd log 1/ε) = εΩ(cd) 6 ε′2εcd

′
, for some large constant d′ dependent on d. Assume that ε < 0.9 (if

a circuit C ′ ε-computes fk for ε > 0.9, it obviously 0.9-computes fk).3 Choosing sufficiently large
constant d, we can ensure that εcd

′
< 2−c/128, and so cδe−Ω(cδk) 6 cδε′22−c/128 6 δε′2/128. Thus

H satisfies the assumptions of Theorem 3.2. Setting δ = d(log 1/ε)/k for a large enough d ∈ N will
also make the T -graph G satisfy the assumptions of of Theorem 3.2.

For Subspaces, Lemma 2.8 gives us that H is (µ, λ(µ))-sampler for λ(µ) = 4/(µ
√
k). Hence,

µ · λ(µ) 6 4/
√
k. The latter is at most δε′2/128 for δ > 512/ε′2

√
k. Lemma 2.9 says that the graph

G is (δ/16, ε′/2)-sampler for δ > 128q2/(ε′
√
k). Thus, to satisfy the conditions of Theorem 3.2, we

can set δ 6 512q2/(ε′2
√
k)), which is O(1/(ε′2k1/4)) for q 6 k1/8.

By Remark 3.3, we get in both cases a required deterministic circuit (1− δ)-computing f .

3.1 Why CA,v works

Here we describe the conditions on our auxiliary graphs (inclusion, S- and T -graphs) and an edge
(A,B) of the inclusion graph, which are sufficient for the circuit CA,v described above to satisfy the
conclusion of Theorem 3.2. Intuitively, we are using (A, v) as a consistency check to see whether
to believe C ′(B′). To be useful as a consistency check, we should have:

• v = f(A), so if C ′(B′) is correct, it will always be consistent with v on A.

• There are many B′ for A where C ′(B′) is correct.

• On average over B′ where C ′(B′) is consistent with A, C ′(B′) is correct for most x ∈ B′ \A.

We show that these conditions suffice, and that many such sets A exist.
We need the following definitions. For a set B ∈ T , let Err(B) denote the subset of those x’s

in B where C ′(B) disagrees with fk(B), and let err(B) = |Err(B)|/|B|. A set B ∈ T is called

3In fact, if a circuit C′ ε-computes fk for ε > 0.9, then for k > 1/δ, there is a single algorithm that (1−δ)-computes
f : “Given input x, sample O(log 1/δ) random k-sets B containing x, and output the majority answer of C′(B)|x.”
For the analysis, it suffices to show that for each but δ/2 fraction of inputs x, there are at least 2/3 sets B containing
x such that C′(B) = fk(B), which is easy to argue.
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correct if err(B) = 0. A set B ∈ T is called α-incorrect if err(B) > α. For the inclusion graph
I(S, T ), we call an edge (A,B) correct if B is correct. As before, we set ε′ = ε/2. Call an edge
(A,B) good if it is correct and at least ε′-fraction of all edges (A,B′) incident to A are correct. An
edge (A,B) of the inclusion graph is called α-excellent if it is good, and moreover,

ExpB′∈Cons[err(B
′)] 6 α,

where the expectation is over uniformly random B′ that are consistent with B.
In words, for an excellent edge (A,B), we have at least ε′ of correct edges (A,B′) (and so these

B′ ∈ Cons), and at the same time, the average fraction of errors in the neighbors of A that are
consistent with B is less than α. So, conditioned on sampling a random B′ ∈ Cons, we expect to
get a B′ such that C ′(B′)|x = f(x) for most x ∈ B′.

Our circuit CA,v is defined so that it only considers random B′ ∈ Cons. This circuit will agree
with f well on average, assuming that A, v came from some excellent edge (A,B), and assuming
that the T -graph is a sampler.

Lemma 3.4. Let an edge (A,B) of the inclusion graph I be α-excellent, and let the T -graph
G(U \ A,N(A)) be a (β, λ)-sampler. Suppose that λ 6 ε′/2, α 6 β/2, and β 6 δ/16. Then
Pr[CA,v computes f ] > 1− δ/4, where the probability is over uniform x’s and the internal random-
ness of CA,v.

To prove Lemma 3.4, we consider two cases. First we consider the set F ⊆ U \ A of x’s that
have too few edges (x,B′) with B′ ∈ Cons in the T -graph G(U \ A,N(A)). These are the x’s
for which CA,v is unlikely to produce any answer and hence fails. Secondly, we bound the average
conditional probability of CA,v producing an incorrect answer given that the circuit produces some
answer. Note that for every x ∈ U \ A this conditional probability is the same for all sampling
steps of CA,v. So, we can just analyze this conditional probability for one sampling step.

First, we bound the size of F .

Lemma 3.5. Suppose an edge (A,B) of I is good, and the T -graph G(U \ A,N(A)) is a (β, λ)-
sampler. Let F be the subset of U \ A with less than µ fraction of their edges into Cons, where
µ = (ε′ − λ)/2. Then the measure of F is at most β.

Proof. Suppose that F has density at least β. Let F ′ ⊆ F be of density exactly β. By the
assumption of the lemma, we have that Prx∈U\A,y∈N(x)[x ∈ F ′ & y ∈ Cons] < βµ = β(ε′ − λ)/2.

On the other hand, we know that Cons has density at least ε′ (by the definition of goodness
of (A,B)). By Lemma 2.10, the fraction of edges in G that go between F and Cons is at least
β(ε′ − λ)/2, which contradicts our earlier upper bound.

For a given x ∈ U \A, let h(x) denote the conditional probability that CA,v produces an incorrect
answer, given that it produces some answer. We will show that the expectation Expx∈U\A[h(x)] is
small.

Lemma 3.6. Suppose (A,B) is α-excellent, and the T -graph G is a (β, λ)-sampler. Further suppose
that α 6 β/2 and λ 6 ε′/2. Then Expx∈U\A[h(x)] 6 β.

Proof. Since CA,v produces an answer on a given input x only if it samples a consistent neighbor
B′ of x in the T -graph G(U \ A,N(A)), we can view h(x) as follows. Let G′ = G(U \ A,Cons)
be the induced subgraph of G where we remove all inconsistent vertices from N(A). For each edge
(x,B′) of G′, we color it red if x ∈ Err(B′), and color it green otherwise. Then h(x) is the fraction
of red edges incident to x in the graph G′.

13



Let ρ be the measure of Cons in G. We know that ρ > ε′. Let D = |B| be the right degree of
the T -graph G (and hence also of G′). The total number of red edges in G′ is at most αD|Cons|,
by the definition of α-excellence.

By Lemma 2.11, we conclude that Prx∈U\A,B′∈NG′ (x)[x ∈ Err(B′)] 6 max{2α/(1 − λ/ρ), β}.
By assumptions, 1− λ/ρ > 1− λ/ε′ > 1/2, and so α/(1− λ/ε′) 6 2α 6 β.

Now we can finish the proof of Lemma 3.4.

Proof of Lemma 3.4. Lemma 3.5 implies for every x ∈ U \ (A∪F ), where F is of measure at most
β, there are at least ε′/4 fraction of edges into Cons. Hence the probability of CA,v not producing
any answer in t = d(log 1/δ)/ε′ sampling steps for such an x is at most δ/8 for some constant d,
e.g., d = 100. For each such x, the probability that CA,v is wrong, given that CA,v produces an
answer, is h(x). Hence, the overall probability (over random x and internal randomness) that CA,v
is wrong is at most β+ δ/8 +Expx∈U\A[h(x)]. By Lemma 3.6, the last summand is at most β, and
so the total is at most 2β + δ/8 6 δ/4 (since β 6 δ/16).

3.2 Choosing an excellent edge (A, B)

Here we show that if the inclusion graph I is bi-regular and if the S-graph H is a sampler, then a
random edge (A,B) of I will be excellent with probability Ω(ε).

Lemma 3.7. Suppose the inclusion graph I is bi-regular, and the S-graph H is an (µ, ν(µ))-
sampler4. Moreover, assume that 0 6 α 6 1 is such that, for every α/2 < µ 6 1, we have
µ · ν(µ) 6 αε′2/4. Then a random edge (A,B) of I is α-excellent with probability at least ε′/2.

First, we argue the following.

Lemma 3.8. A random edge (A,B) of a bi-regular inclusion graph I is good with probability at
least ε′.

Proof. Choosing a random edge (A,B) of the inclusion graph I is equivalent to choosing a random
B ∈ T and then choosing a random A ∈ N(B). By the assumption on C ′, a random B ∈ T is
correct with probability at least ε. Thus we have PrA∈S,B∈N(A)[(A,B) is correct] > ε.

ForA ∈ S, let P (A) be the event (over a random choice ofA ∈ S) that PrB′∈N(A)[B′ is correct] <
ε/2. Observe that, conditioned on A ∈ S such that P (A), we get

PrA∈S,B∈N(A)[(A,B) is correct | P (A)] < ε/2,

and so,
PrA∈S,B∈N(A)[((A,B) is correct) & P (A)] < ε/2.

Finally, the probability that a random edge (A,B) is good is equal to

PrA,B[(A,B) is correct]−PrA,B[((A,B) is correct) & P (A)] > ε− ε/2 = ε/2,

which is equal to ε′, as required.

Now we can prove Lemma 3.7.
4Here we only need that, for any measure µ subset F of left vertices of H, the fraction of right vertices with no

incident edges into F is at most ν.
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Proof of Lemma 3.7. To show that an edge (A,B) is α-excellent, it suffices to argue that∑
B′∈Cons: err(B′)>α/2

err(B′) 6 (α/2)|Cons|,

where Cons is the set of all B′ ∈ N(A) that are consistent with B. This expression can be
equivalently rewritten as

PrB′∈Cons,x∈B′ [err(B′) > α/2 & x ∈ Err(B′)] 6 α/2. (3)

For independent random A ∈ S and B ∈ N(A), let E1(A,B) be the event that (A,B) is good,
but the inequality (3) does not hold (i.e., the probability in (3) is greater than α/2).

For independent random A ∈ S, B ∈ N(A), B′ ∈ N(A), and x ∈ B′, let E(A,B,B′, x) be the
event that

(A,B) is correct & B′ ∈ Cons & err(B′) > α/2 & x ∈ Err(B′).

The probability of E is the average over all B′ ∈ T of the conditional probabilities of E given
B′. Consider any fixed B′ with err(B′) > α/2. For each such B′, the set A is a uniform element
of N(B′) in the inclusion graph. By the sampling property of the S-graph H(B′, N(B′)), the
probability that a random A ∈ N(B′) completely misses the subset Err(B′) is at most ν(err(B′)).
If A has nonempty intersection with Err(B′), then it cannot be the case that both (A,B) is
correct and B′ ∈ Cons. Hence, given B′, the conditional probability of the event E is at most
ν(err(B′)) · err(B′), and so,

Pr[E] 6
1
|T |

∑
B′∈T :err(B′)>α/2

err(B′) · ν(err(B′)),

which is at most αε′2/4 by the assumption of the lemma.
We have

Pr[E | E1] > (α/2)PrB′∈T [B′ ∈ Cons | E1] > αε′/2, (4)

where the first inequality is by the definition of the event E1, and the second inequality by the defini-
tion of goodness of (A,B). On the other hand, Pr[E | E1] = Pr[E & E1]/Pr[E1] 6 Pr[E]/Pr[E1].
Combined with (4), this implies that Pr[E1] 6 Pr[E] · 2/(αε′) 6 ε′/2.

Clearly, PrA∈S,B∈N(A)[(A,B) is α-excellent] is at least

PrA∈S,B∈N(A)[(A,B) is good]−PrA∈S,B∈N(A)[E1].

By Lemma 3.8, the first probability in the difference above is at least ε′, and, by what we showed
earlier, the second probability is at most ε′/2. The lemma follows.

Proof of Theorem 3.2. The proof follows easily from Lemmas 3.4 and 3.7. We simply set β = δ/16,
λ = ε′/2, α = β/2 = δ/32, and ν(µ) = αε′2/(4µ) = δε′2/(128µ).

4 Extensions

4.1 Approximate version of the Uniform Direct-Product Theorem

In this section, we prove Theorem 1.4. The proof is along the same lines as that of Theorem 1.3
given in the previous section. We just need to make the following modifications in our definitions.
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Before, if C ′(B) was correct, it was correct on the subset A. Here, we need to bound the chance
that, even if C ′(B) is almost correct, its number of mistakes on A is disproportionately high. We
include this in the definition of “correct edge”, so that two correct edges for A will be (mostly)
consistent on A. Second, before, we had the correct values for A, and any deviation from these
values could be used to rule out C ′(B′) as inconsistent. Now, our values for even good A and B′

are somewhat faulty, and so could be somewhat inconsistent. We need to redefine consistency to
allow a small number of contradictory values, and then show that any very incorrect C ′(B′) will
have too many inconsistent values with high probability.

Recall that for B ∈ T , Err(B) is the set of those x ∈ B where C ′(B)|x 6= f(x), and err(B) =
|Err(B)/|B|. We say that a set B ∈ T is δ′-correct if err(B) 6 δ′ (i.e., C ′(B) and fk(B) disagree
on at most δ′ fraction of elements of B). An edge (A,B) of the inclusion graph I is called δ′-correct
if B is δ′-correct and |A ∩ Err(B)| 6 2δ′|A|.

For this section, we set ε′ = ε/4. Call an edge (A,B) of I good if it is δ′-correct and at least
ε′-fraction of all neighbors B′ of A are δ′-correct.

The definition of consistency changes as follows. Two neighbors B,B′ of A are called consistent
if C ′(B)|A and C ′(B′)|A disagree on at most 4δ′ fraction of elements in A. Note that for any
two δ′-correct edges (A,B) and (A,B′), we have that B and B′ are consistent. As before, for a
given edge (A,B), we denote by Cons the set of all B′ that are consistent with B. Finally, the
definition of an excellent edge is as before: An edge (A,B) is α-excellent if it is good, and moreover,
ExpB′∈Cons[err(B′)] 6 α.

Next we need to verify that with these modifications in the definitions, all lemmas of the previous
section go through. It is straightforward to check that all lemmas in Section 3.1 continue to hold
(with the same proofs) with respect to these new definitions.

For lemmas of Section 3.2, we need to argue that a random edge (A,B) is excellent with
probability Ω(ε). For this, we need an analogue of Lemma 3.8.

Lemma 4.1. Suppose the inclusion graph I is bi-regular, and the S-graph H is (δ′, 1/2)-sampler.
Then a random edge (A,B) of the inclusion graph I is good with probability at least ε′.

Proof. We choose a random edge (A,B) of I by choosing a random B ∈ T first, and choosing a
random A ∈ N(B). By the assumption on the circuit C ′, the probability that a random B ∈ T
is δ′-correct is at least ε. For every fixed δ′-correct set B, the sampling property of the S-graph
implies that PrA∈N(B)[|A ∩ Err(B)| > 2δ′|A|] 6 1/2. It follows that a random edge (A,B) is
δ′-correct with probability at least ε/2.

Similarly to the proof of Lemma 3.8, let P (A) be the event that PrB′∈N(A)[(A,B′) is δ′-correct] <
ε/4. We get that

PrA∈S,B∈N(A)[((A,B) is δ′-correct) & P (A)] < ε/4.

Finally, the probability that (A,B) is good is equal to the probability that it is δ′-correct, minus
the probability that it is δ′-correct and the event P (A) happens. The former is ε/2, and the latter
is is less than ε/4. Thus (A,B) is good with probability at least ε/4, as required.

We have the following analogue of Lemma 3.7.

Lemma 4.2. Suppose the inclusion graph I is bi-regular, and the S-graph H is (µ, ν(µ))-sampler.
Assume that 1 > α > 24δ′ is such that for every 1 > µ > α/2, µ · ν(µ) < αε′2/4. Then a random
edge (A,B) of I is α-excellent with probability at least ε′/2.

Proof sketch. Compared with the proof of Lemma 3.7, the only change is in the argument to
upperbound Pr[E(A,B,B′, x)]. This is modified as follows. Condition on any set B′ ∈ T that is
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µ-incorrect, for µ > α/2. By the sampling property of the S-graph, the probability that a random
neighbor A ∈ N(B′) has less than µ/2 fraction of elements from Err(B′) is at most ν(µ). Consider
any fixed A that has more than µ/2 fraction of elements from Err(B′). For any neighbor B of A
such that B is consistent with B′, we have that A contains more than (µ/2− 4δ′)|A| elements from
Err(B), which is more than 2δ′|A| for µ > α/2 > 12δ′, and so the edge (A,B) is not δ′-correct.
This implies that the conditional probability Pr[E(A,B,B′, x) | B′] 6 µ · ν(µ). The rest of the
proof is exactly the same as that of Lemma 3.7.

With the lemmas above, we get the proof of Theorem 1.4 in the same way as the proof of
Theorem 1.3, for δ′ > Ω(δ).

4.2 Derandomized Direct-Product Theorems

Here we will prove Theorem 1.5. For K = poly(1/ε) and k = O(log 1/ε), let K denote the collection
of all k-subsets of {1, . . . ,K}. We need to analyze the function h : T × K → {0, 1}k mapping
(T, i1, . . . , ik) to g(T )|i1,...,ik , where T is a collection of affine d-dimensional subspaces of Fmq .

First we analyze the input size of h. It consists of O(n) bits to describe a constant-dimensional
affine subspace T , plus k logK = O((log 1/ε)δ−1 · (log 1/ε+ log 1/δ)) = O((log 1/ε)2) bits to specify
the k-subset of {1, . . . ,K}, for constant δ. For ε ≥ e−Ω(

√
n), we get that the total input size is O(n).

Suppose h is ε-computable in BPTIME(t1/c)//(1/c) log t. Given a circuit ε-computing h, we will
show how to efficiently compute a list of circuits one of which (1− δ)-computes f . This will imply
that f is (1− δ)-computable in BPTIME(t)// log t, contrary to the assumption of the theorem.

Our argument follows along the lines of a standard analysis of code concatenation (see, e.g.,
[STV01]). Suppose we have a circuit C ′ that ε-computes h. By averaging, we get that for at least
ε/2 fraction of T ∈ T , the equality C ′(T, κ) = g(T )|κ holds for at least ε/2 fraction of k-subsets
κ ∈ K. Call Tgood the set of such good T s.

By Theorem 1.3, we know that the Independent intersection code is δ′-approximately (ε/2, O(1/ε))-
list decodable. So, for every T ∈ Tgood, we can efficiently recover a list of ` = O(1/ε) length-K
strings, one of which (1− δ′)-agrees with g(T ).

For each T ∈ T , let us order the strings returned by our approximate list-decoding algorithm
on input C ′(T, ·). Define a list of ` circuits C ′′1 , . . . , C

′′
` for g(T ), where C ′′i (T ) outputs the ith K-bit

string on the list corresponding to T . By averaging, there is some 1 6 i 6 ` such that C ′′i (T ) will
(1− δ′)-agree with g(T ) for at least 1/` fraction of inputs T ∈ Tgood, which is at least Ω(ε2) fraction
of all inputs T to g. Let us call such a circuit C ′′i approximately good for g.

By Theorem 1.4, the Subspaces intersection code is (δ, δ′)-approximately (Ω(ε2), O(1/ε2))-list-
decodable. Thus, for each of our ` circuits C ′′1 , . . . , C

′′
` , we efficiently get O(1/ε2) new circuits such

that, if C ′′i is an approximately good circuit for g, then the list of circuits obtained from that C ′′i
will have a circuit (1− δ)-computing f . Overall, we efficiently construct a list of O(`/ε2) = O(1/ε3)
circuits for f , one which will (1 − δ)-compute f . Hence, f is not δ-hard for BPTIME(t)// log t. A
contradiction.

4.3 Hardness condensing

In this subsection, we reinterpret the results of the previous section to give a version of hardness
condensing for the semi-uniform model, proving Theorem 1.6.

Imagine the sets B before as being exponentially large but succinctly representable (as in the
subspace construction for large values of k = qd). The idea is that, instead of C ′(B) explicitly
giving the values of f on B, we could replace C ′(B) with a meta-algorithm that produces a circuit
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that computes f |B. We could still estimate the agreement of two such circuits on A. Thus, if f is
hard, the restricted function f |B is hard for almost all B.

To get a precise statement of this idea, consider a family of functions fh(x) = F (h, x) where
h ∈ H and x ∈ U = {0, 1}n. Call the family fh (1 − ε)-hard to δ-compute in semi-uniform time
t if, for any time t(|h| + n) probabilistic algorithm A(h, r) which produces a circuit Ch,r on n bit
inputs x, we have Prh,r[Ch,r δ-computes fh] ≤ ε. 5

Assume S and T meet the conditions of Theorem 3.2, and that furthermore, we can describe
B ∈ T and A ∈ S as strings of length n1, and sample uniformly from either, using at most n2

random bits, in time polynomial in n1+n2. For x of length n2, let fB(x) be f applied to the random
element of B obtained by using string x in the sampling algorithm. (For example, in the case B is a
d-dimensional affine subspace of (Fq)m, we can represent B by its basis and skew vectors b1, . . . , bd, v,
with n1 = (d+1)m log q bits. Then with n2 = d log q bits, we can sample from B by picking random
α1, . . . , αd and letting y = α1b1+· · ·+αdbd+v. Then fb1,...,bd,v(α1, . . . , αd) = f(α1b1+· · ·+αdbd+v).)

Then by altering the previous proof of Theorem 1.4 as specified above, we have:

Theorem 4.3. Let S, T , δ, ε meet the conditions of Theorem 3.2, and be efficiently describable
and sampleable as above. There is a constant c so that if f is δ-hard for BPTIME(t(n))// log t(n),
and ε > t(n)−1/c, then the family fB is (1 − ε)-hard to (1 − Ω(δ))-compute in semi-uniform time
t(n)1/c.

The only difference is that the algorithm C ′, on set B, generates a circuit VB rather than values
v. The advice becomes (A, VB), and when we generate B′ with A ∪ x ⊆ B′, we use the algorithm
to compute the circuit VB′ , and then estimate consistency by randomly sampling O((log 1/ε)/δ2)
elements a ∈ A and seeing for how many VB(a) 6= VB′(a).

Theorem 1.6 is equivalent to the following corollary of Theorem 4.3.

Corollary 4.4. Let T be the family of random affine subspaces of dimension d of Fmq , where d ≥ 8.
For some absolute constant c, if f is δ-hard for BPTIME(t(n))// log t(n) then the family f |B for B ∈
T is (1−ε)-hard to (1−Ω(δ))-compute in semi-uniform time t(n)1/c, for ε = max{q−d/16, t(n)−1/c}.
Moreover, each f |B is equivalent to a function on d log q bit inputs.

Finally, we observe that Corollary 4.4 can be used to prove the following derandomized hardness
amplification result.

Theorem 4.5. Let δ > 0, 2
√
n+1 ≥ q ≥ 2

√
n, and let T be the family of random affine subspaces of

dimension d = 8 of Fmq , let k(n) = O(
√
n/δ), and let t(n) ≤ 2

√
n. For some absolute constant c, if

f is δ-hard for BPTIME(t(n))// log t(n) then the function g(B, y1, . . . , yk) = (f |B)k(y1, . . . , yk) for
B ∈ S and y1, . . . , yk ∈ B, is 1 − t(n)−1/c hard for BPTIME(t(n)1/c)//(1/c) log t(n). Moreover, g
is equivalent to a function on O(n) bits.

Proof. Assume we have an algorithm that with probability ε > t(n)1/c > e−k(n)δ/c produces a
circuit that ε-computes g = (f |B)k in time t′(n) = t(n)1/c. Then for each of the ε/2 B’s where the
conditional probability of success for the circuit is at least ε/2, we can use the list decoder for our
Independent code to get a circuit 1 − Ω(δ) computing fB in time t′(n)/poly(ε). In other words,
the family f |B has a semi-uniform algorithm that 1 − Ω(δ) computes it with probability poly(ε).
By Theorem 4.3, f has a semi-uniform time t′(n)/poly(ε) algorithm that (1− δ)-computes f with
poly(ε) success, a contradiction to the assumed hardness.

5Note that this definitions is a generalization of hardness of a single function in the semi-random model: f being
δ-hard for BPTIME(t(n))//l(n) is the same as the function family with single member f being (1− 1/2l(n))-hard to
(1− δ)-compute in semi-uniform time t(n).
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5 k-XOR code

Here we prove Theorem 1.7. We first list-decode a code which is a concatenation of our Independent
code and the standard Hadamard code.

Let Indk be Independent k-wise direct-product code. Let Hadk be the Hadamard code on
messages of size k, i.e., for every message msg ∈ {0, 1}k, the encoding Hadk(msg) is a function
mapping a string r ∈ {0, 1}k to the inner product 〈msg, r〉 over the binary field F2. Define Codek
to be the concatenation of Indk and Hadk, i.e., Codek(f) is a function mapping (x1, . . . , xk; r) to∑k

i=1 f(xi) · ri mod 2, for xi ∈ {0, 1}n and r ∈ {0, 1}k.
We will list-decode this code, using the algorithm of [GL89] for the Hadamard code, and our

algorithm A for the Independent code. First we state the result of Goldreich and Levin.

Theorem 5.1 ([GL89]). There is a probabilistic algorithm A with the following property. Let
h ∈ {0, 1}k be any string , and let B : {0, 1}k → {0, 1} be any predicate such that |Prr∈{0,1}n [B(r) =
〈h, r〉] − 1/2| > γ, for some γ > 0. Then, given oracle access to B and given γ, the algorithm A
runs in time poly(k, 1/γ), and outputs a list of size l = O(1/γ2) such that with high probability the
string h is on this list.

Using this GL algorithm of Theorem 5.1, we will show the following.

Theorem 5.2. The code Codek is efficiently, locally, δ-approximately (1/2 + ε, O(1/ε2))-list decod-
able, for δ = O(log 1/ε/k).

Proof. Let C ′ be the circuit which (1/2 + ε)-computes Codek(f). For a given k subset x̄ =
(x1, . . . , xk), define γx̄ = Prr[〈fk(x̄), r〉 = C ′(x̄; r)]− 1/2. Clearly, we have Expx̄[γx̄] > ε (since C ′

(1/2 + ε)-computes Codek(f)).
For a given x̄ = (x1, . . . , xk), we set h = fk(x̄) and B(r) = C ′(x̄; r), and run the GL algorithm

with γ = ε/2. For every x̄ with |γx̄| > ε/2, the GL algorithm will return a list h1, . . . , hl of size
l = O(1/ε2) that, with high probability, contains h.

For each hi on the list, define γx̄,i = Prr[〈hi, r〉 = C ′(x̄; r)]− 1/2. By random sampling, we can
efficiently estimate each γx̄,i to within a constant factor, with high probability. Let γ̃x̄,i denote the
corresponding approximation. We will choose string hi with probability proportionate to (γ̃x̄,i)2,
i.e., with probability (γ̃x̄,i)2/

∑l
j=1(γ̃x̄,j)2.

For the analysis, first observe that 2γx̄,i is the discrete Fourier coefficient at hi of the Boolean
function C ′(x̄, ·). By Parseval’s identity, we have

∑l
j=1 4·γ2

x̄,i 6 1. Assuming that we have constant-
factor approximations of all γx̄,i’s and that h was on the list, we conclude that the described
algorithm outputs h with probability Ω(γ2

x̄). Since the assumed two events happen with high
probability, we get that the probability of producing h is at least α · γ2

x̄ for some absolute constant
α > 0.

Denote by X the set of all inputs x̄, and by G the set of those x̄ where |γx̄| > ε/2. The
probability (over a random x̄ and internal randomness) that the described algorithm outputs the
correct string fk(x̄) is

(1/|X|)
∑
x̄∈G

α · γ2
x̄ > (1/|X|)

∑
x̄∈X

α · γ2
x̄ −

∑
x̄∈X\G

α · γ2
x̄

 .

The first term is α times Expx̄[γ2
x̄] > (Expx̄[γx̄])2 > ε2, by Cauchy-Schwarz and the lower bound

Expx̄[γx̄] > ε. The second term is at most α · ε2/4 by the definition of G. So the overall success
probability of the described algorithm at computing fk is at least Ω(ε2).

19



Finally, we apply Theorem 1.3 to the described algorithm for fk, concluding that the code Codek
is efficiently, locally, δ-approximately (1/2 + ε, O(1/ε2))-list decodable, for δ = O((log 1/ε)/k).

To prove Theorem 1.7, we will show how to list-decode the code obtained by concatenating Ind2k

with the truncated Hadamard code Had2k,k where the given 2k-bit message msg is encoded by the
string of inner products 〈msg, r〉 mod 2, over all 2k-bit strings r of Hamming weight exactly k.
More precisely, we consider the following code Code(x1, . . . , x2k; r) =

∑2k
i=1 f(xi)ri mod 2, where

r ∈ {0, 1}2k have Hamming weight exactly k.
First we observe that given a circuit C which (1/2 + ε)-computes the k-XOR encoding of f , the

following circuit C ′ will (1/2+ε)-compute the encoding Code defined above: “Given (x1, . . . , x2k; r),
for xi ∈ {0, 1}n and r ∈ {0, 1}2k of Hamming weight k, let y1, . . . , yk be the subset of (x1, . . . , x2k)
corresponding to the k positions i where ri = 1. Output the value C(y1, . . . , yk).”

Indeed, for uniformly random 2k-subsets (x1, . . . , x2k) and a random string r ∈ {0, 1}2k con-
ditioned on having Hamming weight exactly k, our circuit C ′ runs the circuit C on a uniformly
random k-subset (y1, . . . , yk), and hence outputs the value ⊕ki=1f(yi) = Code2k(f)(x1, . . . , x2k; r)
with probability at least 1/2 + ε.

We can also get a circuit C ′′ that (1/2 + Ω(ε/
√
k))-computes the code Codek defined earlier:

Given (x1, . . . , x2k; r), for xi ∈ {0, 1}n and r ∈ {0, 1}2k, output a random bit if the Hamming
weight of r is not k. Otherwise, let y1, . . . , yk be the subset of (x1, . . . , x2k) corresponding to the
k positions i where ri = 1. Output the value C(y1, . . . , yk).” For the analysis, simply observe that
a random 2k-bit string will have Hamming weight k with probability Ω(1/

√
k). Conditioned on r

being of weight k, we get a correct answer with probability 1/2 + ε; otherwise, we are correct with
probability 1/2.

Applying Theorem 5.2 to the circuit C ′′ will yield a list of O(k/ε2) circuits, one of which
(1− δ)-computes f .

To get the optimal O(1/ε2) list size, we will approximately list-decode the inner, truncated
Hadamard code in Code. The idea is as follows. We will mimic the proof of Theorem 5.2 to argue
that with probability Ω(ε2) over random 2k-tuples (x1, . . . , x2k) and internal randomness, one can
produce a 2k-tuple of bits (b1, . . . , b2k) such that for all but O(δ) fraction of indices i ∈ [2k], we have
f(xi) = bi. Running the approximate list-decoder of Theorem 1.4, we then get a list of O(1/ε2)
algorithms, one of which (1− δ)-computes f .

We need the following.

Lemma 5.3. Let a = (a1, . . . , a2k) be any 2k-bit string, and let B be a function mapping 2k-bits
strings r of Hamming weight k to {0, 1} such that Prr[〈a, r〉 = B(r)] = 1/2 + η, for some unknown
η. Suppose we are given γ > 0 such that |η| > γ. Then there is an algorithm that, given γ and
oracle access to B, runs in time poly(k, 1/γ) and, with probability Ω(η2), outputs a 2k-bit string
that agrees with a in all but at most δ′ fraction of positions, for δ′ = O((log 1/γ)/k).

Proof. Given B, we define the following randomized algorithm B′ mapping 2k-bit strings to {0, 1}:
“On a given r, if the Hamming weight of r is k, output B(r); otherwise, output a random bit.”

It is easy to see that B′(r) will agree with the Hadamard encoding Had2k(a) at r for at least
1/2 + Ω(η/

√
k) fraction of 2k-bit strings r. Running the Goldreich-Levin list-decoding algorithm

on this B′ with the agreement parameter Ω(γ/
√
k), we get with high probability a list of at most

` = O(k/γ2) strings h1, . . . , h` which contains our string a. Next we describe an algorithm for
producing a string approximately equal to a, with probability Ω(η2).

For each i ∈ [`], define ηi = Prr[〈hi, r〉 = B(r)] − 1/2, where the probability is over 2k-bit
strings r of Hamming weight k. By random sampling, we can estimate each ηi to within a constant
factor, with high probability. Let η̃i denote the respective approximations.
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Let us order |η̃i|’s from largest to smallest, and let us discard all those strings hi where |η̃i| < γ/2.
For the remaining strings, assume w.l.o.g. that |η̃1| > . . . > |η̃`′ |. We partition the strings hi’s
into groups as follows: Let B1 be the set of all strings of Hamming distance at most δ from h1; we
call h1 a leader of cluster B1. Remove all strings B1 from our list. Let hj be the first remaining
string (according to the order on η̃i’s). Define B2 to be the set of all remaining strings of Hamming
distance at most δ from hj ; here hj is a leader of B2. Remove B2 from the list, and continue until
all strings are partitioned into disjoint clusters B1, B2, . . . , Bt. For simplicity of notation, assume
that the leaders of these clusters are h1, h2, . . . , ht.

Finally, output a leader hi with probability η̃2
i /
∑t

j=1 η̃
2
j .

For the analysis, we will need the following

Claim 5.4.
∑t

i=1 η
2
i 6 1/2.

Proof. The idea of the proof is the following. The truncated Hadamard code Had2k,k maps any two
far-apart messages msg1 and msg2 to the codewords code1 and code2 that are almost Hamming
distance 1/2 apart. Switching from the {0, 1} alphabet to the {1,−1} alphabet, the previous
statement means that the normalized inner product Expr[code1(r) · code2(r)] of the vectors code1

and code2 is close to 0, where the expectation is over 2k-bit strings of weight k.
Thus the encodings y1, . . . , yt of the leaders h1, . . . , ht, respectively, are pairwise almost orthog-

onal. It is also easy to see that 2ηi = Expr[yi(r) ·B(r)], and so ηi’s are the projections of the vector
B onto vector yi. If the yi’s were pairwise orthogonal, we would get that B =

∑t
i=1(2ηi) · yi +B⊥,

where B⊥ is orthogonal to every yi, for i ∈ [t]. Taking the normalized inner product of B with
itself, we would get Expr[(B(r))2] =

∑t
i=1(2ηi)2 + Expr[(B⊥(r))2]. Since (B(r))2 = 1 for every r,

we conclude that
∑t

i=1(2ηi)2 6 1.
In reality, the vectors yi’s are pairwise almost orthogonal, and so the calculations will be slightly

more complicated, but will follow the same idea. For notational convenience, denote αi = 2ηi. Let
us write the vector B = (

∑t
i=1 αi · yi) + (B −

∑t
i=1 αi · yi). Also for notational convenience in the

rest of the proof, let us denote by 〈B, yi〉 the normalized inner product Expr[B(r) ·yi(r)]. We have

1 = 〈B,B〉 =
∑
i,j

αiαj · 〈yi, yj〉+ 2〈
t∑
i=1

αi · yi, B −
t∑
i=1

αi · yi〉+ 〈B −
t∑
i=1

αi · yi, B −
t∑
i=1

αi · yi〉.

The last term on the right-hand side is nonnegative, and after dropping it we get the following:

1 > 2
∑
i

α2
i −

∑
i,j

αiαj · 〈yi, yj〉 =
∑
i

α2
i −

∑
i 6=j

αiαj · 〈yi, yj〉.

Hence,
∑

i α
2
i 6 1 +

∑
i 6=j αiαj · 〈yi, yj〉. Since |αi| 6 1 for all i, the latter is at most 1 + t2 ·

maxi 6=j{〈yi, yj〉}.
To finish the proof, we need to upperbound t and maxi 6=j{〈yi, yj〉}. We start with the latter.

Consider any two 2k-bit messages msg1 and msg2 that differ in at least δ′ fraction of positions.
Then the normalized inner product of their respective encodings (in the {1,−1} alphabet) will be
Expr[(−1)〈msg1⊕msg2,r〉], where r ranges over all 2k-bits strings of Hamming weight k. Using the
Chernoff-Hoeffding bounds, this expectation can be upperbounded by e−Ω(δ′k).

The bound on t can be obtained by the Johnson bound: if y1, . . . , yt have pairwise inner prod-
ucts at most e−Ω(δ′k) in absolute value, and each |〈yi, B〉| > γ, for i ∈ [t], then t 6 1/(γ2 −
e−Ω(δ′k)) (see,e.g., [IJK06]). For δ′ = d(log 1/γ)/k for a large enough constant d, we get that
t2 ·maxi 6=j{〈yi, yj〉} 6 1. The claim follows.
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Suppose that our string a was put in a cluster with a leader hi. This means that the (approx-
imation of the) agreement of the truncated Hadamard encoding of hi with B(r) is at least as big
as that of a with B(r) (in absolute values), and that a and hi are at most δ′ Hamming distance
apart. We get by the claim above that hi is output with probability Ω(η2), as required.

Proof of Theorem 1.7. Let Code be the concatenation of Ind2k and the truncated HadamardHad2k,k.
As explained earlier, from a circuit C (1/2 + ε)-computing f⊕k, we can get C ′ that (1/2 + ε)-
computes Code. For each 2k-subset x̄ = (x1, . . . , x2k), let εx̄ = Prr[〈fk(x̄), r〉 = C ′(x̄, r)] − 1/2.
Clearly, Expx̄[εx̄] > ε.

For a given x̄, let a = f2k(x̄) and let B(r) = C ′(x̄, r). Run the algorithm of Lemma 5.3 on this
B(r), with the parameter γ = ε/2. If |εx̄| > γ, then we will get with probability Ω(ε2x̄) a 2k-bit
string that agrees with a in all but at most δ′ positions, for δ′ = O((log 1/ε)/k).

As in the proof of Theorem 5.2 above, we then obtain a randomized algorithm for Ind2k that
with probability at least Ω(ε2) (where the probability is over x̄ and the internal randomness of the
algorithm) outputs a string that is at most δ′ distance away from f2k(x̄). Running the approximate
list-decoding algorithm for Ind2k from Theorem 1.4, we obtain a list of O(1/ε2) circuits, one of
which (1− δ)-computes f , for δ 6 O(δ′).

6 Conclusions

We gave an efficient, approximate, local list-decoding algorithm for the direct-product code, with
information-theoretically optimal parameters (to within constant factors). Our new decoding al-
gorithm is also very efficient (is in uniform randomized AC0), and has a simple analysis. We also
defined a natural generalization of direct-product codes, intersection codes, for families of subsets
(S, T ), and gave the conditions on (S, T ) that suffice for efficient (approximate, local) list-decoding
of these generalized codes. Finally, we gave a derandomized version of the direct-product code with
an efficient decoding algorithm.

An interesting remaining open question is to get a derandomized uniform direct-product theorem
with better parameters (pushing the error ε to e−Ω(n), while keeping the new input size linear in
the original input size). Another question is to improve the parameters of our approximate version
of the uniform direct-product theorem (Theorem 1.4), ideally achieving a uniform version of the
“Chernoff-type” direct-product theorem in the spirit of [IJK07]. Finally, it is interesting to see if
the ideas from our new list-decoding algorithm can help in improving the known uniform hardness
amplification results for NP of [Tre05].
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