Detecting Evasion Attacks at High Speeds without
Reassembly

George Varghese
Cisco Systems, UCSD

ABSTRACT

Ptacek and Newsham [14] showed how to evade signature
detection at Intrusion Prevention Systems (IPS) using TCP
and IP Fragmentation. These attacks are implemented in
tools like FragRoute, and are institutionalized in IPS prod-
uct tests. The classic defense is for the IPS to reassemble
TCP and IP packets, and to consistently normalize the out-
put stream. Current IPS standards require keeping state
for 1 million connections. Both the state and processing re-
quirements of reassembly and normalization are barriers to
scalability for an IPS at speeds higher than 10 Gbps.

In this paper, we suggest breaking with this paradigm us-
ing an approach we call Split-Detect. We focus on the sim-
plest form of signature, an exact string match, and start by
splitting the signature into pieces. By doing so the attacker
is either forced to include at least one piece completely in
a packet, or to display potentially abnormal behavior (e.g.,
several small TCP fragments or out-of-order packets) that
cause the attacker’s flow to be diverted to a slow path. We
prove that under certain assumptions this scheme can de-
tect all byte-string evasions. We also show using real traces
that the processing and storage requirements of this scheme
can be 10% of that required by a conventional IPS, allow-
ing reasonable cost implementations at 20 Gbps. While
the changes required by Split-Detect may be a barrier to
adoption, this paper exposes the assumptions that must be
changed to avoid normalization and reassembly in the fast
path.

Categories and Subject Descriptors: C.2.6 Internet-
working : Routers

General Terms: Algorithms, Intrusion Prevention Sys-
tems, Design.

Keywords: Normalization, TCP reassembly, evasion at-
tacks.

1. INTRODUCTION

We argue that the need to normalize and reassemble TCP

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIGCOMM 06, September 11-15, 2006, Pisa, Italy.

Copyright 2006 ACM 1-59593-308-5/06/0009 ...$5.00.

J. Andrew Fingerhut
Cisco Systems

327

Flavio Bonomi
Cisco Systems

streams has become a router/IPS folk theorem; we follow
this with a quick introduction to Intrusion Detection and
Prevention Systems (IDS/IPS) and a paper outline.

1.1 Router Folk Theorems

When a field first develops, a set of rules based on expe-
rience eventually harden into folk theorems. In the initial
stages, these guidelines are very helpful as rules of thumb for
dealing with complexity and are not expensive to implement.
As time goes on, however, these rules gravitate towards more
dogmatic status. At the same time, it becomes so expensive
to implement the original rules, as systems scale to higher
speeds, that the rules are eventually challenged. Examples
of such folk theorems include strict layering in protocol im-
plementation (challenged in [4] using upcalls), wire speed
forwarding for routers (challenged in [5] using randomized
algorithms for forwarding), and the need for routers to have
200 msec of buffering (challenged in [3] by showing that the
overall buffer can be reduced by the square root of the num-
ber of flows).

In this paper, we challenge an important folk theorem in
Intrusion Prevention systems: that packet reassembly and
normalization are necessary to deal with evasions [14] by
attackers. Briefly, an Intrusion Prevention System or IPS is
a device that sits on a network and drops all traffic indicative
of an attack. The seminal paper in this area [8] shows
that reassembly and normalization are sufficient to detect
all evasions. However, the IPS industry has gone further and
assumed that reassembly and normalization are necessary.

Besides the scientific interest in critically re-examining as-
sumptions, the need for normalization and reassembly has
enormous engineering consequences. As speeds get higher,
reassembly and normalization in the network requires an
increasing amount of resources in terms of memory and pro-
cessing. Looked at from a pure implementation viewpoint,
reassembly at an IPS appears wasteful. For the sake of a few
bad flows using fragmented attacks, a router with a pack-
aged IPS must reassemble all flows.

Looked at another way, reassembly (which is done at ev-
ery receiving endnode) must be duplicated at every IPS in
the path. If we simply multiply the memory required for re-
assembling 1 million connections by the number of IDS/IPS
boxes, the total cost (even ignoring the cost of processing)
is very large.

A recent paper [6] shows that the processing cost of TCP
reassembly can greatly be reduced by optimizing for the ex-
pected case when most TCP segments are in order. How-
ever, this optimization does not reduce the state required for
TCP reassembly. Further, we will see that normalization can

potentially increase the costs of memory and processing by
an order of magnitude beyond that required by reassembly.

1.2 Intrusion Prevention Systems

In a perfect world, where all endnodes detect and prevent
attacks, Intrusion Detection Systems (IDS) would be use-
less. Unfortunately, network administrators cannot rely on
endnode software (often controlled by a different organiza-
tion) being up to date in terms of Anti-Virus updates and
patches. Thus, just as in the case of firewalls, the use of
an IDS is a popular retrofit strategy. Almost every major
organization runs an IDS of some sort, and many organiza-
tions, motivated by the threat of internal attacks, deploy an
IDS in several parts of the internal network. Thus, the IDS
market is a billion dollar market, and continues to grow.

We will focus in this paper on signature based IDS. Such
an IDS consists of a database of rules. Each rule specifies
a predicate on packet headers, optionally contains a con-
tent string, and has an associated action. In classical IDS
systems such as the open source tool Snort [15] the asso-
ciated action is usually an alert to the administrator. Sig-
nature based IDS are very popular and are supported by
every major IDS vendor. The bane of most IDS users is the
potentially large number of false positives in alerts.

By the time an IDS can raise an alert and a human admin-
istrator respond, a fast-moving attack (such as a worm or a
DDOS attack) can have done considerable damage. Thus in
recent years, the IDS market has morphed into the so-called
IPS (Intrusion Prevention System) market. Somewhat cav-
alierly, an IPS can be described as an IDS where a subset of
rules (which the IDS implementers are confident can cause
almost no false positives) are enabled with the correspond-
ing action to drop any packet that matches this rule. An IPS
must be inline to drop packets, while an IDS can simply tap
the data to generate alerts.

Both IDS and IPS systems are required to reassemble
TCP flows and IP fragments. This ensures that a content
string in a rule that is fragmented across packets can be de-
tected. IPS systems are further required to normalize [8, 13]
TCP flows. Roughly speaking, normalization seeks to nor-
malize the data sent in a flow to avoid inconsistencies that
can be exploited by an attacker. As the market for IDS and
IPS systems has matured, there are now well-established
tests that check for conformance. For example, the NSS
report [11] tests vendors for resilience to evasion attacks by
running fragroute [17], and whisker or nikto [10]. All the ma-
jor vendors appear to have demonstrated [11] their ability
to detect evasion attempts.

As the speed of enterprise networks moves from 1Gbps to
10 Gbps, IPS devices have been attempting to scale up in
speed as well. In terms of speed, some vendors are already
deploying IPS systems at 8 Gbps. Further, as a reaction to
the number of ad hoc network devices (e.g., load balancers,
content accelerators, and routers) in networks, there is an
increasing trend towards consolidating devices within a sin-
gle enterprise switch. As many switches have 10 Gbps and
even 20 Gbps ports, it is desirable to scale a single IDS chip
or device to 20 Gbps.

What are the main bottlenecks for an IPS? One major
bottleneck is scanning a stream of bytes for a content string
or even a regular expression. Searching for content strings is
fairly well understood [5]. In recent years, many IPS devices
have allowed the specification of regular expressions for con-

328

tent strings but hardware algorithms for even these are well
understood [5]. However, a second major bottleneck is the
effort required to reassemble TCP flows and to normalize
them if needed. Many IPS vendors advertise support for up
to 1 million concurrent TCP flows; the number of flows may
seem surprisingly large for an enterprise. However, recall
that in a security context, a TCP flow cannot be timed out
quickly in case a fragment of the attack is sent much later.
It is this second bottleneck, and especially in the context
of a packaged IPS/router, that we focus on in this paper.

1.3 Paper Outline and Contributions

The rest of this paper is organized as follows. Section 2
contains an implementation model for a packaged IPS in
a router or switch, and describes the main assumptions as
well and measures. Section 3 provides a brief overview of the
possible evasions made possible by fragmentation. Section 4
begins the solution description by first dealing with two com-
plicating issues: overlapping TCP segments and IP frag-
mentation. Then Section 5 describes the Split-Detect solu-
tion that is scalable and yet able to detect damage caused
by out-of-order fragments and chaff. Section 6 contains a
proof that Split-Detect is correct; a proof is needed as sev-
eral of our initial attempts had flaws. Section 7 describes
a trace-driven analysis of the performance improvement re-
sulting from Split-Detect. Section 8 suggests clean slate ap-
proaches to the problem of simplifying IPS devices based on
the lessons learned in this paper. Finally, Section 9 states
conclusions.

Contributions: The main contribution of this paper is
critically examining the need for reassembly and normaliza-
tion. As part of this examination, we propose an alternative
(Split-Detect) to full reassembly and data normalization for
all flows passing through an IPS by efficiently identifying
a small subset of traffic in the fast path that requires nor-
malization/reassembly. Note that Split-Detect only avoids
reassembly and normalization in the fast path.

Unfortunately, Split Detect requires three assumptions: a
small modification to TCP receivers to check for inconsis-
tent retransmissions, a change in the definition of signature
detection to allow the start and end of a signature to be
missed, and a restriction to exact signatures or regular ex-
pressions with a fixed exact length. The first assumption
seems to be fundamental, the second can be removed by an
implementation or protocol change, and the third assump-
tion may be relaxed by future work.

Given the difficulties with these assumptions, the main
contribution of this paper is exposing the assumptions that
need to be changed to avoid reassembly and normalization in
the fast path. We hope that our initial study will stimulate
further work.

A second contribution is the formalization of several con-
cepts (such as critical packets and possible reassembly) that
seem fundamental to the theoretical modeling of evasion at-
tacks.

2. MODEL

Between what matters and what seems to matter,
how should the world we know judge wisely? —
E.C. Bentley, Trent’s Last Case

We capture with a model the salient aspects and param-
eters for IPS implementations. Figure 1 shows a model of

W
Flow State
C C >= 1,000,000
connections
s - 1 -
Chips

Figure 1: A model of a standard IPS integrated into
a switch

SLOW PATH (LARGE
MEMORY, FULL
REASSEMBLY)

w

~

SELECTED
¢ FLOW

MEMORY

(ON-CHIP)

D bits/s

—" Diverted packets

B bits/s $
IPS
Chip-|————————————— -

Figure 2: New model of an IPS with a fast path and
a slow path

a classical IDS/IPS implemented at speeds greater than 5
Gbps. Packets are inspected by some set of chips, often
ASICs. Many products use two or three such chips. The
TCP and IP flow state is stored in a large state table with
memory for C' connections (often required to be at least 1
million) with W bits per connection. Even if all the packets
in a connection are in-order the minimum state for a connec-
tion is at least the TCP 5-tuple and the sequence number,
which is at least 128 bits. Typical implementations espe-
cially for IPS devices probably keep at least 10 times this
much state, given that full data normalization [8] appears
to require keeping an RT'T’s worth of TCP stream data.

Thus the overall memory required for the flow table is
at least 128 Mbits, and more likely to be closer to 1280
Mbits, which is sufficiently large to require external DRAM.
In practice, several DRAM chips are required. The net result
is that the IPS implementation, counting processing chips
and external memory, requires several chips and supporting
processors, which makes it expensive and hard to package
cheaply into every line card.

A natural alternate IPS model is shown in Figure 2. The
idea is that the IPS complex in Figure 1 is replaced by a
simpler (and potentially single) IPS chip that handles the
common case, but also detects exceptions by keeping track of
a much smaller number of connections. When an exception
is detected, the remainder of the TCP flow is diverted to a
second processor that handles the exception case using the
full connection state, reassembly, and normalization. How-

329

ever, the idea is that the slow path processor only handles
the exception flows.

One particularly attractive packaging of this model is to
place the fast path IPS chip in every line card of a switch,
and to keep the slow path processor(s) in a separate card
shared by all other line cards of the switch. For this pack-
aging to make sense, the amount of memory required by
the fast path processor should ideally be sufficiently small
to fit into on-chip memory or a small CAM, making the per
line-card cost very small. At the same time, the amount of
traffic diverted to the slow path must be sufficiently small
to allow the slow path processor to be shared by several fast
path processors.

Thus referring to Figure 1 and Figure 2, two relevant per-
formance measures of the leverage of the new model (Figure 2
versus the classical model (Figure 2) are:

e Speedup: Speedup can be defined as S = B/D. In
other words, this is the reciprocal of the fraction of
bytes diverted to the slow path processor. A potential
target is a speedup of 10 for B = 20 Gbps and D = 2
Gbps. This allows either a cheap slow path processor
or the sharing of the slow path processor across 10 line
cards.

¢ Memory Compression: Memory compression is the
ratio of the connection memory required by the classi-
cal IPS to the memory required by the fast path pro-
cessor in the new model (Figure 2). From the figure,
this is M = CW/(cw). A potential target is a memory
compression of 25 to yield a fast path memory cw =5
Mbits (which should fit into on-chip memory) assum-
ing C' = 1 million and W = 128 bits.

THE GENTLE ART OF EVASION

Know thyself, Know thy Enemy
—— Sun Tzu, circa 500 BC

In this section we briefly review some of the power avail-
able to an attacker using fragmentation. The power arises
from the combination of TCP and/or IP fragmentation with
out-of-order, redundant, and overlapping segments. We il-
lustrate these by the following example attacks. These ex-
amples are by no means a comprehensive list of attacks. In
all the examples, the intruder is attempting to send a string
“ATTACK” that is passed by the IPS but is received by
the receiver. In this section, we restrict ourselves to TCP
fragments.

3.1 The Case of the Misordered Fragments

In this warm-up example, the intruder breaks the string
“ATTACK” into two fragments “ATT” and “ACK”. The
attacker then sends the content string “ACK” in the first
segment to physically pass the IPS (time flows from left to
right in all examples) with TCP sequence number 13. Later,
the first part of the attack string “ATT” is sent in a sec-
ond TCP packet with sequence number 10. Although these
fragments pass the IPS out-of-order (and potentially with a
long time between fragments), the receiver to which these
packets are destined will reassemble the string correctly by
first placing the string “ATT” (because it has start byte se-
quence number 10) and then attaching the string “ACK”

‘SEQ =13, DATA = “ACK’ ‘ ‘ SEQ = 10, DATA = “ATT” ‘
THE CASE OF THE MISORDERED FRAGMENT

‘ SEQ =10, TTL = 10, “ATT"‘ ‘SEQ =11, TTL =1, “JNK”‘. .‘SEQ =13, “ACK”
THE CASE OF THE INTERSPERSED CHAFF

SEQ =10, “ATTJNK”
SEQ =13, ACK

THE CASE OF THE OVERLAPPING SEGMENTS

Figure 3: Pictorial representation of 3 powerful eva-
sion techniques

(because it has start byte sequence number 13). The top
row of Figure 3 shows this attack pictorially.

Clearly, an IPS that does reassembly can catch this case
because it duplicates receiver reassembly before checking for
strings such as ATTACK. in the reassembled byte stream.

3.2 The Case of the Interspersed Chaff

In this example, the attacker breaks the string into two
fragments “ATT” and “ACK” as before but now adds some
“noise” or chaff to the attack to confuse the IPS without
damaging correct reassembly at the receiver. There are
many ways to do this; one technique is to send the good
packets with a large enough TTL (Time to Live) to reach
the receiver, while sending the chaff with a small TTL that
causes it to be dropped before reaching the receiver.

In the example in the second row of Figure 3, the frag-
ments “ATT” and “ACK” are sent with a large TTL of 10,
while the interspersed chaff “JNK” is sent with a TTL of 1.
Assuming that the IPS has no knowledge of network topol-
ogy, the IPS cannot tell which fragments will make it to the
receiver. Thus the IPS does not know whether the receiver
will receive “ATTIJNK” or “ATTACK”.

It is easy to construct cases with P pieces of overlapping
chaff starting at several positions within the attack signa-
ture such that there are 27 possible reorderings. Since it
is computationally hard for the IPS to compute exponen-
tial numbers of reorderings, a more elegant solution is data
normalization [8]: the IPS picks a canonical reordering (in
this example, say ATTJNK), realizes that it does not match
a valid attack string, and so lets it pass without an alert.
However, when the packet with the string “ACK” goes by
the IPS, the IPS rewrites the string “ACK” to “JNK” to
be consistent with data sent in the past. Once again, this
example plausibly argues for the need to both reassemble
and normalize.

3.3 The Case of the Overlapping Fragments

A more pernicious form of attack using overlapping se-
quence numbers is shown pictorially in the third row of
Figure 3. The first TCP packet carries sequence number
10 and the string “ATTJNK”. The second TCP packet car-
ries the sequence number 13 and the string “ACK”. . One
convention at a receiver when faced with overlapping bytes
is to deliver the most recently received bytes. With such a
convention, the receiver will deliver the string “ATTACK”

330

and the intruder will succeed. Clearly, normalization avoids
this problem by either sending “ATTJNK” consistently or
dropping data that reassembles to “ATTACK”.

While overlapping fragments abstractly looks similar to
interspersed chaff and they have the same cure (normaliza-
tion), they have a subtle difference. In the case of inter-
spersed chaff, a packet is either completely chaff or com-
pletely good data. In the case of overlapping fragments, a
packet can partially contain chaff and good data. In partic-
ular, after cutting a signature into pieces, any attack that
only contains interspersed chaff will be forced to send small
fragments, a behavior that can be detected.

On the other hand, using overlapping fragments, the sender
can send arbitrarily large packets while still (effectively)
fragmenting the signature into pieces of size as small as
1 byte. For example, imagine a sequence of large packets
whose sequence numbers are X, X + 1, X + 2, etc., and
where the new byte of the i-th packet is the i-th byte of the
signature, and the rest of the data bytes are chaff. In sum-
mary, overlapping fragments are deadly because they allow
signatures to be segmented virtually into as small pieces as
desired without any accompanying physical manifestations
in terms of small packet sizes.

4. CLEARING THE UNDERBRUSH

Before we move to our final solution, we simplify the prob-
lem by addressing two attack mechanisms: IP fragmentation
and overlapping fragments.

4.1 IP Fragmentation

Clearly, many of the same attacks described in Section 3
can be duplicated with IP fragments with the IP fragment
offset fields playing the part of TCP sequence numbers.
Combinations of TCP and IP fragmentation in the same
attack can complicate the mechanisms and proofs. For ex-
ample, not every IP fragment of a TCP packet contains a
TCP header. Because IP fragmentation is so rare in prac-
tice (a fraction of a percent in our traces and in previous
reports [16]), we use a conservative solution: divert any IP
fragments and any connection whose connection ID is in an
IP fragment to the slow path.

4.2 Overlapping TCP Fragments

Detecting overlapping TCP fragments appears very hard
without keeping state for every connection. While over-
lapping TCP fragments do result in out-of-order TCP seg-
ments, benign out-of-order segments occur because of route
changes, load balancing, and retransmission (consider send-
ing packets P1, P2, P3, and then resending P1). It appears
hard to distinguish benign out-of-order packets from seg-
ments with overlapping sequence numbers without keeping
a record of all past sequence numbers, which is no better
than keeping TCP state for all connections.

It appears possible to prove that detecting overlapping
sequence numbers requires a large amount of space® using
a reduction to the set disjointness problem, as pioneered in
[2] and applied in [9] to show similar hardness results for a
number of other security problems. However, one must be
cautious about such results. First, the hardness of the set
disjointness problem is based on assumptions which may be
relaxed in practice. Second, as pointed out in [9] the same

"We are grateful to Yossi Mattias for this observation

phenomenon (overlapping TCP fragments) may have several
manifestations (e.g., overlapping sequence numbers, over-
lapping content). Proving that one manifestation is hard to
detect does not imply that scalable detection of some other
manifestation is impossible. Despite these caveats, it does
seem that detecting overlapping fragments is fundamentally
hard.

Instead, we will rely on changes to endnodes to satisfy the
following atomicity property. In the following we use “de-
livered” to mean “delivered to the application”, not merely
“the segment is delivered to the target host”.

Weak Atomicity Property: None of the bytes in a
TCP segment that are delivered will be inconsistent with
bytes of another TCP segment that are delivered.

Note, that this restriction cannot cause any difficulty to
good sender stacks because the TCP protocol does not allow
inconsistent data transmission. The implementation of the
weak atomicity property is fairly easy. Maintain a buffer,
the Overlap Detect buffer, of up to an MSS size worth of the
bytes last delivered to the socket buffer. When a new packet
becomes in-order and is a candidate for delivery, compare
any overlapping bytes with the bytes in the overlap buffer.
If there is inconsistency, do not deliver the segment and reset
the connection.

Note that this implementation takes more space (1 MSS)
and more processing (byte-by-byte comparison in case of
overlap) than a standard TCP implementation. However, it
is very likely that most socket buffers will need storage for
up to 10 MTUs or more. Thus the additional storage cost
should be a small percentage of the existing storage cost.
Also, the processing cost can be mainly a matter of writing
to the circular overlap buffer and the actual byte-by-byte
check is incurred only in the rare case of an overlapping
segment.

Weak atomicity also appears to introduce a new Denial-of-
Service attack wherein an attacker could inject inconsistent
data and cause the connection to be reset. However, the
alternative is to allow the attacker to inject arbitrary wrong
data, which is worse. Note that SSH also resets a TCP
connection on detecting a possible TCP injection attack.
We argue that such an endnode change is actually good
because:

e It prevents bad behavior (delivered inconsistent data)
from harming an endnode.

e It does not require implementing a complete IPS (no
signatures are required at endnodes in this proposal)
or normalizer at the endnode.

e [t can easily be implemented. If deployed by Windows
and Linux, then the two most common targets of at-
tacks can be protected while allowing IPS systems to
scale.

In summary, we believe that an easily-implementable change
in endnodes to implement an obvious consistency check (which

should have been required in the past) can greatly improve
the scalability of IPS systems. Further, it appears possible
to prove [2] that without this change, IPS devices will have
to keep memory for all connections in the fast path.

331

4.3 What Still Remains

It may appear that with the finessing of this section that
we have trivialized the problem and “defined the problem
away”. However, note that the attacker still has great power:

e The attacker can still break up an attack signature
across several small TCP Fragments. Compounding
the difficulty is the fact that small TCP segments are
common in innocent traffic.

e The attacker can still send out-of-order Fragments.
Compounding the difficulty is that fact that out-of-
order traffic is common in real traffic because of re-
transmissions.

The attacker can still send redundant packets/segments
that never get to the receiver (e.g., Chaff with low
TTLs) in attack traffic but hard to detect at the IPS.
The attacker can still use chaff to create an exponen-
tial number of possible reassemblies at the IPS and
thus normalization at the IPS is still required.

THE SOLUTION: SPLIT-DETECT

Strategy without tactics is like the empty sound
before defeat . . . — Sun Tzu

We describe the basic idea, and provide a quick example of
cutting a signature into pieces. We proceed with a detailed
statement of the state variables, and the fast and slow path
processing algorithms.

5.1 Basic Framework

We call the algorithm Split-Detect because our major tac-
tic is to split a signature into K equal pieces. The detection
of any piece will cause the line card to divert the connection
to the slow path. The fast-path algorithm consists of:

e Split: Break a signature into K equal pieces and arm
the fast path to detect any piece.

e Divert: Divert a TCP flow to the slow path if —

— Fast path chip detects any piece

— Fast path chip detects small packet or out-of-
order behavior.

As K increases, the IPS has more pieces to detect but the
speedup increases because a smaller amount of traffic will be
diverted. More pieces do not necessarily mean K times more
storage in the fast path. For example, DFA based string
matchers such as Aho-Corasick [1] require space linear in
the total number of bytes and do not increase significantly
in time or storage with the number of pieces.

However, if the pieces are too small, there will be false
positives detected in innocent traffic. We pick 4 bytes as
the smallest acceptable piece size because the resulting extra
diversion caused by false positives of 4 byte random data is
sufficiently small for TCP flows that send less than 232 bytes.
The random model of false positives is insufficient. Even
using piece sizes greater than 3, care must be taken to ensure
that a piece is not part of a common application string.
For example, “HELO” is a 4-byte string used in the SMTP
handshake; use of it as a piece would cause every SMTP

ATTA| [cKs| |IGNA
Piece 1 Piece 2 Piece 3 Piece 4

Figure 4: Example of Cutting up a Signature into 4
pieces

connection to be diverted. Note that if a signature is long
enough, one could discard some initial bytes to change the
alignment of pieces, so that a string like “HELO” by itself
does not form a complete piece. Similarly, for a signature
that starts with “http . . .”, it is best to discard the first
few bytes. Generally, the longer the piece size, the less likely
is it for this to be a problem.

5.2 Example of Cutting a Signature into Pieces

Figure 4 shows an attack signature “ATTACK SIGNA-
TURE” broken up into 4 pieces of 4 bytes each.

Breaking up a signature into pieces and looking for each
piece individually has the following intuitive consequences
(we will prove them formally in the next section):

e If a packet contains a piece, it will be detected.
e Thus all K pieces must be split to evade

e If endnode atomicity (Section 4) is enforced, a packet
containing a split piece cannot contain non-signature
data that conflicts with the signature, or the entire
signature will not be delivered.

e All but the first and last splits will create “small pack-
ets” with payload size < 2PieceSize—1, where PieceSize
|S/K| and S is the signature length and K the num-
ber of pieces.

Figure 5 shows that an attacker can cut the pieces (of
size 4 bytes in this example) to evade detection into several
pieces of size at most 6 bytes (2 x4 — 2). The attacker’s
packet boundaries are shown using dashed lines. Note that
the first and last packets can be large but the middle three
must be at most 6 bytes. Notice that the middle 3 pieces
are consecutive in sequence number space.

This seems to imply that one can detect such an eva-
sion attempt by looking for a certain number of consecu-
tive small packets, where “small” means the packet payload
size is strictly smaller than 2PieceSize — 1. Unfortunately,
the attacker has more power using out-of-order packets and
“chaff” that does not reach the receiver.

5.3 Motivating the Algorithm

Clearly, looking for small packets in sequence cannot suf-
fice because packets can be sent out-of-order. A first attempt
at a state machine to detect evasions would be to look for

332

J00___ 108 . 1T0'5 ________ 1_0_7 ___________ -
MMES
TPt Pecez T Peces Pieced

Packet Boundaries excluding headers

Figure 5: Example of Splitting each piece (packet
boundaries are shown using dashed lines) into pack-
ets such that no complete piece is detected in a
packet passing though the IPS

either K small packets in order, or K out-of-order small
packets

Even this does not suffice. Suppose the attacker cuts up
the signature into fragments such that no fragment contains
a piece. The attacker divides the fragments into odd and
even fragments. The attacker then sends the even fragments
(Frag 0, Frag 2, Frag 4 etc.) in-order by interspersing the
even fragments with appropriately numbered chaff. More
precisely, the attacker sends Frag 0, J1, Frag 2, J2, Frag 4,
J3, etc.), where J1, J2, J3 . . . are large chaff packets with
small TTL that will not reach the receiver but with starting
sequence numbers that match Frag 1, Frag 3, Fragb, etc.

Once the attacker has sent the even fragments, he can go
ahead and send the odd fragments in the same way. Thus
there will be at most K/2 + 1 out-of-sequence transition
(one after each chaff packet and one at the boundary be-
tween even and odd fragments) and there will never be the
case of two consecutive small packets. Note than even in this
example there are K small packets where K is the number
of fragments the attacker is forced to cut the signature into.
While we could detect this, we would like a stronger predi-
cate because there are many innocuous connections that will
send a number of small packets over the lifetime of the con-
nection. The example above shows that such connections
cannot be distinguished from a deliberate attack as in the
example, because the gap between the sending of the train
of even fragments and the train of odd fragments can be
made arbitrarily long by filling it in with chaff.

To create a stronger diversion predicate, examine the ex-
ample more carefully, and notice that the small packets in
the even train and in the odd train must be spaced apart
by the length of the signature. Otherwise, they will not be
assembled together at the receiver to be part of a complete
signature.

To define anomalous behavior we introduce the following
terminology. Consecutive small packets are two packets re-
ceived by the IPS that are small and in between the receipt
of which the IPS does not receive any other small packets.
Thus if the IPS received P1, P2, P3, P4, P5 in order where
packets P1, P4, and P5 are small and P2 and P3 are large,
then P1 and P4 are consecutive small packets, and so are
P4 and P5. However, P1 and P5 are not consecutive small
packets because of the presence of P4 in between.

Thus to detect an anomalous connection, intuitively we
look for K anomalous events in a connection, where an
anomalous event is defined as either:

1. Condition 1, Closely Spaced Small Packets: Con-
dition 1 is triggered if the IPS receives two consecu-
tive small packets whose sequence numbers differ by
at most the signature length 2

2. Condition 2, Out-of-Order: Condition 2 is trig-
gered if the IPS receives two consecutive small packets
between which there is at least one out-of-order tran-
sition (the out-of-order packet could be any packet in
the middle of the two up to and including the second
small packet).

Thus between two consecutive small packets, either the
sequence is completely in-order in which case only Condi-
tion 1 can occur or Condition 2 occurs. The intent is that
an innocuous connection that sends small packets that are
sufficiently spaced apart will not be diverted to the slow
path. Similarly, an innocuous connection that sends very
few out-of-order small packets will not be diverted.

5.4 Fast Path State Machine

The fast path algorithm can be compactly described by a
state machine that can easily be implemented in hardware.
The IPS system first picks the number of pieces K. Note
that the piece length PieceSize is | SignatureLength/K|. A
packet is defined to be small if its payload size is in the range
[1,2 - PieceSize — 2]. Note that ACKs with 0 data bytes are
not considered to be small packets. We use the term TCP
flow and connection interchangeably in what follows.

State Instantiation: The fast path keeps state for a flow
only after it sends its first small packet

State Variables: When the IPS decides to keep track of
a flow, it keeps the following variables (all indexed by the
TCP connection 5-tuple, using say a CAM),

e NES(Next Expected Sequence Number, 32 bits)
e 000O(Out Of Order since last small packet, Boolean)

e length(Length in bytes since last small packet, 7 bits
can support signatures 127 bytes or shorter)

e count(count of anomalies, 4 bits can support values of
K up to 16, K — 1 strikes and the flow is out)

e LUT(Last Update Time, 3 bits can store a coarse time
value sufficient for aging out old unused table entries)

In summary, the IPS fast path maintains a flow table for
every active TCP flow that has ever sent a small packet,
where each flow entry contains a small amount of state
(NES, 00O, length, count, LUT) for a total of 48 bits of state
per flow that is kept track of (plus 96 bits for IPv4 source
and destination address, and TCP source and destination
port). This reduces memory compared to standard IPS im-
plementations that need to keep track of all active flows (not
only the ones that ever sent a small packet) and appear to
keep track of a round trip time’s worth of packet data for

2Since we are looking for multiple signatures, this should
really be the maximum length across all signatures being
detected.

333

normalization. Note that our slow path is no worse in terms
of state or processing than a traditional IPS. The state ma-
chine processing is as follows:

To update count:

e count is initialized to 1 when the flow is first placed in
the flow table.

e count is subsequently incremented on receiving a small
packet for a flow if:

— the packet’s sequence number is not equal to NES,
or

— 000 is true (i.e., some out-of-order since last
small packet), or

— length < SignatureLength

Note that count is never updated for large packets, and is
never incremented past K —1 (i.e. it “sticks” at that value).
To update OOO, NES, and length:

e 00O is set to true if the current packet sequence num-
ber is not equal to NES and the packet is large; OOO is
reset to false if the current packet is small (this reflects
the intuition that OOO is a flag that detects out-of-
order reception between small packets; hence it is reset
when a small packet is received.)

e NES is set equal to s+, where s is the current packet
sequence number and [is the TCP payload length of
the current packet, (NES is set to reflect the sequence
number of the next expected in-order TCP segment in
this flow.)

e [ength is incremented by the payload length if the cur-
rent packet is large and reset to zero if the current
packet is small (length measures the length in bytes
received for this flow since the last small packet was
received.)

As a special case, TCP packets with no data cause no
change to any of count, OOO, NES, or length. All packets,
including those with no data, cause LUT to be updated to
the current time.

After state update, the entire flow (including the current
packet causing the update) is diverted to the slow path if
either of the following two conditions are true:

1. The packet is found to contain a piece of some signa-
ture (by some string matching algorithm). In this case
the fast path can simply set count = K — 1 in order to
divert the flow.

2. The anomaly count count is equal to K — 1 (one less
than the number of pieces)

If the flow is not diverted, the packet is forwarded nor-
mally but, in addition, a copy of the packet is sent to the
slow path if and only if the packet is small (i.e., payload
size is in the range [1,2PieceSize — 2]). In other words, if
a packet contains plausible evidence (i.e., packet is small or
contains a piece), then a copy of the packet is sent to the
slow path for examination. However, if the anomaly count
is too high or a piece is detected, the entire flow is diverted
to the slow path.

5.5 Slow Path Algorithm

Every packet sent from the fast path to the slow path is
sent with additional information indicating whether it is a
copy of a forwarded packet, or if the packet has been di-
verted and thus has not been forwarded normally by the
fast path. When the slow path receives a packet marked as
a copy, it stores it in a table indexed by the packet’s 5-tuple.
These packets may be needed in the future for detecting an
occurrence of an attack signature, but do not require any
other immediate action.

If the slow path receives a packet for a flow F' that is
marked as diverted, then it becomes responsible for decid-
ing whether to forward the packet on to the receiver. The
slow path tries to paste together the fragments received for
flow F; if it gets close to forming a signature (the first and
last pieces may be missing) then the packets of the flow are
dropped. The more precise specification is as follows.

For every flow (diverted flows as well as flows for which
it receives copies), the slow path maintains a single version
of the reassembled TCP stream up to this point. Clearly, if
segments overlap and have inconsistent data, one can create
an exponential number of possible reassemblies [8]. Since
we wish not to burden the slow path, we set a flag at the
first sign of inconsistent data for the flow and drop the later
segment that is inconsistent. Note that this is like data
normalization [8] except that in data normalization, the
later segment is modified to be consistent with previous seg-
ments. If data is inconsistent, then if the flow is diverted, we
simply drop all further packets of the flow. This is a Draco-
nian stance, but one which is consistent with end-node weak
atomicity enforcement.

Finally, if a flow is diverted, the slow path looks for the
concatenation of pieces 2 through K — 1 (of any signa-
ture in the database) in the reassembled stream. If such
a “near match” is found, further packets of the TCP flow
are dropped and the TCP connection is reset. Note that
while looking for such a near match appears to worsen the
false positive rate (because we are not looking for 2 out of
K pieces), one can argue that if the signature is fragmented
across packets, the probability of that happening on innocu-
ous data is very unlikely. However, a careful argument re-
quires a model of how random data splits across packets.
Overall, we do not feel that the false positive rate will in-
crease at all in practice; even if it does it can be combated
by making the signature longer.

It is possible, but not strictly necessary, for the slow path
to do standard data normalization after diversion. In either
case, the state and processing requirements (per flow) of
the slow path are similar to that of a standard IPS doing
data normalization but working only with a small number
of diverted flows.

We assume that header normalization (i.e., setting header
values to canonical values to avoid information leakage or to
prevent attacks) is done both in the fast path and in the
slow path. Such header normalization is neither state nor
computation intensive [8]. Finally, there are many other
details such as when state can be safely released for which
the extensive techniques in [8] can be used.

6. PROOF

In this section, we will establish correctness of Split-Detect
algorithm. More precisely, the combination of the fast path

334

state machine and the slow path processing will never let a
flow containing a signature to be sent to a receiver, despite
the use of evasion techniques by the sender. We assume
that the receiver terminates any TCP flow that attempts to
violate weak atomicity before delivery of inconsistent data.

Assume the IPS splits the signature into K pieces, 1 through
K. We need preliminary definitions.

Definition 1: Consider an IPS that has received a se-
quence S of packets for a TCP flow. A reassembled flow for
sequence S is a possible reassembly of sequence S (including
cases where S is reordered or arbitrary subsets are dropped)
at any endnode enforcing atomicity.

Note that the sequence S is received at the IPS but we
consider the reassembly done at an endnode enforcing atom-
icity. Thus even if the sequence S contains chaff that may
not reach the endnode we still apply the endnode operation
to the sequence. The definition of possible reassembled TCP
streams provides a formal definition of an evasion. An eva-
sion is a TCP connection in which some possible reassembly
of the connection contains a forbidden string S. The next
definition formalizes the notion that the slow path looks for
a near miss of string S.

Definition 2: For any string S, we define the string
Almost(S) to be the string containing Pieces 2 through K —1
of S in sequence.

We now formalize the notion of the critical packet, the
forwarding of which can cause the string S to be delivered
to the endnode, and the game to be lost. Since it is hard
to guarantee that such a packet will be detected (it could
be a large packet containing the last piece) we relax the
definition to say that the critical packet is one that can cause
Almost(S) to be delivered. Clearly, preventing Almost(.S)
will prevent S from being delivered. It is essential that the
fast and slow path conspire together to drop the critical
packet. Thus:

Definition 3: The critical packet for a TCP connection
containing string S with respect to an IPS is the first packet
from the TCP connection received at the IPS such that
Almost(S) is contained in some reassembled TCP stream
for this connection up to and including this packet, but
such that that the string Almost(S) is not contained in any
reassembled T'CP stream not including this packet. The
collaborators of a critical packet are any prior packets in the
TCP connection that are used in some reassembled TCP
stream containing Almost(S) up to and including the criti-
cal packet.

Observe that merely containing a byte of Almost(S) does
not qualify a packet to be a collaborator; it must have se-
quence numbers for this byte that qualify the byte to be
part of a reassembly of Almost(S). We use “some” reassem-
bled stream because there can be more than one possible
way to reassemble a TCP stream in case there is more than
one packet for the same sequence number or overlapping
segments with inconsistent data.

Example: We use (s, P) to denote a TCP packet with se-
quence number s and payload P. With respect to Almost(S) =
ABCDE, suppose a TCP connection sends the first packet
containing (0, AB), the second containing (3, XY), the third
containing (5, F), the fourth containing (3,CD), and the
fifth containing (0, ABC). Then the critical packet is the
fourth packet because while there are two possible reassem-
bled streams up to and including this packet (ABXYE and
ABCDE), there is one reassembled stream containing the

string. Note that while this is also true after the fifth packet,
this is first true after the fourth packet received by the IPS.
The collaborators of the critical packet are the first, third,
and fourth packets.

The following lemma states, intuitively, that the critical
path and its collaborators must either contain a piece or be
sufficiently small to warrant being copied to the slow path.
See Figure 5.

LEMMA 6.1. For any TCP connection and string S, the
critical packet for string S and all collaborators of the critical
packet will either contain a piece of S in its entirety or have
payload length < 2PieceSize — 1.

ProOF. Consider a packet P that is either the critical
packet or a collaborator of the critical packet. Such a packet
must contain some byte of string S that contributes to some
reassembly of string Almost(S) at an endnode satisfying
atomicity. Thus it contains a portion of some Piece 1,1 <
I < K, that is used in this reassembly.

Case 1: If packet P contains any piece in its entirety that
is used in the reassembly of Almost(S) we are done.

Case 2: Packet P does not contain a piece in its entirety
that is used in the reassembly. Thus, it must either contain
a portion of Piece I only, or contain a beginning portion of
Piece I and a portion of Piece I — 1, or a trailing portion
of Piece I and a portion of Piece I + 1. It cannot contain
a complete piece of either Piece I — 1 or Piece I + 1 by
assumption. Thus the part of packet P containing a portion
of String Almost(S) must (in all three cases) be of length
< 2PieceSize — 1.

Now we want to show that P can only contain this por-
tion of Signature S (i.e., it can have no more bytes that
makes this packet “large” and hence undetectable by the
slow path). If it has at least 2PieceSize — 1 bytes and these
bytes are consistent with string Almost(S), we would have a
complete piece which contradicts the assumption of Case 2.
Otherwise, if it has more bytes and these bytes are incon-
sistent with Almost(S), then there must be another packet
that contains the correct bytes for Almost(S) at the corre-
sponding sequence numbers that are part of the reassem-
bly of Almost(S) at some endnode, and these two packets
would violate the weakatomicity delivery assumption at the
endnode. Thus P can only contain portions of Almost(S) of
length < 2PieceSize —1 and no further bytes, and thus must
itself be of length < 2PieceSize — 1. [

The main theorem formalizes the role of the fast path.

THEOREM 1. (Fast Path Diversion) A TCP connec-
tion containing string S in some reassembled stream will be
diverted to the slow path before or while processing the criti-
cal packet in the fast path. Further, if prior to diversion the
fast path processed a collaborator of the critical packet, then
a copy of the collaborator was sent to the slow path.

PrOOF. We prove the second part of the theorem first.
Consider any collaborator packet processed by the fast path
before diversion. By Lemma 6.1, such a packet will ei-
ther contain a piece in its entirety or be of payload size
< 2PieceSize — 1. In either case, the forwarding rules will
ensure that a copy will be sent to the slow path. For the
first part of the theorem, consider 2 cases:

Case 1: A complete piece is sent in its entirety before or
including the critical packet. In that case, by the forwarding

335

rules, after (and including) this packet, the connection will
be diverted to the slow path.

Case 2: A complete piece is not sent before or includ-
ing the critical packet. Then we know that for each piece
I,1 < I < K, a portion of the piece must be sent in a
separate packet up to and including the critical packet. By
Lemma 6.1 and by the fact that we have excluded Case
1, the packet containing the portion of Piece I must be of
size < 2PieceSize — 1. Order these fragments by the time
at which they first arrive at the IPS. Thus fragment 1 is
the first packet containing a portion of the signature that is
processed by the fast path, fragment 2 is the next packet,
and so on.

We claim that between the arrival of Fragment J and
Fragment J+ 1, count for the connection must increment by
1. Suppose not. We know that Fragment J and Fragment
J+1 are small because their payload size is < 2PieceSize— 1.
If count does not increment, then the OOO bit must be
false when J + 1 is received, and so the sequence numbers
must increase in order from Fragment J to Fragment J +
1. But since Fragment J and J + 1 both contain portions
of the signature, then the difference in sequence numbers
from Fragment J to Fragment J + 1 must be less than the
signature length L. But in this case (see state machine),
count must have incremented, a contradiction.

But if between any 2 consecutive fragments, count in-
creases by 1, and there are K — 1 fragments, then count
must have reached K — 1 before the critical packet. But in
that case, by the diversion rules, the connection must have
been diverted after the critical packet is processed by the
fast path. [

The final theorem formalizes the role of the slow path.

THEOREM 2. (Slow Path Blocking): A TCP connec-
tion containing string S in some reassembled stream will
have its critical packet dropped in the slow path (Safety).
Conversely, a TCP connection that does not contain Almost(S)
in some reassembly of the conmection and has mo incon-
sistent data will not have any packets dropped at the IPS
(Liveness).

PrOOF. The safety part of Theorem 2 follows from The-
orem 1. If Theorem 1 is true, then it is clear that after and
including the critical packet, the flow is being processed by
the slow path. Also, any collaborators of the critical packet
forwarded by the fast path are already at the slow path pro-
cessor. Since the flow is now being handled by the slow path,
all remaining (if any) portions of Pieces 2 through K —1 of S
(by the definition of collaborators and Almost(S)) will also
be received by the slow path. If there is more than possible
reassembly of the packets that the slow path has received,
then we know that the slow path will be configured to drop
further packets of this flow and we are done. If, on the other
hand, there is only one reassembly of the packets received so
far, and the slow path has received Pieces 2 through K —1, it
must reassemble these pieces to put them in sequence. Since
the slow path algorithm is configured to drop all subsequent
packets if it finds Pieces 2 through K —1 in sequence, then at
least the critical packet will not have been forwarded before
the Slow Path begins dropping. Hence, by the definition of
the critical packet, string Almost(S) (and hence string S)
cannot reassembled at the endnode.

The liveness part follows trivially from the fact that the
slow path only drops packets from a connection when it

either finds more than one possible TCP reassembly (which
can only happen if the connection has inconsistent data),
or if the slow path finds Pieces 2 through K — 1 of some
signature in sequence in its reassembly of the connection. [

7. RESULTS

Beyond correctness, the motivation for Split-Detect is per-
formance. In this section, we describe preliminary results
that indicate that Split-Detect can achieve a speedup of 10,
and a memory compression of between 10 and 100, making it
possible to implement it on-chip at 20 Gbps. We also show
robustness of the result across time (same packet capture
point, different times) and space (different packet capture
points, different networks).

In the trace-driven simulations, flow states are created
when the first packet whose payload contains at most 2 %
PieceSize — 2 bytes is encountered for the flow, as described
earlier. Flow states are aged out if no packet is received
for the connection for at least 2 minutes. Figure 6 provides
statistics about the traces we analyzed. All of them except
“A Large enterprise” are publicly available.

The results that follow are described in terms of tables
with the following headings for columns. Packets with be-
tween 1 and Small_Thresh bytes (inclusive) in their TCP
payloads are considered small, where Small_Thresh is equal
to 2PieceSize — 2. The count at which redirection occurs) is
equal to K — 1, where Num.Pieces = K. Max flows is the
maximum number of flows in the fast path’s flow table at
any time during the simulation over the packet trace. “%
flows” is equal to Max flows divided by the total number of
flows in the trace. To calculate the total number of flows in
the trace, we ran a separate program that simply created a
flow entry the first time a packet was seen for a new flow
(regardless of its size), and aged out entries when no pack-
ets had been seen for the connection for 2 minutes. This is
intended to represent the number of flow states that would
be required by a traditional IPS system for the same traffic.

In the results we report separately the fraction of pack-
ets/bytes copied to the slow path, and the total fraction
of packets/bytes that were diverted (either copied or redi-
rected). This latter set of numbers represents the total load
on the slow path. Our simulations are effectively performed
with no pieces installed. A more complete simulation de-
pending upon packet content and signatures is difficult to
perform using public sources due to privacy concerns.

Our first experiment examines the effect of varying the
number of pieces on the two metrics of interest: the diver-
sion ratio (fraction of traffic shunted to slow path) and the
amount of state kept in the fast path (fraction of connec-
tions fast path keeps state for). We used a single OC-48
trace and varied both the Signature length and the number
of pieces: we stay within the range of Signature lengths used
in practice, and never decrease the piece size below 4 bytes.

In Figure 7 we vary the signature length and the number
of pieces. All other parameters (e.g., small packet thresh-
old, which is 2PieceSize — 2) can be derived from these two
parameters. The overall message is that using a reasonable
small packet threshold of 8 to 16 bytes for the common case
of 40 byte signatures with 4 to 8 pieces results in keeping
state for only 5% of the flows and diverts 8% to 12% of the
traffic in either bytes or packets, providing a factor of 10 im-
provement in throughput. This implies that the slow path
can run at 2 Gbps, which is easily achievable today.

336

Similarly, keeping 5% of 1 million flows (not the numbers
in the traces but the numbers aimed for by an IPS today)
results in keeping track of 50,000 flows which at 150 bits
per flow (100 bits for flow ID and 48 bits for state) for the
state machine described in Section 5.4 results in 7.5 Mbits of
memory. 7.5 Mbits is easily achievable using on-chip mem-
ory, allowing a single chip implementation of the fast path
state machine. For graceful degradation, if the fast path ex-
hausts its on chip memory, all subsequent flows that contain
a small packet have to be diverted to the slow path.

igure 8 compares one of the previous results against one
that we consider to be a poor choice of parameters. In gen-
eral, breaking a large signature into only a few large pieces is
bad for two reasons. First, it leads to a larger Small_Thresh
value, and thus more packets are considered small by the fast
path. Second, it leads to a smaller value that count must
reach before the rest of the flow is redirected to the slow
path.

For all of the remaining results, we report only the results
for PieceSize = 6 (thus Small_Thresh = 10) and K = 5,
which is possible for signatures containing at least 30 bytes.
Although the table is not shown, we compared results using
the same parameters, but for traces collected from the same
link (an OC-48 link) at three different times, each taken
several months apart. The intent was to determine whether
there was any obvious trend in the traffic characteristics
indicating that the performance of Split-Detect changes over
time. The results for the August 14, 2002 and January 15,
2003 are similar. The fraction of packets sent to the slow
path for the April 24, 2003 trace is noticeably lower. We
attribute this to the fact that it was taken at a different
time of day, when the total traffic load was lower. The
results show that in all cases the fraction of diverted traffic
stays under 10 %, as needed for our speedup arguments, but
can be lower (as low as 3 %) during some periods.

So far the results have been for a single wide-area trace.
Figure 9 uses the same parameter values and reports the
results for all the traces shown in Figure 6. Figure 9 shows
that the results seem fairly invariant to the type of trace
used. The University and large enterprise traces we used, in
particular, are more representative of enterprises where an
IPS is more likely to be deployed.

Finally, we note that with DFA implementations of string
matching (such as Aho-Corasick [1]), the cost of string match-
ing increases linearly with the bytes in a string. Thus in-
creasing the number of pieces (without changing the overall
bytes matched) should not greatly increase complexity.

8. CLEAN SLATE APPROACHES

While much of this paper deals with existing TCP endnodes,
we have argued for a small change in TCP endnodes (weak
atomicity). Given that there is a general dissatisfaction with
the status quo as evinced by proposals such as FIND to
rearchitect the Internet [7], it is worth posing the question:
what other changes in transport protocols could make the
job of detecting signatures easier in the network?

Even with the assumption of weak atomicity in endnodes
and exact signatures, the solution described in this paper
had the disadvantage of only detecting Almost(S) instead of
the exact signature S. Recall that Almost(S) is S with the
first and last pieces missing. While one can argue that if S
is long enough, this does not change the false positive rate
appreciably, this is difficult to sell to security analysts.

Trace | Duration (min) | Avg. pkts/sec | Avg. bits/sec | % of TCP packets

CAIDA 2002-08-14 09:00 5 75 K 344 M 93%
CAIDA 2003-01-15 09:59 5 59 K 326 M 88%
CAIDA 2003-04-24 00:55 5 23 K 92 M 91%

A large enterprise 2.7 6 K 25 M 90%

Univ. Florida 1.5 39 K 223 M 91%
Lawrence-Berkeley National Lab 60 2 K ™M 97%

Figure 6: Summary data for the packet traces analyzed

| Sig Length [PieceSize | Num. Pieces | Small Thresh | Max flows | % flows | % pkts/bytes copied | % pkts/bytes diverted

40 10 4 18 34494 6.76% 0.51% / 0.04% 10.85% / 9.98%
40 8 5 14 30482 5.97% 0.51% / 0.04% 9.06% / 8.31%
40 5 8 8 22645 4.44% 0.46% / 0.04% 6.02% / 5.29%
40 4 10 6 18830 3.69% 0.38% / 0.03% 3.43% / 4.04%
30 10 3 18 34494 6.76% 0.38% / 0.03% 12.66% / 12.01%
30 6 5 10 24215 4.75% 0.42% / 0.03% 8.03% / 7.20%
30 5 6 8 22645 4.44% 0.42% / 0.03% 6.88% / 6.24%
30 3 10 4 7837 1.54% 0.15% / 0.01% 2.00% / 2.41%
20 5 4 8 22645 4.44% 0.34% / 0.03% 8.39% / 7.95%
20 4 5 6 18830 3.69% 0.31% / 0.02% 5.48% / 6.38%

Figure 7: Effect of varying parameters on the same packet trace

However, the following radical change in the transport
protocol can remedy this. Imagine that the transport pro-
tocol repeats the last X bytes of each packet in the first X
bytes of the next packet. Then it follows that any string S
of length no more than X will be contained in its entirety
in some packet. If string S happens to split across packet
J, it will be found in its entirety in packet J + 1. If X is
as large as the piece size (say 10 bytes), then a very simple
fast path state machine can divert a flow to the slow path if
any piece is detected.

The Clean Slate approach also suggests the following im-
plementation alternative to architectural revolution. Send
the last X bytes and the first X bytes of every packet to the
slow path. If the average packet size is say 200 bytes and X
is 10, this will add a further 10% overhead to the diverted
traffic. Finally, if the Slow Path detects Almost(S), then
these additional bytes can be examined to confirm that S
was sent before dropping packets in the connection.

9. CONCLUSION

This paper is a gentle first volley suggesting an alternative
to full state reassembly and normalization at high speeds
using the ideas of cutting signatures into pieces that are
looked for as well as looking for unusual small packet activity
indicative of attempts to cut between pieces. While much
remains to be done:

e The experimental data seems to support a speedup of
10, and a state compression of 10 and 20.

e More compression appears possible via compact data
structures (e.g., Bloom Filters) in return for diverting
slightly more than the required number of flows.

The endnode atomicity required by Split-Detect may seem
too high a price to pay. However, we believe it is possible

337

to prove a lower bound to show that detecting overlapping
fragments in the network requires almost as much memory
as data normalization. If this is true, then endnode atom-
icity may be required for high performance reassembly and
normalization. From our preliminary investigation, weak
atomicity appears easy to implement after adding one MTU
worth of extra buffering and a small amount of extra process-
ing in rare cases. Note that the assumption that Almost(S)
is detected and not S can be remedied by diverting some of
the first and last bytes of every packet.

Finally, our paper has dealt only with exact matching
but most IPS vendors support regular expressions. First,
note that while regular expressions are commonly used to
abstractly describe wvulnerabilities, exact strings suffice to
describe exploits which may suffice for blocking at switches
in the immediate aftermath of an attack such as a worm.

Further, we have already identified a class of regular ex-
pressions that can be handled by Split-Detect techniques.
These are regular expressions that use the OR operator (i.e.,
A|B|C) and the . operator (any single character). Thus we
can do regular expressions of the form ((A|B)..(C|D)..(E|F),
etc.). These can be broken into pieces; all we need is the fast
path to be able to match these expressions using standard
DFA techniques. In particular, we can handle upper and
lower case, which is very common in the IPS rules.

Also, if the regular expression has a form such as X * Y,
the fast path can send a copy of string X or Y (whichever is
detected first) without diverting the flow. When the other
string is seen, the flow can diverted to the slow path. Our
preliminary study of a commercial IPS database as well as
the Clam AV database shows that 60 to 80% of the rules
fit these categories. We are working on further extensions
to this, and on techniques to rewrite regular expressions to
make them fit the classes we can handle.

Changes to endnodes and to the use of regular expres-

Sig. Length | PieceSize | Num. Pieces | Small_Thresh | Max flows | % flows | % pkts/bytes diverted
30 6 5 10 24215 4.75% 8.03% / 7.20%
48 16 3 30 48026 9.41% 15.18% / 13.76%

Figure 8: Effect of poorly chosen parameters on the fraction of diverted traffic

Trace | Max flows | % of flows | % pkts / bytes copied | % of pkts / bytes copied /redirected |

0.42% / 0.03%

8.03% / 7.20%

0.38% / 0.03%

881% / 11.79%

0.54% / 0.04%

5.68% / 5.56%

CAIDA OC-48 2002-08-14 24215 4.75%

A Large enterprise 1743 5.00%

Univ. Florida 6657 7.66%
Lawrence-Berkeley National Lab 760 20.92%

0.21% / 0.02%

1.52% / 3.07%

Figure 9: Variation in the diverted traffic across traces taken from different networks

sions are clearly difficult to popularize. But when considered
against the backdrop of an even more difficult problem, that
of detecting attack signature at very high speeds, perhaps
such changes seem more reasonable.

10. ACKNOWLEDGEMENTS

We are grateful to Jonathan Chang, Tom Edsall, Mike
Hall, Pere Monclus, Sushil Singh, and Sumeet Singh of Cisco
Systems for fruitful discussions. George Varghese would also
like to acknowledge NSF Grant ANI 0137102 and a grant
from NIST that helped stimulate the direction of the current
research, which was done entirely at Cisco.

11.

1

REFERENCES

Alfred V. Aho and Margaret J. Corasick. “Efficient string
matching: An aid to bibliographic search.” Communications of
the ACM 18(6):333-340, June 1975.

[2] N. Alon, Y. Matias, and M. Szegedy. “The space complexity of
approximating the frequency moments”. Proceedings 28th ACM
Symp. on Theory of Computing, pages 20-29, May 1996.

[3] G. Appenzeller, I. Keslassy, and N. McKeown “Sizing Router
Buffers”. Proceedings of ACM SIGCOMM, 2004.

[4] D. Clark, “The Structuring of Systems Using Upcalls”.
Proceedings of the 10th ACM Symposium on Operating
Systems Principles, pp. 171-180, December 1-4 1985.

[5] S. Dharmapurikar, P. Krishnamurthy, T. Sproull, and J. W.
Lockwood, “Deep packet inspection using parallel Bloom filters.
Hot Interconnects, Aug. 2003.

[6] S. Dharmapurikar, V. Paxson, “Robust TCP stream reassembly
in the presence of adversaries”. Proceedings of the 14th
USENIXSecurity Symposium, Baltimore, 2005.

[7] “The Future of the Internet”. Red Herring, April 10th, 2006.

338

[8] M. Handley, C. Kreibich, and V. Paxson. “Network Intrusion
Detection: Evasion, Traffic Normalization, and End-to-End
Protocol Semantics”. Proc. USENIX Security Symposium, May
2001.

[9] K. Levchenko, R. Paturi, and G. Varghese. “On the Difficulty of
Scalably Detecting Network Attacks”. Proc. of the Eleventh
ACM Conference on Computer and Communication Security,
October 2004.

[10] Nikto, http://www.cirt.net/code/nikto.shtml

[11] NSS Group. Intrusion Prevention Systems (IPS) Group Test
(Edition 3), NSS Group, August 2005, http://www.nss.co.uk

[12] V. Paxson, “Bro: A System for Detecting Network Intruders in
Real-Time”. Computer Networks, 31(23-24), pp. 2435-2463, 14
Dec 1999

[13] V. Paxson and M. Handley, “Defending Against NIDS Evasion
using Traffic Normalizers”. Second International Workshop on
the Recent Advances in Intrusion Detection, September 1999.

[14] T. Ptacek and T. Newsham. “Insertion, Evasion and Denial of
Service: Eluding Network Intrusion Detection”, Secure
Networks, Inc., Jan. 1998.

[15] M. Roesch, “Snort - Lightweight Intrusion Detection for
Networks”, LISA 99.

[16] C. Shannon, D. Moore, k. claffy, “Characteristics of
Fragmented IP Traffic on Internet Links”, Workshop on
Passive and Active Measurement, 2001.

[17] Dug Song, 2002, Fragroute,
http://www.monkey.org/ dugsong/fragroute/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

