
Remote Physical Device Fingerprinting
Tadayoshi Kohno, Andre Broido, and K.C. Claffy

Abstract—We introduce the area of remote physical device fingerprinting, or fingerprinting a physical device, as opposed to an

operating system or class of devices, remotely, and without the fingerprinted device’s known cooperation. We accomplish this goal by

exploiting small, microscopic deviations in device hardware: clock skews. Our techniques do not require any modification to the

fingerprinted devices. Our techniques report consistent measurements when the measurer is thousands of miles, multiple hops, and

tens of milliseconds away from the fingerprinted device and when the fingerprinted device is connected to the Internet from different

locations and via different access technologies. Further, one can apply our passive and semipassive techniques when the fingerprinted

device is behind a NAT or firewall, and also when the device’s system time is maintained via NTP or SNTP. One can use our

techniques to obtain information about whether two devices on the Internet, possibly shifted in time or IP addresses, are actually the

same physical device. Example applications include: computer forensics; tracking, with some probability, a physical device as it

connects to the Internet from different public access points; counting the number of devices behind a NAT even when the devices use

constant or random IP IDs; remotely probing a block of addresses to determine if the addresses correspond to virtual hosts, e.g., as

part of a virtual honeynet; and unanonymizing anonymized network traces.

Index Terms—Network-level security and protection, privacy.

�

1 INTRODUCTION

THERE are now a number of powerful techniques for

remote operating system fingerprinting, i.e., techniques for
remotely determining the operating systems of devices on

the Internet [2], [3], [5], [35]. We push this idea further and

introduce the notion of remote physical device fingerprinting,

or remotely fingerprinting a physical device, as opposed to

an operating system or class of devices, without the

fingerprinted device’s known cooperation. We accomplish

this goal to varying degrees of precision by exploiting

microscopic deviations in device hardware: clock skews.

1.1 Classes of Fingerprinting Techniques

We consider three main classes of remote physical device

fingerprinting techniques: passive, active, and semipassive.

The first two have standard definitions—to apply a passive

fingerprinting technique, the fingerprinter (measurer, attacker,

adversary) must be able to observe traffic from the device (the

fingerprintee) that the attacker wishes to fingerprint, whereas

to apply an active fingerprinting technique, the fingerprinter

must have the ability to initiate connections to the

fingerprintee. Our third class of techniques, which we refer

to as semipassive fingerprinting techniques, assumes that

after the fingerprintee initiates a connection, the fingerprin-

ter has the ability to interact with the fingerprintee over that

connection; e.g., the fingerprinter is a Web site with which

the device is communicating, or is an ISP in the middle

capable of modifying packets en route.

Each class of techniques has its own advantages and

disadvantages. For example, passive techniques are com-

pletely undetectable to the fingerprinted device, passive

and semipassive techniques can be applied even if the

fingerprinted device is behind a NAT or firewall, and

semipassive and active techniques can potentially be

applied over longer periods of time, e.g., after a laptop

connects to a Web site and the connection terminates, the

Web site can still continue to run active measurements.

1.2 Methodology

For all our methods, we stress that the fingerprinter does

not require any modification to or cooperation from the

fingerprintee, e.g., we tested our techniques with default

Red Hat 9.0, Debian 3.0, FreeBSD 5.2.1, OpenBSD 3.5, OS X

10.3.5, Windows XP SP2, and Windows for Pocket PC 2002

installations.1 In Table 1, we summarize our preferred

methods for fingerprinting the most popular operating

systems.

Our preferred passive and semipassive techniques

exploit the fact that most modern TCP stacks implement

the TCP timestamps option from RFC 1323 [18] whereby, for

performance purposes, each party in a TCP flow includes

information about its perception of time in each outgoing

packet. A fingerprinter can use the information contained

within the TCP headers to estimate a device’s clock skew

and, thereby, fingerprint a physical device. We stress that

one can use our TCP timestamps-based method even when

the fingerprintee’s system time is maintained via NTP [25].

While most modern operating systems enable the TCP

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 2, NO. 2, APRIL-JUNE 2005 93

. T. Kohno is with the Department of Computer Science and Engineering,
University of California at San Diego, 9500 Gilman Dr., La Jolla,
California 92093. E-mail: tkohno@cs.ucsd.edu.

. A. Broido and K.C. Claffy are with the Cooperative Association for Internet
Data Analysis, San Diego Supercomputer Center, University of California
at San Diego, 9500 Gilman Dr., La Jolla, California 92093.
E-mail: {broido, kc}@caida.org.

Manuscript received 25 Mar. 2005; accepted 11 Apr. 2005; published online 3
June 2005.
For information on obtaining reprints of this article, please send e-mail to:
tdsc@computer.org, and reference IEEECS Log Number TDSCSI-0040-0305.

1. One can apply our techniques to the default installs of other versions
of these operating systems; here, we just mention the most recent stable
versions of the operating systems that we analyzed.

1545-5971/05/$20.00 � 2005 IEEE Published by the IEEE Computer Society

timestamps option by default, Windows 2000 and XP

machines do not. Therefore, we developed a trick to

convince Microsoft Windows 2000 and XP machines to

use the TCP timestamps option in Windows-initiated flows;

the trick involves an intentional violation of RFC 1323 on

the part of a semipassive or active adversary. In addition to

our TCP timestamps-based approach, we consider passive

fingerprinting techniques that exploit the difference in time

between how often other periodic activities are supposed to

occur and how often they actually occur, and we show how

one might use a Fourier transform on packet arrival times to

infer a device’s clock skew. Since we believe that our TCP

timestamps-based approach is currently our most general

passive technique, we focus on the TCP timestamps

approach in this paper.
An active adversary could also exploit the ICMP protocol

to fingerprint a physical device. Namely, an active adver-

sary could issue ICMP Timestamp Request messages to the

fingerprintee and record a trace of the resulting ICMP

Timestamp Reply messages. If the fingerprintee does not

maintain its system time via NTP or does so only

infrequently and if the fingerprintee replies to ICMP

Timestamp Requests, then an adversary analyzing the

resulting ICMP Timestamp Reply messages will be able to

estimate the fingerprintee’s system time clock skew. Default

Red Hat 9.0, Debian 3.0, FreeBSD 5.2.1, OpenBSD 3.5, and

Windows 2000 and XP and Pocket PC 2002 installations all

satisfy the above preconditions.

1.3 Parameters of Investigation

Toward developing the area of remote physical device

fingerprinting via remote clock skew estimation, we must

address the following set of interrelated questions:

1. For what operating systems are our remote clock skew
estimation techniques applicable?

2. Can one expect two machines to have measurably
different clock skews? Specifically, what is the
distribution of clock skews across multiple finger-
printees and what is the resolution of our clock skew
estimation techniques?

3. For a single fingerprintee, can one expect the clock
skew estimate of that fingerprintee to be relatively
constant over long periods of time, and through
reboots, power cycles, and periods of down time?

4. What are the effects of a fingerprintee’s access
technology (e.g., wireless, wired, dialup, cable mod-
em) on the clock skew estimates for the device?

5. How are the clock skew estimates affected by
the distance between the fingerprinter and the
fingerprintee?

6. Are the clock skew estimates independent of the
fingerprinter? When multiple fingerprinters are mea-
suring a single fingerprintee at the same time, will
they all output (approximately) the same skew
estimates?

7. How much data do we need to be able to remotely
make accurate clock skew estimates?

Question 6 is pertinent because common fingerprinters
will probably use NTP-based time synchronization when
capturing packets, as opposed to more precise CDMA or
GPS-synchronized timestamps. Answers to the above
questions will help determine the efficacy of our physical
device fingerprinting techniques.

1.4 Experiments and High-Level Results

To understand and refine our techniques, we conducted

experiments with machines that we controlled and that ran

a variety of operating systems, including popular Linux,

BSD, and Microsoft distributions. In all cases, we found that

we could use at least one of our techniques to estimate clock

skews of the machines, and that we required only a small

amount of data, though the exact data requirements

depended on the operating system in question. For the

most popular operating systems, we observed that when

the system did not use NTP or SNTP-based time synchro-

nization, then the TCP timestamps-based and the ICMP-

based techniques yielded approximately the same skew

estimates. Furthermore, for the most popular operating

systems we observed that our TCP timestamps-based skew

estimates were approximately the same regardless of

whether or not a host used NTP-based time synchroniza-

tion. These results, coupled with details that we describe in

the body, motivated us to use the TCP timestamps-based

method in most of our experiments. We survey some of our

experiments here.

To understand the effects of topology and access

technology on our skew estimates, we fixed the location

of the fingerprinter and applied our TCP timestamps-based

technique to a single laptop in multiple locations, on both

North American coasts, from wired, wireless, and dialup

locations, and from home, business, and campus environ-

ments (Table 5). All clock skew estimates for the laptop

were close—the difference between the maximum and the

minimum skew estimate was only 0.67 ppm, or 0.67 micro-

seconds per second. We also simultaneously measured the

94 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 2, NO. 2, APRIL-JUNE 2005

TABLE 1
Our Main Clock Skew-Based Physical Device Fingerprinting Techniques

A “Yes” in the NTP column means that one can use the attack regardless of whether the fingerprintee maintains its system time with NTP [25]. One
can use passive and semipassive techniques when the fingerprintee is behind a NAT or current generation firewall.

clock skew of the laptop and another machine from

multiple PlanetLab nodes throughout the world, as well

as from a machine of our own with a CDMA-synchronized

Dag card [1], [12], [15], [23] for taking network traces with

precise timestamps (Table 6). With the exception of the

measurements taken by a PlanetLab machine in India (over

300 ms round trip time away), for each experiment, all the

fingerprinters (in North America, Europe, and Asia)

reported skew estimates within only 0.56 ppm of each

other. These experiments suggest that, except for extreme

cases, the results of our clock skew estimation techniques

are independent of access technology and topology.

Toward understanding the distribution of clock skews

across machines, we applied the TCP timestamps technique

to the devices in a trace collected on one of the US’s Tier 1

OC-48 links (Fig. 2). We also measured the clock skews of

69 (seemingly) identical Windows XP SP1 machines in one

of our institution’s undergraduate computing facilities

(Fig. 3). The latter experiment, which ran for 38 days, as

well as other experiments, show that the clock skew

estimates for any given machine are approximately constant

over time, but that different machines can have detectably

different clock skews. Last, we use the results of these and

other experiments to argue that the amount of data (packets

and duration of data) necessary to perform our skew

estimation techniques is low, e.g., see Tables 3 and 5.

1.5 Applications and Additional Experiments

To test the applicability of our techniques, we applied our

techniques to a honeyd [31] virtual honeynet consisting of

100 virtual Linux 2.4.18 hosts and 100 virtual Windows XP

SP1 hosts. Our experiments showed with overwhelming

probability that the TCP flows and ICMP timestamp

responses were all handled by a single machine as opposed

to 200 different machines. We also applied our techniques

to a network of five virtual machines running under

VMware Workstation [4] on a single machine. In this case,

the clock skew estimates of the virtual machines are

significantly different from what one would expect from

real machines (the skews were large and not constant over

time; Fig. 5). An application of our techniques, or natural

extensions, might therefore be to remotely detect virtual

honeynets.

Another application of our techniques is to count the

number of hosts behind a NAT, even if those hosts use

random or constant IP IDs to counter Bellovin’s attack [7],

even if all the hosts run the same operating system, and

even if not all of the hosts are up at the same time.

Furthermore, when both our techniques and Bellovin’s

techniques are applicable, we expect our approach to

provide a much higher degree of resolution. One could

also use our techniques for forensics purposes, e.g., to argue

whether or not a given laptop was connected to the Internet

from a given access location. One could also use our

techniques to help track laptops as they move, perhaps as

part of a Carnivore-like project (here, we envision our skew

estimates as one important component of the tracking; other

components could be information gleaned from existing

operating system fingerprinting techniques, usage charac-
teristics, and other heuristics). One can also use our

techniques to catalyze the unanonymization of prefix-

preserving anonymized network traces [36], [37].

1.6 Protecting against Our Current Attacks and
Future Directions

Although the physical device fingerprinting techniques that

we introduce in this paper will likely remain applicable to

current generation systems, we suspect that future genera-

tion security systems might try to resist some of our

fingerprinting techniques. To aid the developers of future
systems, we explore some possible mechanisms for protect-

ing against our current fingerprinting techniques. As a

simple solution, a device might simply ignore ICMP

Timestamp Requests and not enable the TCP timestamps

option in outgoing TCP packets. A device might also choose

to maintain its system time via NTP and somehow reduce

the skew in its TCP timestamps clock. A device might also

randomize or mask the TCP timestamps that it includes in

each outgoing TCP packet. We then propose several

possible research directions for fingerprinting physical

devices that implement some of our protection mechanisms.

2 BACKGROUND AND RELATED WORK

It has long been known that seemingly identical compu-

ters can have disparate clock skews. The NTP [25]

specification describes a method for reducing the clock
skews of devices’ system clocks, though over short

periods of time an NTP-synchronized machine may still

have slight clock skew. In 1998, Paxson [29] initiated a line

of research geared toward eliminating clock skew from

network measurements, and one of the algorithms we use

is based on a descendent of the Paxson paper by Moon et

al. [26]. Further afield, though still related to clock skews,

Pásztor and Veitch [28] have created a software clock on a

commodity PC with high accuracy and small clock skew.

One fundamental difference between our work and

previous work is our goal: Whereas all previous works

focus on creating methods for eliminating the effects of
clock skews, our work exploits and capitalizes on the

effects of clock skews.

Well-known operating system fingerprinting tools in-

clude nmap [2], xprobe2 [5], p0f [3], and RING [35]. The

nmap and p0f tools use TCP timestamps to remotely obtain

the uptimes of some systems, per [21]. Anagnostakis et al.

[6] use ICMP Timestamp Requests to study router queuing

delays. With respect to tracking physical devices, it is well

known that a network card’s MAC address is supposed to

be unique and, therefore, could serve as a fingerprint of a

device assuming that the adversary can observe the device’s

MAC address and that the owner of the card has not
changed the MAC address. The main advantage of our

techniques over a MAC address-based approach is that our

techniques are mountable by adversaries thousands of

miles and multiple hops away. One could also use cookies

or any other persistent data to track a physical device, but

such persistent data may not always be available to an

KOHNO ET AL.: REMOTE PHYSICAL DEVICE FINGERPRINTING 95

adversary, perhaps because the user is privacy-conscious

and tries to minimize storage and transmission of such data,

or because the user never communicates that data un-

encrypted. The amateur radio community has indepen-

dently developed a tool for fingerprinting radios that

exploits a radio’s frequency characteristics [32].
Our work in Section 11 builds on previous network

spectroscopy research in detecting link-layer technologies
(ATM, DSL, cable modems) by delay quantization of
IP packet traffic [10] and on operating system fingerprinting
by DNS update traffic [11]. In [9], we use traceroute delays
to fingerprint routers. Partridge et al. [27] use Lomb
periodograms to detect the presence of traffic that is
otherwise not observed on a network via the spikes in the
spectral density that correspond to intervals occupied by
missing packets. Hussain et al. [17] use the power
distribution in the Fourier spectrum of autocorrelation
functions of binned packet traffic to distinguish between
multiple-source and single-source denial-of-service attacks.
In Section 11, we propose using a full precision (without
binning) Fourier transform of packet arrival times to extract
clock skews from periodic processes.

An extended abstract of this paper appears at the 2005
IEEE Symposium on Security and Privacy [20].

3 CLOCKS AND CLOCK SKEWS

When discussing clocks and clock skews, we build on the
nomenclature from the NTP specification [25] and from
Paxson [29]. A clock C is designed to represent the amount of
time that has passed since some initial time i½C�. Clock C’s
resolution, r½C�, is the smallest unit by which the clock can be
incremented, and we refer to each such increment as a tick.
A resolution of 10 ms means that the clock is designed to
have 10 ms granularity, not that the clock is always
incremented exactly every 10 ms. Clock C’s intended
frequency, Hz½C�, is the inverse of its resolution; e.g., a clock
with 10 ms granularity is designed to run at 100 Hz. For all
t � i½C�, let R½C�ðtÞ denote the time reported by clock C at
time t, where t denotes the true time as defined by national
standards. The offset of clock C, off½C�, is the difference
between the time reported by C and the true time, i.e.,
off½C�ðtÞ ¼ R½C�ðtÞ � t for all t � i½C�. A clock’s skew, s½C�, is
the first derivative of its offset with respect to time, where
we assume for simplicity that R½C� is a differentiable
function in t. We report skew estimates in microseconds
per second (�s=s) or, equivalently, parts per million (ppm).
As we shall show, and as others have also concluded [29],
[26], [34], it is often reasonable to assume that a clock’s skew
is constant. When the clock in question is clear from context,
we shall remove the parameter C from our notation, e.g.,
s½C� becomes s.

A given device can have multiple, possibly independent,
clocks. For remote physical device fingerprinting, we exploit
two different clocks: the clock corresponding to a device’s
system time, and a clock internal to a device’s TCP network
stack, which we call the device’s TCP timestamps option clock
or TSopt clock. We do not consider the hardware bases for
these clocks here since our focus is not on understanding
why these clocks have skews, but on exploiting the fact

these clocks can have measurable skews on popular current
generation systems.

3.1 The System Clock

To most users of a computer system, the most visible clock
is the device’s system clock, Csys, which is designed to
represent the real time as defined by national standards.
Although the system clocks on professionally adminis-
tered machines are often approximately synchronized with
true time via NTP [25] or, less accurately, via SNTP [24],
we stress that it is much less likely for the system clocks
on nonprofessionally managed machines to be externally
synchronized. This lack of synchronization is because the
default installations of most of the popular operating
systems that we tested do not synchronize the hosts’
system clocks with true time or, if they do, they do so only
infrequently. For example, default Windows XP Profes-
sional installations only synchronize their system times
with Microsoft’s NTP server when they boot and once a
week thereafter. Default Red Hat 9.0 Linux installations do
not use NTP by default, though they do present the user
with the option of entering an NTP server. Default Debian
3.0, FreeBSD 5.2.1, and OpenBSD 3.5 systems, under the
configurations that we selected (e.g., “typical user”), do
not even present the user with the option of enabling
ntpd. For such a nonprofessionally administered machine,
if an adversary can learn the values of the machine’s
system clock at multiple points in time, the adversary will
be able to infer information about the device’s system clock
skew, s½Csys�.

3.2 The TCP Timestamps Option Clock

RFC 1323 [18] specifies the TCP timestamps option to the TCP
protocol. A TCP flow will use the TCP timestamps option if
the network stacks on both ends of the flow implement the
option and if the initiator of the flow includes the option in
the initial SYN packet. All modern operating systems that
we tested implement the TCP timestamps option. Of the
systems we tested, Microsoft Windows 2000 and XP are the
only ones that do not include the TCP timestamps option in
the initial SYN packet (Microsoft Windows Pocket PC 2002
does include the option when initiating TCP flows). In
Section 4, we introduce a trick for making Windows 2000
and XP-initiated flows use the TCP timestamps option.

For physical device fingerprinting, the most important
property of the TCP timestamps option is that if a flow uses
the option, then a portion of the header of each TCP packet
in that flow will contain a 32-bit timestamp generated by the
creator of that packet. The RFC does not dictate what values
the timestamps should take, but does say that the time-
stamps should be taken from a “virtual clock” that is “at
least approximately proportional to real time [18];” the RFC
1323 PAWS algorithm does stipulate (Section 4.2.2) that the
resolution of this virtual clock be between 1ms and 1 second.
We refer to this “virtual clock” as the device’s TCP
timestamps option clock, or its TSopt clock Ctcp. There is no
requirement that a device’s TSopt clock and its system clock
be correlated. Moreover, for popular operating systems like
Windows XP, Linux, and FreeBSD, a device’s TSopt clock
may be unaffected by adjustments to the device’s system
clock via NTP. Table 2 lists the intended frequencies,

96 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 2, NO. 2, APRIL-JUNE 2005

Hz½Ctcp�, for several popular operating systems.2 Most
systems reset their TSopt clock to zero upon reboot; on
these systems i½Ctcp� is the time at which the system booted.
If an adversary can learn the values of a device’s TSopt clock
at multiple points in time, then the adversary may be able to
infer information about the device’s TSopt clock skew, s½Ctcp�.

4 EXPLOITING THE TCP TIMESTAMPS OPTION

In this section, we consider 1) how an adversary might
obtain samples of a device’s TSopt clock at multiple points
in time and 2) how an adversary could use those samples to
fingerprint a physical device. We consider the efficacy of
and the data requirements for our approach in later
sections. We assume for now that there is a one-to-one
correspondence between physical devices and IP addresses,
and defer to Section 9 a discussion of how to deal with
multiple active hosts behind a NAT; in this section, we do
consider NATs with a single active device behind them.

4.1 The Measurer

The measurer can be any entity capable of observing TCP
packets from the fingerprintee, assuming that those packets
have the TCP timestamps option enabled. The measurer
could therefore be the fingerprintee’s ISP, or any tap in the
middle of the network over which packets from the device
travel, e.g., we apply our techniques to a trace taken on a
major Tier 1 ISP’s backbone OC-48 links. The measurer
could also be any system with which the fingerprintee
frequently communicates; prime examples of such systems
include a search engine like Google, a news Web site, and a
click-through ads service that displays content on a large
number of Web sites. If the measurer is active, then the
measurer could also be the one to initiate a TCP flow with

the fingerprintee, assuming that the device is reachable and
has an open port. If the measurer is semipassive or active,
then it could make the flows that it observes last abnormally
long, thereby giving the measurer samples of the finger-
printee’s clock over extended periods of time.

4.2 A Trick for Measuring Windows 2000 and
XP Machines

We seek the ability to measure TSopt clock skews of
Windows 2000 and XP machines even if those machines
are behind NATs and firewalls. More generally, we are
interested in measuring the TSopt clock skews of
Windows machines when we are limited to analyzing
flows initiated by the Windows machines. Unfortunately,
because Windows 2000 and XP machines do not include
the TCP timestamps option in their initial SYN packets,
the TCP timestamps RFC [18] mandates that none of the
subsequent packets in Windows-initiated flows can
include the TCP timestamps option. Thus, assuming that
all parties correctly implement the TCP RFCs, a passive
adversary will not be able to exploit the TCP timestamps
option with Windows 2000/XP-initiated flows.

If the adversary is semipassive, we observe the following
trick. Assume for simplicity that the adversary is the device
to whom the Windows machine is connecting. After
receiving the initial SYN packet from the Windows
machine, the adversary will reply with a SYN/ACK, but
the adversary will break the RFC 1323 specification and include
the TCP timestamps option in its reply. After receiving such a
reply, our Windows 2000 and XP machines ignored the fact
that they did not include the TCP timestamps option in
their initial SYN packets, and included the TCP timestamps
option in all of their subsequent packets. An adversary can
therefore apply our techniques to estimate the TSopt clock
skews of Windows machines even if they are behind NATs
or firewalls.

As an extension, we note that the adversary does not
have to be the device to whom the Windows machine is
connecting. Rather, the adversary simply needs to be able
to mount a “device-in-the-middle” attack and modify
packets such that the Windows machine receives one with
the TCP timestamps option turned on. If the adversary is
the device’s ISP, then the adversary could rewrite the
Windows machine’s initial SYN packets so that they
include the TCP timestamps option. The SYN/ACKs from
the legitimate recipients will therefore have the TCP
timestamps option enabled and from that point forward
the Windows machine will include the TCP timestamps
option in all subsequent packets in the flows.

We applied this technique to Windows XP machines on
a residential cable system with a LinkSys Wireless Access
Point and a NAT, as well as to Windows XP SP2
machines using the default XP SP2 firewall, and to
Windows XP SP1 machines with the Windows ZoneAlarm
firewall. While current firewalls do not detect this trick,
future firewalls might.

4.3 Estimating the TSopt Clock Skew

Let us now assume that an adversary has obtained a trace T
of TCP packets from the fingerprintee, and let us assume for
simplicity that all jT j packets in the trace have the TCP

KOHNO ET AL.: REMOTE PHYSICAL DEVICE FINGERPRINTING 97

2. We do not generalize the Debian and Red Hat columns to all Linux
distributions since Knoppix 3.6 with the 2.6.7 experimental kernel has 1 ms
resolution. It is worth elaborating on our claim that Pocket PC 2002 systems
have TSopt clocks with 100 ms resolution, or intended frequencies of 10 Hz.
In experiments with five HP iPAQ h5450 PDAs running Windows Pocket
PC 2002, using our techniques from Section 4, we measured TSopt clock
frequencies between 8.4 and 9.6 Hz. Despite these measurements, we
believe that the intended frequency for Pocket PC 2002 devices is 10 Hz
since 1) the intended frequency for Windows 2000 and XPmachines is 10 Hz
and 2) we assume that the large difference between 10 Hz and the
frequencies that we measured is due to the fact that the PDAs likely have
cheaper clocks than our laptop and desktop systems.

TABLE 2
Hz½Ctcp� Values for the TCP Timestamps Option Clock

on Several Popular Operating Systems

All the entries, except for OS X 10.3.5 and Windows Pocket PC 2002,
are for the operating systems on a 32-bit Intel Pentium processor. The
OS X 10.3.5 entry is for the operating system on an Apple G4. The
Windows Pocket PC 2002 entry is for the operating system on an HP
iPAQ h5450.

timestamps option enabled. Toward estimating a device’s
TSopt clock skew s½Ctcp�, we adopt the following additional
notation. Let ti be the time in seconds at which the measurer
observed the ith packet in T and let Ti be the Ctcp timestamp
contained within the ith packet. Define

xi ¼ ti � t1
vi ¼ Ti � T1

wi ¼ vi=Hz
yi ¼ wi � xi
OT ¼ fðxi; yiÞ : i 2 f1; . . . ; jT jgg:

The unit for wi is seconds, yi is the observed offset of the ith
packet, OT is the offset-set corresponding to the trace T . We
discuss below how to compute Hz if it is not known to the
measurer in advance. As an example, Fig. 1 shows the
offset-sets for two devices in a two-hour trace of traffic from
an Internet backbone OC-48 link on 2004-04-28 (we omit IP
addresses for privacy reasons). Respectively, shifting the
clocks by t1 and T1 for xi and vi is not necessary for our
analysis, but makes plots like in Fig. 1 easier to read.

If we could assume that the measurer’s clock is accurate
and that the t values represent true time, and if we could
assume that there is no delay between when the finger-
printee generates the ith packet and when the measurer
records the ith packet, then yi ¼ offðxi þ t1Þ. Under these
assumptions, and if we make the additional assumption
that R is differentiable, then the first derivative of y, which is
the slope of the points in OT , is the skew s of Ctcp. Since we
cannot generally make these assumptions, we are left to
approximate s from the data.

Let us consider plots like those in Fig. 1 more closely. We
first observe that the large band corresponds to a device
where the TSopt clock has low resolution (r ¼ 100ms) and
that the narrow band corresponds to a device with a higher
resolution (r ¼ 10ms). The width of these bands and, in
particular the wide band, means that if the duration of our
trace is short, we cannot always approximate the slope of
the points in OT by computing the slope between any two
points in the set. Moreover, as Paxson and others have
noted in similar contexts [29], [26], variable network delay
renders simple least-squares linear regression insufficient.

Consequently, to approximate the skew s from OT , we
borrow a linear programming solution from Moon et al.
[26], which has as its core Graham’s convex hull algorithm
on sorted data [16]; see also [13], [22].

The linear programming solution outputs the equation of
a line �xþ � that upper-bounds the set of points OT . We
use an upper bound because network and host delays are
all positive. The slope of the line, �, is our estimate of the
clock skew of Ctcp. In detail, the linear programming
constraints for this line are that, for all i 2 f1; . . . ; jT jg,

� � xi þ � � yi;

which means that the solution must upper-bound all the
points in OT . The linear programming solution then
minimizes the average vertical distance of all the points in
OT from the line; i.e., the linear programming solution is
one that minimizes the objective function

1

jT j �
XjT j

i¼1

�
� � xi þ � � yi

�
:

Although one can solve the above using standard linear
programming techniques, as Moon et al. [26] note, there
exist techniques to solve linear programming problems in
two variables in linear time [13], [22]. We use a linear time
algorithm in all our computations.

It remains to discuss how to infer Hz if the measurer does
not know it in advance. One solution involves computing
the slope of the points

I ¼ fðxi; viÞ : i 2 f1; . . . ; jT jg

and rounding to the nearest integer. One can compute the
slope of this set by adapting the above linear programming
problem to this set.

4.4 An Equivalent View

If A is the slope of the points in the above set I , derived
using the linear programming algorithm, then one could
also approximate the skew of Ctcp as A=Hz� 1. We can
prove that, when using the linear programming method for
slope estimation, both approaches produce the same skew
estimate. We use the offset-set approach since these sets
naturally yield figures where the skews are clearly visible,
e.g., Fig. 1.

5 EXPLOITING ICMP TIMESTAMP REQUESTS

We now consider how an adversary might obtain samples
of a device’s system clock and how an adversary could use
those samples to fingerprint a physical device.

5.1 The Measurer

To exploit a device’s system time clock skew, the measurer
could be any Web site with which the fingerprintee
communicates, or any other device on the Internet provided
that the measurer is capable of issuing ICMP Timestamp
Requests (ICMP message type 13) to the fingerprintee. The
measurer must also be capable of recording the fingerprin-
tee’s subsequent ICMP Timestamp Reply messages (ICMP
message type 14). The primary limitation is that the device
must not be behind a NAT or firewall that filters ICMP.

98 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 2, NO. 2, APRIL-JUNE 2005

Fig. 1. TSopt clock offset-sets for two sources in BBN. Trace recorded on
an OC-48 link of a US Tier 1 ISP, 2004-04-28 19:30–21:30PDT. The
source with the wide band has a 10 Hz TSopt clock, the source with the
narrow band has a 100 Hz TSopt clock. A source with no clock skew
would have a horizontal band.

5.2 Estimating the System Clock Skew

Let us now assume that an adversary has obtained a trace T
of ICMP Timestamp Reply messages from the fingerprintee.
The ICMP Timestamp Reply messages will contain two
32-bit values generated by the fingerprintee. The first value
is the time at which the corresponding ICMP Timestamp
Request packet was received, and the second value is the
time at which the ICMP Timestamp Reply was generated;
here time is according to the fingerprintee’s system clock,
Csys, and is reported in milliseconds since midnight UTC.
Windows machines report the timestamp in little endian
format, whereas all the other machines that we tested report
the timestamp in big endian notation. The remaining
notation and the method for skew estimation is now
identical to what we presented in Section 4, with two
minor exceptions. First, the adversary does not have to
compute Hz since RFC 792 [30] requires that Hz be 1,000 (or,
if not, that a special bit be set to indicate noncompliance).
Second, since the time reported in the ICMP Timestamp
Reply is in milliseconds since midnight UTC, we expect the
timestamps reported in the ICMP Timestamp Reply
messages to reset approximately once a day; we adjust the
v values accordingly. The only thing special that our attack
exploits about ICMP is the fact that ICMP has a message
type that will reveal a device’s system time; our techniques
would work equally well with any other protocol that leaks
information about a device’s system or other clock.

5.3 Brief Comparison with TCP Timestamps

For much of the rest of this paper, we focus on our TCP
timestamps-based approach for physical device fingerprint-
ing rather than our ICMP-based approach. We do so not
because we consider the ICMP-based approach to be
inferior. Rather, we focus on the TCP timestamps-based
approach because most systems have TSopt clocks that
operate at lower frequencies than the 1,000 Hz clocks
included in the ICMP timestamp reply messages, which
means that it should require less data for an active
adversary to mount our ICMP fingerprinting technique
than to mount our TCP timestamps technique. Focusing on
our TCP timestamps-based approach also allows us to
experiment with machines behind NATs and firewalls.
Lastly, for popular operating systems, if a system does not
externally synchronize its system time, then the system’s
TSopt and system clocks will be highly correlated
(Section 8), which means that the distribution of system
clock skews for machines not using NTP will be similar to
the distribution of TSopt clocks skews.

6 DISTRIBUTION AND STABILITY OF TSOPT CLOCK

SKEW MEASUREMENTS

We now address two fundamental properties that must
hold in order for remote clock skew estimation to be an
effective physical device fingerprinting technique. First, we
show that there is variability in different devices’ clock
skews, meaning that it is reasonable to expect different
devices on the Internet to have measurably different clock
skews. Second, we give evidence to suggest that clock
skews, as measured by our techniques, are relatively
constant over time. These two facts provide the basis for

our use of remote clock skew estimation as a physical
device fingerprinting technique since they imply that an
adversary can gain (sometimes significant) information by
applying our techniques to measure a device’s or set of
devices’ clock skews.

The novelty here is not in claiming that these properties
are true. Indeed, it is well known that different computer
systems can have different clock skews, and others [29],
[26], [28], [34] have argued that a given device generally
has a constant clock skew. Rather, the contribution here is
showing that these properties survive our remote clock
skew estimation techniques and, in the case of our
analyses of the distribution of clock skews, measuring
the bits of information (entropy) a passive adversary might
learn by passively measuring the TSopt clock skews of
fingerprintees.

6.1 Distribution of Clock Skews:
Analysis of Passive Traces

Our first experiment in this section focuses on under-
standing the distribution of clock skews across devices as
reported by our TCP timestamps-based passive fingerprint-
ing technique. For this experiment, we analyzed a passive
trace of traffic in both directions of a major OC-48 link;
CAIDA collected the trace between 19:30 and 21:30 PDT on
2004-04-28. Since the OC-48 link runs North-South, let BBN
denote the Northbound trace, and let BBS denote the
Southbound trace (BB stands for backbone). CAIDA
obtained the traces using different Dag [15] cards in each
direction; these cards’ clocks were synchronized with each
other, but not with true time. This latter property does not
affect the following discussion because 1) the clock skews of
the Dag cards appear to be constant and, therefore, only
shift our skew estimates by a constant amount and 2) here,
we are only interested in the general distribution of the
clock skews of the sources in the traces.

Let mp and md be positive integers. For simplicity, fix
BB ¼ BBN or BBS. Also assume for simplicity that BB only
contains TCP packets with the TCP timestamps option
turned on. Recall that the trace BB lasts for two hours. At a
high-level, our analysis considers the set S of sources in BB

that have � mp packets in both the first and the second
hours, and where the differences in time between the
source’s first and last packets in each hour are � md

minutes.
For each source in S, we apply our clock skew

estimation technique from Section 4 to the full trace, the
first hour only, and the second hour only. Let pv be a
positive number, and let S0 be the subset of S correspond-
ing to the sources whose skew estimates for the full trace,
the first hour, and the second hour are all within pv ppm
of each other, and whose intended frequency Hz is one of
the standard values (1, 2, 10, 100, 512, 1,000). If pv is
small, then we are inclined to believe that the skew
estimates for the sources in S0 closely approximate the
true skews of the respective sources. Table 3 shows values
of jSj and jS0j for different values of mp and md and BB ¼
BBN and when we arbitrarily choose pv ¼ 1 ppm.

The value jS0j=jSj gives an indication of the ratio of
sources for which we can accurately (within pv ppm)
measure the clock skew. For example, more than 50 percent

KOHNO ET AL.: REMOTE PHYSICAL DEVICE FINGERPRINTING 99

of the sources in S are also in S0 when we consider sources
that are active for at least 30 minutes in each hour (md ¼ 30).
When we add the constraint that each source in S send at
least 500 packets per hour, the percentage of sources in S0

increases to 60 percent. While useful, this ratio provides
little information about the actual distribution of the clock
skew estimates. Much more (visually) telling are images
such as Fig. 2, which shows a histogram of the skew
estimates (for the full two hour trace) for all the sources in
S0 when mp ¼ 2; 000, md ¼ 50minutes, and pv ¼ 1 ppm. (The
true histogram may be shifted horizontally based on the
clock skew of the Dag cards, but a horizontal shift does not
affect the general shape of the distribution.) Empirically, for
any given values for mp, md, and pv, we can compute the
entropy of the distribution of clock skews. Doing so serves
as a means of gauging how many bits of information an
adversary might learn by passively monitoring a device’s
clock skew, assuming that devices’ clock skews are constant
over time, which is something we address later. To compute
the entropy, we consider bins of width pv and, for each
source s in S0, we increment the count of the bin
corresponding to devices with clock skews similar to the
skew of s (here, we use the skew estimate computed over
full two hours). We then allocate another bin of size
jSj � jS0j; this bin counts the number of sources that do not
have consistent clock skew measurements. We apply the
standard entropy formula [33] to compute the entropy of

this distribution of bins, the results of which appear in the
last column of Table 3. As one might expect, the amount of
information available to an adversary increases as mp and md

increase.
Assuming that clock skews are constant over time, our

results suggest that a passive adversary could learn at least
six bits of information about a physical device by applying
our techniques from Section 4. We anticipate that more bits
of information will be available to an active adversary since
an active adversary might be able to force the fingerprintee
to send packets more frequently or over longer periods of
time. Additionally, these entropy estimates will be higher
for devices with high intended TSopt clock frequencies
Hz½Ctcp� (see Table 4 and the discussion below). The latter
observation suggests that high Hz½Ctcp� values for the
purposes of RTT estimation and optimizing TCP perfor-
mance may imply a slight trade-off in privacy. Similarly,
since the TSopt clock frequencies on some systems are
derived from the kernels’ HZ variables, high HZ values for
the purpose of increasing the performance of some
applications [14] may also imply a slight trade-off in
privacy.

We can use our two-hour OC-48 traces to evaluate the
stability and accuracy of our TSopt clock skew measure-
ments over the course of the two hours. Table 4 considers
hosts that transmit more than mp ¼ 2; 000 packets in both
the first and the second hours of BBN and which also
transmit for at least md ¼ 50 minutes in both hours. The
rows in Table 4 are broken down into (our estimates of the)
intended frequencies for this subset of devices. For each

100 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 2, NO. 2, APRIL-JUNE 2005

TABLE 3
Entropy Estimates from BBN When pv ¼ 1 ppm

Trace recorded on an OC-48 link of a US Tier 1 ISP, 2004-04-28 19:30–21:30PDT.

Fig. 2. Histogram of TSopt clock skew estimates for sources in BBN.

Trace recorded on an OC-48 link of a US Tier 1 ISP, 2004-04-28 19:30–

21:30PDT. Here, mp ¼ 2000 packets, md ¼ 50 minutes, and pv ¼ 1 ppm.

TABLE 4
Stability of Clock Skews in BBN for Common Values of Hz½Ctcp�

Trace recorded on an OC-48 link of a US Tier 1 ISP, 2004-04-28 19:30–
21:30PDT. Here, mp ¼ 2; 000 packets and md ¼ 50 minutes.

device, we use our technique from Section 4 to estimate the
clock skew of the device over the whole trace, just the first
hour, and just the second hour, and then we compute the
maximum difference among these three estimates. The last
three columns in Table 4 show the maximum such
difference for the lower nth percentile, e.g., for 90 percent
of the hosts with Hz½Ctcp� ¼ 100 Hz, mp ¼ 2; 000 packets, and
md ¼ 50 minutes, our skew estimation technique reported
clock skews that differed by at most 0:76 ppm between the
first hour, the second hour, and the whole trace. Table 4
suggests that our clock skew estimates are generally more
accurate for devices with higher intended frequencies; this
result is as one would expect since higher frequency clocks
have finer granularity than low frequency clocks. (The low
number of sources with Hz½Ctcp� ¼ 10 in Table 4 is consistent
with our observation from Section 4 that Windows
machines do not typically initiate flows with the TCP
timestamps option enabled.)

6.2 Distribution of Clock Skews:
Experiments with a Homogeneous Lab

One observation on the above analysis is that we applied it
to a wide variety of machines running a wide variety of
operating systems. Here, we investigate whether the
distribution shown in Fig. 2 is due to operating system
differences or to actual physical differences on the devices.
We conducted an experiment with 69 (apparently) homo-
geneous machines in one of UCSD’s undergraduate
computing laboratories. All the machines were Micron
PCs with 448MHz Pentium II processors running Microsoft
Windows XP Professional Service Pack 1. Our measurer,
host2, was a Dell Precision 410 with a 448MHz Pentium III
processor and running Debian 3.0 with a recompiled 2.4.18
kernel; host2 is located within the university’s computer
science department and is 3 hops and a half a millisecond
away from the machines in the undergraduate laboratory.

To create the requisite trace of TCP packets from these
machines, we repeatedly opened and then closed connec-
tions from host2 to each of these machines. Each open-then-
close resulted in the Windows machines sending two
packets to host2 with the TCP timestamps option turned
on (the Windows machine sent three packets for each flow,
but the TCP timestamp was always zero in the first of these
three packets). Because of our agreement with the admin-
istrators of these machines, we were only able to open and
close connections with these Windows machines at random
intervals between zero and five minutes long. Thus, on
average, we would expect to see each machine send host2

48 TCP packets with the TCP timestamps option turned on
per hour. The experiment lasted for 38 days, beginning at
19:00PDT 2004-09-07 and ending at approximately
20:30PDT 2004-10-15.

Fig. 3 shows a plot, similar to Fig. 1, for the 69 Micron
machines as measured by host2, but subsampled to one
out of every two packets. Note that the plot uses different
colors for the observed offsets for different machines
(colors are overloaded). Since the slopes of the sets of
points for a machine corresponds to the machine’s skew,
this figure clearly shows that some machines in the lab
have measurably different clock skews. Thus, we can
easily distinguish some devices by their clock skews (for

other devices, we cannot). Because Windows XP machines
reset their TSopt clocks to zero when they reboot, some of
the diagonal lines seem to disappear several days into the
figure. Our algorithms handle reboots by recalibrating the
initial observed offset, though this recalibration is not
visible in Fig. 3. The time in Fig. 3 begins on 8:30PDT
2004-09-10 (Friday) specifically because the administrators
of the lab tend to reboot machines around 8:00PDT, and
beginning the plot on Friday morning means that there
are fewer reboots in the figure. We consider this
experiment in more detail below, where our focus is on
the stability of our clock skew estimates.

6.3 Stability of Clock Skews

We now consider the stability of the TSopt clock skews for
the devices in the above-mentioned undergraduate labora-
tory. Recall that our experiment began at 19:00PDT 2004-09-
07 and that the experiment ran for 38 days; see also Fig. 3.
Consider a single machine in the laboratory. We divide the
trace for this machine into 12 and 24-hour periods,
discarding 12-hour periods with less than 528 packets from
the device, and discarding 24-hour periods with less than
1,104 packets from the device (doing so corresponds to
discarding 12-hour periods when the device is not up for at
least approximately 11 hours, and discarding 24-hour
periods that the device is not up for at least 23 hours). We
compute the device’s clock skew for each nondiscarded
period and then compute the difference between the
maximum and minimum estimates for the nondiscarded
periods. This value gives us an indication of the stability of
the device’s clock skew.

For 12-hour periods, the maximum difference for a single
device in the lab ranged between 1.29 ppm and 7.33 ppm,
with a mean of 2.28 ppm. For 24-hour periods, the
maximum difference for a single device ranged between
0.01 ppm and 5.32 ppm, with a mean of 0.71 ppm. There
seems to have been some administrator function at 8:00PDT
on 2004-09-10 that slightly adjusted the TSopt clock skews
of some of the machines. If we conduct the same analysis
for the trace beginning at 8:30PDT 2004-09-10 and ending on
2004-10-15, for 24-hour periods, the range for maximum
difference for each device in the lab dropped to between

KOHNO ET AL.: REMOTE PHYSICAL DEVICE FINGERPRINTING 101

Fig. 3. TSopt clock offset-sets for 69 Micron 448MHz Pentium II

machines running Windows XP Professional SP1. Trace recorded on

host2, three hops away, 2004-09-10 08:30PDT to 2004-09-14

08:30PDT.

0.00 ppm and 4.05 ppm. Over 24-hour periods beginning
8:30PDT 2004-09-10 and over all 69 hosts, our minimum
skew estimate was �5:94 ppm and our maximum skew
estimate was 49:28 ppm.

The current results strongly support our claim that
modern processors have relatively stable clock skews.
Moreover, we believe that, if the administrators of the lab
allowed us to exchange more packets with the 69 finger-
printees, we would have found the clock skews to be even
more stable. In Section 7, we apply our clock skew estimates
to a single computer at multiple locations and on multiple
dates, and the skew estimates again are close (Table 5); our
results below further support our claim of the stability of
clock skews over time.

7 ACCESS TECHNOLOGY, TOPOLOGY, AND
MEASURER-INDEPENDENT MEASUREMENTS

Here, we consider our experiments which suggest that clock
skew estimates are relatively independent of the finger-
printee’s access technology, the topology between the
fingerprintee and the measurer, and the measurer’s
machine.

7.1 Laptops in Multiple Locations

Our first set of experiments along these lines measures
laptop connected to the Internet via multiple access
technologies and locations (Table 5). For all these experi-
ments, laptop is a Dell Latitude C810 notebook with a
1.133GHz Pentium III Mobile processor and running a
default installation of Red Hat 9.0 (Linux kernel 2.4.20-8).
The measurer in all these experiments, host1, is a Dell
Precision 340 with a 2GHz Intel Pentium 4 processor located
within the UCSD Computer Science and Engineering
department and running Debian 3.0 with a recompiled
2.4.18 Linux kernel; host1 is also configured to synchronize
its system time with true time via NTP.

For all experiments, we establish a TCP connection
between laptop and host1, and then exchange TCP packets
over that connection. On host1, we record a trace of the
connection using tcpdump. We then use our techniques from
Section 4 to estimate the skew of laptop’s TSopt clock. As
the horizontal line in Table 5 indicates, we divide our
experiments into two sets. In the first set, our experiments

last for three hours and exchange one TCP packet every
minute (we do this by performing a sleepð60Þ on host1).
For the second set of experiments, the connections last for
30 minutes, and a packet is exchanged at random intervals
between 0 and 2 seconds, as determined by a usleep on
host1. With few exceptions, the packets from laptop are all
ACKs with no data.

We conduct experiments when the laptop is connected to
the Internet via residential cable networks on both coasts
(Table 5). For our residential experiments, we use a 802.11b
wireless connection with 128-bit WEP encryption, a
standard (unencrypted) 802.11b wireless connection, and a
standard 10Mbps 10baseT wired connection. We also
conducted experiments with our laptop connected to the
San Diego Supercomputer Center’s 802.11b wireless net-
work, from the UCSD Computer Science and Engineering
wireless network, and from the San Diego Public Library’s
wireless network. As the final column in the table shows,
the skew estimates are all within a fraction of a ppm of each
other. (If we subsample the first set of experiments to one
packet every 3 minutes, then the difference between the
skew estimates for any two measurements in the first set is
at most 0.45 ppm.)

7.2 PlanetLab and Topology Questions

Although the above results strongly suggest that skew
estimates are independent of access technology, the above
experiments do not stress-test the topology between the
fingerprinter and the fingerprintee. Therefore, we con-
ducted the following set of experiments. We selected a set of
PlanetLab nodes from around the world that reported, via
ntptrace, approximately accurate system times. We chose
PlanetLab machines located at UC San Diego, UC Berkeley,
University of Washington, University of Toronto (Canada),
Princeton, MIT, University of Cambridge (UK), ETH
(Switzerland), IIT (India), and Equinix (Singapore). These
PlanetLab machines, along with host1 and (in one case)
CAIDA’s test machine with a CDMA-synchronized Dag
card, served as our fingerprinters. Our fingerprintees were
laptop and host1, where laptop was connected both to the
SDSC wireless and to the CAIDA wired networks.

For each of our experiments, and for each of our chosen
PlanetLab nodes, we created a flow between the node and
the fingerprintee. Over each flow our fingerprintee sent one

102 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 2, NO. 2, APRIL-JUNE 2005

TABLE 5
TCP Timestamps-Based Skew Estimates of laptop Running Red Hat Linux 9.0
When Connected to host1 from Multiple Locations and When Not Running ntpd

The traces were recorded at host1.

packet at random intervals between 0 and 2 seconds; here,

the fingerprintee executed usleep with appropriate para-

meters. We then recorded the flows on the PlanetLab

machines using plabdump, the tcpdump equivalent for

PlanetLab machines. On host1, we recorded the corre-

sponding flow using tcpdump. And, on the machine with

the Dag card, we used Coral [19] (that machine was only

reachable when laptop was connected directly to CAIDA’s

wired network). We then computed the skew using the

techniques from Section 4. The results for laptop are shown

in Table 6. Notice that the skew estimates are in general

within a fraction of a ppm of each other, suggesting that our

skew estimates are independent of topology.
For distance measurements for Table 6, we used

traceroute to determine hop count, and then used mean

time between when tcpdump recorded a packet on the

measured device and the time between when plabdump

recorded the packet on the measurer. This distance estimate

also includes the time spent in the application layers on the

machines, but should give a rough estimate of the time it

takes packets to go from the fingerprintee to the measurer.
The results of these experiments suggest that our TSopt

clock skew estimation technique is generally independent

of the topology and distance between the fingerprinter and

the fingerprintee. Furthermore, these results suggest that

our skew estimation technique is independent of the actual

fingerprinter, assuming that the fingerprinter synchronizes

its system time with NTP [25] or something better [34].

8 EFFECTS oF OPERATING SYSTEM, NTP, AND

SPECIAL CASES

8.1 Operating Systems and NTP on Fingerprintee

In Table 7, we show skew estimates for the same physical

device, laptop, running both Red Hat 9.0 and Windows

XP SP2, and both with and without NTP-based system

clock synchronization. (For this experiment, laptop sent

one packet to the measurer, host1, at random intervals

between 0 and 2 seconds; laptop was connected to the

SDSC wireless network and was seven hops away from

host1; host1 also sent a ICMP Timestamp Request to

laptop at random intervals between 0 and 60 seconds.)

The table shows that, for the listed operating systems, the

system clock and the TSopt clock effectively have the

same clock skew when the device’s system time is not

synchronized with NTP and that the TSopt clock skew is

independent of whether the device’s system clock is

maintained via NTP. Although not shown in the figure,

our experiments with OpenBSD 3.5 on another machine

suggest that the TSopt clock and system clock on default

KOHNO ET AL.: REMOTE PHYSICAL DEVICE FINGERPRINTING 103

TABLE 6
Skew Estimates of laptop, Running Red Hat 9.0 with ntpd, for Traces Taken Simultaneously at Multiple Locations

On 2004-09-17, the laptop was connected to the SDSC wireless network, and on 2004-10-08, the laptop was connected to the CAIDA wired network.
The Toronto and India lines have empty cells because the PlanetLab machines at those locations were down during the experiment. The Boston
machine on 2004-10-08 was a different PlanetLab machine than the one on 2004-09-17. The empty cell for the CAIDA test lab is because the lab is
only reachable from CAIDA’s wired network.

TABLE 7
Experiments for the Same Physical Device, laptop, Running Different Operating Systems

and with NTP Synchronization Both On and Off

For all experiments, laptop was located on the SDSC wireless network. All traces last for six hours. Additionally, laptop was up for an hour before
the Windows measurements.

OpenBSD 3.5 installations have the same skew (approxi-
mately 68 ppm). On the other hand, at least with this test
machine, the TSopt clock and system clock on a default
FreeBSD 5.2.1 system have different skews (the TSopt
clock skew estimate is about the same as with OpenBSD,
but the system clock skew estimate is approximately
80 ppm). When we turn on ntpd under FreeBSD 5.2.1, the
TSopt clock skew remained unchanged.

8.2 Power Options for Laptops

We also consider how the clock skews of devices are
affected by the power options of laptops. In the case of Red
Hat 9.0, when laptop is running with the power connected,
if we switch to battery power, there is a brief jump in the
TSopt clock offset-set for the device, and then the device
continues to have the same (within a fraction of a ppm)
clock skew. For laptop running Windows XP SP2, if the
laptop is idle from user input but continues to maintain a
TCP flow that we can monitor, then the TSopt clock skew
changes after we switch to battery power. If we repeat this
experiment several times and if we boot with only battery
power, we find that the clock skews with battery power are
in all cases similar. When booting with outlet power, the
clock skew on laptop running Windows XP initially begins
with a large magnitude, and then stabilizes to a skew like
that in Table 7 until we disconnect the power; the initially
large skew may be due to the laptop recharging its batteries.
We have not sampled a large enough set of laptops to
determine whether the clock skews with battery power are
a simple function of the clock skews with outlet power,
though the skews with battery power seem to be consistent
for a single laptop.

8.3 Temperature

Although our experiments do not suggest a significant
(beyond a fraction of a ppm) variation in laptop’s skew
when the surrounding temperature varies (from a tempera-
ture-controlled machine room to an unairconditioned room
during the summer), we did not rigorously investigate the
effects of temperature on our clock skew estimates. We
acknowledge that such a study would help provide greater
insights into the efficacy of our techniques. If a rigorous

study finds that temperature variations do cause remotely
detectable changes in modern devices’ TSopt clock skews,
then the information leakage about the environment
surrounding a device might be useful to certain adversaries.

9 APPLICATIONS

We now consider some applications of our techniques,
though we emphasize that we consider our most important
results to be the foundations we introduced in the previous
sections that make the following applications possible.

9.1 Virtualization and Virtual Honeynets

We created a honeyd [31] version 0.8b virtual honeynet
consisting of 100 Linux 2.4.18 virtual hosts and 100 Win-
dows XP SP1 virtual hosts. Our server in this experiment,
host3, is identical to host1, has 1GB of RAM, and maintains
its system time via NTP. We ran honeyd with standard nmap

and xprobe2 configuration files as input; honeyd used the
information in these files to mimic real Linux and Windows
machines. We ran nmap and xprobe2 against the virtual
hosts to verify that nmap and xprobe2 could not distinguish
the virtual hosts from real machines.

We applied our TCP timestamps and ICMP-based skew
estimation techniques to all 200 virtual hosts. Our finger-
printer in this experiment was on the same local network.
We observed several methods for easily distinguishing
between honeyd virtual hosts and real machines. First, we
noticed that unlike real Linux and Windows machines, the
virtual hosts always returned ICMP Timestamp Replies
with zero in the transmit timestamp field. Additionally, we
observed that the honeyd Windows XP virtual hosts had
TSopt clocks Ctcp with Hz½Ctcp� ¼ 2, whereas all of the real
Windows XP machines that we tested had Hz½Ctcp� ¼ 10. The
lesson here is that although the nmap and xprobe2

configuration files provide enough information for the
respective programs to effectively fingerprint real operating
systems, the configuration files do not provide enough
information for honeyd to be able to correctly mimic all
aspects of the Linux and Windows protocol stacks.

Even if honeyd completely mimicked the network stacks
of real Linux 2.4.18 and Windows XP SP1 machines, we

104 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 2, NO. 2, APRIL-JUNE 2005

Fig. 4. TSopt clock offset-sets for 100 honeyd 0.8b Windows XP SP1

virtual hosts. Start time: 2004-09-19, 23:00PDT; honeyd running on

host3. Points are connected in this figure to highlight the correlation

between the virtual hosts.

Fig. 5. TSopt clock offset-sets for five VMware Workstation virtual

machines running Red Hat 9.0, and for the host, host3, also running

Red Hat 9.0. 2004-10-27 17:00–19:00PDT. The top set of points

corresponds to the TSopt clock offset set for host3.

could still use our remote physical device fingerprinting
techniques to distinguish between our 200 virtual hosts and
200 real machines. Our TSopt clock skew estimates for all
200 virtual hosts were approximately zero and the system
clock skew estimates for all 200 virtual hosts were
approximately the same positive value. Given our discus-
sion in Section 6 of the distribution of clock skews, this lack
of variability in clock skews between virtual hosts is not
what one would expect from real machines. Furthermore,
the TSopt and system clocks between all the virtual hosts of
the same operating system were highly correlated, e.g.,
Fig. 4 shows the TSopt offset-sets for all 100 Windows XP
SP1 virtual hosts 241 minutes into our experiment. In Fig. 4,
we connect the points in the offset-sets for each virtual host
to highlight the correlation between the hosts. Recall that
we observed no such correlation in our experiment with
69 real Windows XP machines (Fig. 3). We communicated
our results to the author of honeyd and, in response, version
1.0 of honeyd randomly assigns TSopt clock skews to each
virtual host using a Gaussian distribution around the
server’s system time. This decision may affect other
components of the system, e.g., if the server runs ntpd,
changes to the server’s system time may appear as global
changes to the distribution of the virtual hosts’ clocks.
Version 1.0 of honeyd still issues ICMP Timestamp Replies
with zero transmit timestamps. Furthermore, the system
clocks on version 1.0 honeyd virtual hosts are still highly
synchronized and are too fast by several orders of
magnitude.

To experiment with real virtualization technologies, we
installed VMware Workstation 4.5.2 on host3, but this
time host3 ran Red Hat 9.0. We then installed five default
copies of Red Hat 9.0 under VMware. We applied our
skew estimation techniques to these five virtual machines,
as well as to host3. The results show that the five virtual
machines do not have constant (or near constant) clock
skews, shown by the nonlinearity of the points in Fig. 5.
Furthermore, the overall magnitude of the clock skews on
these virtual machines (greater than 400 ppm) is larger
than we would expect for physical desktop machines. We
feel confident that these observations and natural exten-
sions could prove useful in distinguishing virtual honey-
nets from real networks.

9.2 Counting the Number of Devices behind a NAT

Another natural application of our techniques is to count
the number of devices behind a NAT. To briefly recall
previous work in this area, Bellovin [7] showed that an
adversary can exploit the IP ID field to count the number
of devices behind a NAT, but his approach is limited in
three ways: 1) the IP ID field is only 16-bits long, 2) recent
operating systems now use constant or random IP ID
fields, and 3) his technique cannot count the total number
of devices behind a NAT if not all of them are active at the
same time. Our suggested approach to this problem has
two phases. First, partition the trace into (candidate) sets
corresponding to different sequences of time-dependent
TCP timestamps; creating such a partition is relatively easy
to do unless two machines have approximately the same
TSopt clock values at some point in time, perhaps because
the machines booted at approximately the same time.

Then, apply our clock skew estimation techniques to each
partition, counting hosts as unique if they have measur-
ably different clock skews. If two devices have approxi-
mately the same TSopt clock values at some point in time
but have measurably different clock skews, then one can
detect and correct this situation in the analysis of the
partition’s offset-set.

9.3 Forensics and Tracking Individual Devices

The utility of our techniques for forensics purposes follows
closely from our claims 1) that there is variability in the
clock skews between different physical devices (Section 6),
2) that the clock skew for a single device is approximately
constant over time (Section 6), and 3) that our clock skew
estimates are independent of access technology, topology,
and the measurer (Section 7). For forensics, we anticipate
that our techniques will be most useful when arguing that a
given device was not involved in a recorded event. With
respect to tracking individual devices, we stress that our
techniques do not provide unique serial numbers for
devices, but that our skew estimates do provide valuable
bits of information that, when combined with other sources
of information such as operating system fingerprinting
results, can help track individual devices on the Internet.

9.4 DHCP

The use of DHCP can cause significant problems for many
forms of network mapping since the measurer may not be
able to uniquely identify a node by its IP address and
therefore has to deal with a mix of measurements coming
from different hosts, e.g., [8]. The use of DHCP thus renders
conclusions about any kind of network statistics tenuous
because one is unable to say whether the measured
phenomena represents a certain fraction of hosts; the
measurement is influenced by the dynamics of hosts joining
and leaving the network. Any technique that can help
disambiguate hosts behind a DHCP server, therefore, has
both network mapping and security applications. One
might be able to use our techniques to help remotely track
(with some probability) the assignment of IP addresses
within an address block to physical machines via DHCP.

9.5 Unanonymizing Anonymized Data Sets

It is common for organizations that provide network traces
containing payload data to anonymize the IP addresses in
the traces using some prefix-preserving anonymization
method [36], [37]. If an organization makes available both
anonymized and unanonymized traces from the same link,
one can use our techniques to catalyze the unanonymiza-
tion of the anonymized traces. Such a situation is not
hypothetical: In addition to the 2004-04-28 trace that we
used in Section 6, CAIDA took another trace from the same
link on 2004-04-21, but the 2004-04-21 trace included
payload data and was therefore anonymized.

To study how one might use our clock skew estimation
techniques to help unanonymize anonymized traces, on
2005-01-13 and 2005-01-21 CAIDA took two two-hour traces
from a major OC-48 link (the same link from which CAIDA
captured the 2004-04-28 trace). We anonymized the 2005-01-
13 trace and experimented with our ability to subsequently
unanonymize it. Given the value of a device’s TSopt clock

KOHNO ET AL.: REMOTE PHYSICAL DEVICE FINGERPRINTING 105

and knowledge of that clock’s intended frequency Hz, we
can compute the approximate uptime of the device. (Prior
to our work, one method for inferring Hz from a passive
trace would be to use a program like p0f [3].) As a first
attempt at unanonymizing the 2005-01-13 trace, we paired
anonymized IP addresses from 2005-01-13 with IP addresses
from 2005-01-21 when our uptime estimate of a host in 2005-
01-21 is eight days higher (plus or minus five minutes) than
the uptime of a host in 2005-01-13 and when both hosts have
the same TTLs and intended frequencies. Our program
produced 4613 pairs of candidate anonymous to real
mappings, of which 2,660 (57.66 percent) were correct. To
reduce the number of false matches, especially for small
uptimes, we modified our program to filter out pairs that
have TSopt clock skews different by more than 3 ppm. We
also incorporated our clock skew estimates into our uptime
estimates. These changes reduced the number of candidate
mappings to 2,170, of which 1,902 (87.65 percent) were
correct; the fraction of false positives was reduced by over
3.4 (from 42.34 percent to 12.35 percent). There are a total of
11,862 IP addresses in both the 2005-01-13 and 2005-01-21
traces that have the TCP timestamps option enabled. Since
the anonymization is prefix-preserving, given the candidate
mappings one can begin to unanonymize address blocks.
We are unaware of any previous discussion of the problems
to prefix-preserving anonymization caused by leaking
information about a source via the TCP timestamps option.

9.6 Intentional Clock Skew Abnormalities

Most users would likely not notice if their devices had large
or nonconstant TSopt clock skews. A hardware vendor
wishing to track physical devices with few false positives
could therefore design their devices to have large or
otherwise abnormal clock skews. A user could also use
his or her device’s TSopt clock as a covert channel by
intentionally varying the device’s TSopt clock skew in a
controlled manner. This observation confirms McDanel’s
conjecture [21] that it may be possible to embed covert
information in the TCP timestamps option field of a
device’s outgoing packets. We consider the applications in
this section to be mostly of academic interest.

10 POTENTIAL COUNTERMEASURES

The primary focus of this paper is on developing techniques
to fingerprint current generation physical devices when
running current generation operating systems. Although
(by definition) the techniques we describe above will
remain applicable to current generation systems, we
suspect that future generation security systems might
incorporate countermeasures to some of the fingerprinting
techniques that we uncover. We explore some possible
protection mechanisms in this section.

The surest way for a device to protect itself against our
ICMP-based fingerprinting technique (Section 5) would be
for the device to not reply to ICMP Timestamp Requests.
Another solution might be for the device to synchronize
its system time via NTP. Although synchronizing a
device’s system time with NTP would address our current
ICMP-based fingerprinting technique, we caution that this
solution might still be susceptible to more sophisticated

fingerprinting techniques that exploit detectable clock
skews between NTP adjustments (or the NTP server
could be the adversary wishing to fingerprint different
devices).

Similar to an observation above, the surest way for a
device to protect itself against our TCP timestamps-based
fingerprinting technique (Section 4) would be for the device
to not enable the TCP timestamps option in outgoing
packets. If there are circumstances that make this solution
undesirable (e.g., because the use of TCP timestamps
improves RTT estimation and TCP performance), another
approach for protecting against our TCP timestamps-based
fingerprinting technique would be to reduce a device’s
clock skew. An operating system might reduce its clock
skew by, at boot, making a more precise estimation of the
oscillator frequencies supplying the hardware basis for its
clocks. An operating system might also incorporate the
techniques for precise software clocks from Pásztor and
Veitch [28] and Veitch et al. [34]. An operating system might
also pick a random multiplication factor at boot and
multiply its TCP timestamps by that factor in order to
mask its clock skew.

Although the above suggestions may protect against
our current TCP timestamps-based fingerprinting techni-
que, the above techniques may still leak some information
about a device in the TCP timestamps option field of each
outgoing packet. To address this concern from RFC 1323
[18], we conclude that two parties in a TCP flow do not
actually need to know each other’s TCP timestamps.
Consequently, a device could encrypt its timestamps
using a secret key, assuming an appropriate encryption
mechanism for 32-bit blocks. The device could also
maintain a table mapping the (possibly random) 32-bit
values that it includes in the TCP timestamps fields of
outgoing packets to its internal representation of real
timestamps; the table should only need to be as large as
the device’s TCP retransmission window. We have not
evaluated the performance of these recommendations. We
do remark that the recommendations in this paragraph
break strict compliance with RFC 1323 since the RFC says:
“The timestamp value to be sent in TSval is to be
obtained from a (virtual) clock that we call the ‘timestamp
clock’. Its values must be at least approximately proportional to
real time, in order to measure actual RTT [18].”

11 OTHER MEASUREMENT TECHNIQUES

In Section 10, we argue that although the techniques we

explore in this paper will likely remain applicable to current

generation systems, future generation security systems

might try to resist some of our techniques, e.g., future

generation systems might incorporate some of the protec-

tion mechanisms from Section 10. In anticipation of these

future systems, we consider possible avenues for clock-

based physical device fingerprinting when information

about a system’s TSopt clock or system clock is not readily

available to an adversary; we do not consider here but

recognize the possibility of fingerprinting techniques that

profile other aspects of a device’s hardware, e.g., processor

speed or memory. These directions assume that new

106 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 2, NO. 2, APRIL-JUNE 2005

operating systems mask or do not include the TSopt clock

values in the TCP headers and do not reply to ICMP

Timestamp Requests, but that the systems’ underlying

clocks still have nonnegligible skews. The techniques we

propose in this section are less refined than the techniques

elsewhere in this paper; we envision the techniques here as

starting points for more sophisticated techniques.

11.1 Fourier Transform

Some systems send packet at 10 or 100 ms intervals,

perhaps due to interrupt processing or other internal

operating system feature on one side of a flow. When this

condition holds, we can use the Fourier transform to extract

information about the system’s clock skew. Fig. 6 plots the

TSopt clock offset-sets for a device in BBS with a 2 Hz TSopt

clock. The five diagonal bands suggests that the machine

clusters packet transmissions at approximately 100 ms

intervals, and we can use the Fourier transform on packet

arrival times to estimate the frequency at which the device

actually transmits packets (here, packet arrival times refers

to the times at which the monitor records the packets). For

the source shown in Fig. 6, after computing the Fourier

transform, the frequency with the highest amplitude was

25.00439, which implies a skew of 25:00439=25� 1, or

175.6 ppm. Moreover the top 19 frequencies output by the

Fourier transform all imply skews between 171.0 ppm and

179.3 ppm. These values are all close to the 175.2 ppm

output by our TCP timestamps-based approach, but do not

make any use of the TCP timestamps contained with the

packets.
Although our Fourier-based technique does not require

knowledge of a device’s TSopt or system clocks, our
Fourier-based solution is currently not automated. This
lack of automation, coupled with the fact that current
generation systems readily relinquish information about
their TSopt and system clocks, means that our Fourier-
based solution is currently less attractive than the
techniques we described in Sections 4 and 5. If, in the
future, operating system designers decide to address the
information leakage concerns we raise with respect to the
TCP timestamps option and ICMP Timestamp Requests,

then the technique we mention here may become more
relevant.

11.2 Periodic User-Level Activities

Toward estimating the system clock skew of devices that do
not synchronize their system times with NTP, we note that
many applications perform certain operations at semiregu-
lar intervals. For example, one can configure most mail
clients to poll for new mail every n minutes. As another
example, Broido et al. show that some Microsoft Windows
2000 and XP systems access DNS servers at regular intervals
[11]. It may be possible to infer information about a device’s
system clock skew by comparing differences between actual
intervals of time between these periodic activities and what
the application intends for those intervals of time to be.

12 CONCLUSIONS

In this study, we verified the ability and developed
techniques for remote physical device fingerprinting that
exploit the fact that modern computer chips have small
yet nontrivial and remotely detectable clock skews. We
showed how our techniques apply to a number of
different goals, ranging from remotely distinguishing
between virtual honeynets and real networks to counting
the number of hosts behind a NAT. Although the
techniques we described will likely remain applicable to
current generation systems, we suspect that future
generation security systems might offer countermeasures
to resist some of the fingerprinting techniques that we
uncover. In anticipation of such developments, we
discussed possible avenues for physical device fingerprint-
ing when information about a system’s TSopt clock or
system clock are not readily available to the adversary.
Our results compellingly illustrate a fundamental reason
why securing real-world systems is so genuinely difficult:
It is possible to extract security-relevant signals from data
canonically considered to be noise. This aspect renders
perfect security elusive and, even more ominously,
suggests that there remain fundamental properties of
networks that we have yet to integrate into our security
models.

ACKNOWLEDGMENTS

The authors would like to thank Young Hyun, David
Moore, Bruce Potter, Stefan Savage, Tsutomu Shimomura,
and Darryl Veitch for helpful discussions; Emile Aben,
Dan Andersen, Colleen Shannon, and Brendan White for
collecting some of the traces that they analyzed; Pat
Wilson for allowing them to experiment with the
machines in one of UCSD’s undergraduate computing
labs; and William Griswold for loaning them PDAs from
the HP Mobile Technology Solutions gift to the Active-
Campus project. All three authors were supported by the
SciDAC program of the US DOE (award # DE-FC02-
01ER25466). T. Kohno was also supported by an NDSEG
Fellowship and an IBM PhD Fellowship. A. Broido thanks
UCLA IPAM for a visit in Spring 2002 when he started
working on network spectroscopy.

KOHNO ET AL.: REMOTE PHYSICAL DEVICE FINGERPRINTING 107

Fig. 6. TSopt clock skew estimate for a source in BBS. Trace recorded on

an OC-48 link of a US Tier 1 ISP, 2004-04-28 19:30–21:30PDT. TSopt

clock skew estimate via linear programming: 175.2 ppm. Clock skew

estimate via the Fourier transform: 175.6 ppm.

REFERENCES

[1] Endace measurement systems, http://www.endace.com/, 2004.
[2] Nmap free security scanner, http://www.insecure.org/nmap/,

2004.
[3] Project details for p0f, http://freshmeat.net/projects/p0f/, 2004.
[4] VMware virtual infrastructure, http://www.vmware.com/, 2004.
[5] Xprobe official home, http://www.sys-security.com/index.

php?page=xprobe, 2004.
[6] K.G. Anagnostakis, M. Greenwald, and R.S. Ryger, “cing:

Measuring Network-Internal Delays Using Only Existing Infra-
structure,” Proc. INFOCOM Conf., 2003.

[7] S.M. Bellovin, “A Technique for Counting NATted Hosts,” Proc.
Internet Measurement Workshop, 2002.

[8] R. Bhagwan, S. Savage, and G.M. Voelker, “Understanding
Availability,” Proc. Second Int’l Workshop Peer-to-Peer Systems, 2003.

[9] A. Broido, Y. Hyun, and K. Claffy, “Spectroscopy of Traceroute
Delays,” Proc. Int’l Workshop Passive and Active Measurement, 2005.

[10] A. Broido, R. King, E. Nemeth, and K. Claffy, “Radon Spectro-
scopy of Inter-Packet Delay,” Proc. IEEE High-Speed Networking
Workshop, 2003.

[11] A. Broido, E. Nemeth, and K. Claffy, “Spectroscopy of DNS
Update Traffic,” Proc. SIGMETRICS, 2003.

[12] S. Donnelly, “High Precision Timing In Passive Measurements of
Data Networks,” PhD thesis, Univ. of Waikato, Hamilton, New
Zealand, 2002.

[13] M.E. Dyer, “Linear Time Algorithms for Two- and Three-Variable
Linear Programs,” SIAM J. Computing, vol. 13, 1984.

[14] Y. Etsion, D. Tsafrir, and D.G. Feitelson, “Effects of Clock
Resolution On the Scheduling of Interactive and Soft Real-Time
Processes,” Proc. SIGMETRICS, 2003.

[15] I.D. Graham, M. Pearson, J. Martens, and S. Donnelly, “Dag—A
Cell Capture Board for ATM Measurement Systems,” http://
dag.cs.waikato.ac.nz/dag/papers/dag1997.html, 1997.

[16] R.L. Graham, “An Efficient Algorithm for Determining the
Convex Hull of a Finite Planar Set,” Information Processing Letters,
vol. 1, 1972.

[17] A. Hussain, J. Heidemann, and C. Papadopoulos, “A Framework
for Classifying Denial of Service Attacks,” Proc. SIGCOMM, 2003.

[18] V. Jacobson, R. Braden, and D. Borman, “TCP Extensions for High
Performance,” RFC 1323, May 1992

[19] K. Keys, D. Moore, R. Koga, E. Lagache, M. Tesch, and K. Claffy,
“The Architecture of the Coralreef Internet Traffic Monitoring
Software Suite,” Proc. Int’l Workshop Passive and Active Measure-
ment, 2001.

[20] T. Kohno, A. Broido, and K. Claffy, “Remote Physical Device
Fingerprinting,” Proc. IEEE Symp. Security and Privacy, 2005.

[21] B. McDanel, “TCP Timestamping and Remotely Gathering
Uptime Information,” bugtraq@securityfocus.com, 2001.

[22] N. Megiddo, “Linear-Time Algorithms for Linear Programming in
R3 and Related Problems,” SIAM J. Computers, vol. 12, 1983.

[23] J. Micheel, S. Donnelly, and I. Graham, “Precision Timestamping
of Network Packets,” Proc. Internet Measurement Workshop, 2001.

[24] D. Mills, “Simple Network Time Protocol (SNTP) Version 4 for
IPv4, IPv6 and OSI,” RFC 2030, 1996.

[25] D.L. Mills, “Network Time Protocol (Version 3): Specification,
Implementation and Analysis,” RFC 1305, 1992.

[26] S.B. Moon, P. Skelly, and D. Towsley, “Estimation and Removal of
Clock Skew From Network Delay Measurements,” Proc. INFO-
COM Conf., 1999

[27] C. Partridge, D. Cousins, A.W. Jackson, R. Krishnan, T. Saxena,
and W.T. Strayer, “Using Signal Processing to Analyze Wireless
Data Traffic,” Proc. ACM Workshop Wireless Security, 2002.

[28] A. Pásztor and D. Veitch, “PC Based Precision Timing without
GPS,” Proc. SIGMETRICS Conf., 2002.

[29] V. Paxson, “On Calibrating Measurements of Packet Transit
Times,” Proc. SIGMETRICS Conf., 1998

[30] J. Postel, “Internet Control Message Protocol,” RFC 792, 1981.
[31] N. Provos, “A Virtual Honeypot Framework,” Proc. Usenix

Security Conf., 2004.
[32] R. Rager XMIT_ID version 2.61, http://xmit.penguinman.com/

xmit_id.html, 2005.
[33] C. Shannon, The Mathematical Theory of Communication. Urbana, Il.:

Univ. of Illinois Press, 1949.
[34] D. Veitch, S. Babu, and A. Pásztor, “Robust Synchronization of

Software Clocks Across the Internet,” Proc. Fourth ACM SIG-
COMM Conf. Internet Measurement, 2004.

[35] F. Veysset, O. Courtay, and O. Heen, “New Tool and Technique
for Remote Operating System Fingerprinting,” http://www.
intranode.com/fr/doc/ring-short-paper.pdf, 2002.

[36] J. Xu, J. Fan, M. Ammar, and S.B. Moon, “On the Design and
Performance of Prefix-Preserving IP Traffic Trace Anonymiza-
tion,” Proc. Fourth ACM SIGCOMM Conf. Internet Measurement,
2001.

[37] J. Xu, J. Fan, M.H. Ammar, and S.B. Moon, “Prefix-Preserving IP
Address Anonymization: Measurement-Based Security Evalua-
tion and a New Cryptography-Based Scheme,” Proc. IEEE Int’l
Conf. Network Protocols, 2002.

Tadayoshi Kohno is a computer security and
cryptography doctoral student at the University
of California at San Diego. He is the recipient
of a National Defense Science and Engineer-
ing Graduate Fellowship and an IBM PhD
Fellowship.

Andre Broido holds two degrees in mathe-
matics from Moscow State Lomonosov Univer-
sity and Stockholm University. Before joining the
Cooperative Association for Internet Data Ana-
lysis, he taught mathematics at Uppsala Uni-
versity (Sweden) and at the University of
California at San Diego. He conducted research
in algebra, complexity, computer visualization,
and published a book on signal processing in
geophysics. He is a proponent of network

spectroscopy, a family of inference techniques based on precise event
timing. He has 20 publications on measurement of Internet topology,
routing, DNS, P2P, traffic volumes, router delays, and is a member of
Technical Program Committee for the Passive and Active Measurement
Workshop.

K.C. Claffy received the PhD degree in compu-
ter science from the University of California at
San Diego in 1994. She is founder and director
of the Cooperative Association for Internet Data
Analysis (CAIDA), based at the University of
California’s San Diego Supercomputer Center,
and Associate Adjunct Professor in the Compu-
ter Science and Engineering Department at
UCSD. Her research interests include measure-
ment, analysis, and visualization of Internet

workload, routing, topology, and performance data. CAIDA’s mission
is to engage in and foster the collection and curation of strategic Internet
data sets and freely available tools and analysis methodologies, in order
to improve the scientific integrity of network research and to promote
more informed engineering, business, and policy decisions regarding
the Internet infrastructure.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

108 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 2, NO. 2, APRIL-JUNE 2005

