IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 4, NO.2, APRIL-JUNE 2007 137

Analysis of Computer Intrusions Using
Sequences of Function Calls

Sean Peisert, Student Member, IEEE, Matt Bishop, Member, IEEE,
Sidney Karin, Member, IEEE, and Keith Marzullo

Abstract—This paper demonstrates the value of analyzing sequences of function calls for forensic analysis. Although this approach
has been used for intrusion detection (that is, determining that a system has been attacked), its value in isolating the cause and effects
of the attack has not previously been shown. We also look for not only the presence of unexpected events but also the absence of
expected events. We tested these techniques using reconstructed exploits in su, ssh, and 1pr, as well as proof-of-concept code, and,
in all cases, were able to detect the anomaly and the nature of the vulnerability.

Index Terms—Security, forensic analysis, logging, auditing, intrusion detection, anomaly detection, management, design,

unauthorized access (for example, hacking).

1 INTRODUCTION AND MOTIVATION

“It is, of course, a trifle, but there is nothing so important as
trifles.”

—Sir Arthur Conan Doyle, “The Man with the Twisted Lip”

The Strand Magazine (1891)

FORENSIC analysis is the process of understanding,
recreating, and analyzing events that have previously
occurred [1]. The problem of computer forensics is not
simply finding a needle in a haystack: It is finding a needle
in a stack of needles. Given a suspicion that a break-in or
some other “bad” thing has occurred, a forensic analyst
needs to localize the damage and determine how the system
was compromised. With a needle in a haystack, the needle
is a distinct object. In forensics, the point at which the
attacker entered the system can be very hard to ascertain,
because in audit logs, “bad” events rarely stand out from
“good” ones.

In this paper, we demonstrate the value of recording
function calls to forensic analysis. In particular, we show
that function calls are a level of abstraction that can often
make sense to an analyst. Through experiments, we show
that the technique of analyzing sequences of function calls
that deviate from previous behaviors gives valuable clues
about what went wrong.

Forensic data logged during an intrusion should be
detailed enough for an automated system to flag a
potentially anomalous behavior and descriptive enough
for a forensic analyst to understand. Although collecting as

e S. Peisert, S. Karin, and K. Marzullo are with the Department of Computer
Science and Engineering, University of California, San Diego, 9500
Gilman Drive #0404, La Jolla, CA 92093-0404.

E-mail: {peisert, karin, marzullo}@cs.ucsd.edu.

e M. Bishop is with the Department of Computer Science, University of
California, Davis, One Shields Ave., Davis, CA 95616-8592.

E-mail: bishop@cs.ucdavis.edu

Manuscript received 5 Sept. 2006; revised 17 Jan. 2007; accepted 13 Mar.
2007; published online 28 Mar. 2007.

For information on obtaining reprints of this article, please send e-mail to:
tdsc@computer.org, and reference IEEECS Log Number TDSC-0126-0906.
Digital Object Identifier no. 10.1109/TDSC.2007.1003.

1545-5971/07/$25.00 © 2007 IEEE

much data as possible is an important goal [2], a trace of
machine-level instructions, for example, may be detailed
enough for automated computer analysis, but is not
descriptive enough for a human analyst to interpret easily.
There has been considerable success in capturing the
system behavior at the system call (sometimes called kernel
call) level of abstraction. This has been applied to several
computer security problems, including intrusion detection
[3], [4], [5], [6], [7], forensics [8], [9], confinement [10], [11],
and illicit information flow [12]. Even the popular Basic
Security Module (BSM) [13] and its cross-platform deriva-
tives are largely based on a subset of a given system’s kernel
calls. All users, whether authorized or not, must interact
with the kernel and, therefore, use system calls to perform
privileged tasks on the system. In addition, kernel calls are
trivial to capture and are low-cost, high-value events to log,
as opposed to the extremes of logging everything (such as
all machine instructions) or logging too little detail for
effective forensic analysis (such as syslog). Capturing
behaviors represented at the system call abstraction makes
intuitive sense: Most malicious things an intruder will do
use system calls. Nonetheless, extending the analysis of
behaviors to include more data than system calls by
collecting function calls can produce information useful to
a human [14] without generating impractical volumes of
data. Though function call tracing is not new,' we analyze
sequences of function calls in a way that results in an
improved forensic analysis, which we believe is new.
Logging all function calls can generate a huge amount
of data. Function calls capture forensically significant
events that occur in both user space and kernel space
(system calls are essentially protected function calls). In
our experiments, between 0.5 percent and 5 percent of
function calls recorded in behaviors are system calls.
Thus, the amount of audit data increases from 20 to
200 times as compared to recording only system calls. This
additional data makes it much easier to determine when
something wrong took place, what it was exactly, and

1. For example, it was used for profiling in 1987 [15] and, more recently,
in intrusion detection [16], [17], [18].

Published by the IEEE Computer Society

138 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 4, NO.2, APRIL-JUNE 2007

how it happened. Additionally, as we will describe, the
increase in the amount of data recorded does not
necessarily translate into a proportional increase in the
amount of data necessary for a human to audit.

Our approach comes partially from intrusion detection.
The techniques need to be modified to be useful for forensic
analysis, but as we will show here, they have good utility.
In Section 7, we discuss some of the specific similarities and
differences between the goals, needs, and techniques used
in forensic analysis and intrusion detection.

We demonstrate the utility of our approach by giving a
methodology for examining sequences of function calls and
showing experiments that result in manageable amounts of
understandable data about program executions. In many
instances, our techniques offer an improvement over
existing techniques. We also make recommendations about
practical implementations and use of this process at the end
of the paper.

Our methods follow four principles [2]: They collect
function calls within the user space, they collect data at
runtime, they look at the impact of the user’s actions on the
system, and they process and present the data in a
meaningful way.

2 BACKGROUND

2.1 Anomaly Detection

There are two common techniques used for intrusion
detection [19]. Anomaly detection involves looking for a
statistical deviation from a safe corpus of data. Misuse
detection involves analyzing whether events or scenarios fit
a predefined model. Similarly, the analysis phase can be
performed either in real time or after the fact.

Previous work [3], [20], [21] used sequences of system
calls to understand anomalous system activity. This
approach allowed the experimenters to delay calls in
response to suspected intrusions to perform analyses in
real time [21], [22]. To simplify the analysis and reduce the
amount of data collected, the early implementations logged
only those system calls made by privileged programs
(setuid to root or setgid to wheel). However, all of the
implementations analyzed only the patterns of system calls
and not the parameters or return values.

The original analysis techniques were examples of
instance-based machine learning, which generally involves
comparing new instances of data whose class is unknown
with existing instances whose class is known [23]. In this
case, the experimenters compared windows of system calls
of a specific size between the test data and data known to be
nonanomalous using Hamming distances. The original
research was done over a number of years, and the
definition of anomaly changed over time. At some points,
an anomaly was flagged when a Hamming distance greater
than zero appeared. At other times, an anomaly was flagged
when Hamming distances were large or when many
mismatches occurred. In 1999, the experimenters revisited
their original data with new analysis methods [24]. Some of
the new methods included looking at rare sequences in
addition to unknown sequences using data mining techni-
ques and using Hidden Markov Models (HMMs).

The new analyses provided few new results and, in fact,
none stood out as superior. This suggests that those
methods requiring large amounts of computational power

(such as HMMs) may not be worthwhile. Further, an
optimal window size was not determined. The window size
of six used in the experiments was shown to be an artifact of
the data used and not a generally recommended one [25].
The experimenters later used Java methods rather than
system calls, but the work used only individual methods,
not sequences of methods, and was applied to dynamic
sandboxing, not forensics [26].

Data mining has been used for anomaly detection [27],
[28], but has used only coarsely grained data. Approaches
using system calls and expanded techniques have subse-
quently been explored, with good success [5], [29].

2.2 Forensic Analysis

Logging, one of two primary components of forensic
analysis, is the recording of data that can be useful in
the future for understanding past events. Auditing, the
other primary component, involves gathering, examining,
and analyzing the logged data to understand the events
that occurred during the incident in question [1]. In
practice, forensic analysis generally involves locating
suspicious objects or events and then examining them in
enough detail to form a hypothesis as to their cause and
effect. Data for forensic analysis can be collected from a
virtual machine during a deterministic replay [30], as long
as the overhead for the nondeterministic event logging is
acceptable. A highly specialized hardware [31], [32] might
make nondeterministic event logging practical.

A practical issue in forensics is the trade-off between
accuracy and the amount of data recorded. A forensic
solution at one extreme [2] is to record everything reflecting
an intruder’s intentions. This would include all memory
accesses explicitly made in an intruder’s program, rather
than those added as intermediate storage by the compiler.
The other end of the spectrum is to record very high-level
(and unstructured [33]) data, such as syslog messages or
data that is focused in one particular area. Examples of this
include file system data from Tripwire and The Coroner’s
Toolkit or connection data from TCP Wrappers.

Gross [34] exhaustively researched the usable data and
analysis techniques from unaugmented systems. It is likely
that to do better, systems in the future will need to be
enhanced to capture additional forensic data.

System call traces can also be used for forensic analysis.
BackTracker [9] is a forensic tool that captures and uses
system call data for analyzing problems on the process and
file system level. An analyst provides a filename, inode, or
process ID as input to BackTracker. Then, based on
previously recorded system calls and some assumptions
about system call dependencies, BackTracker generates
graphical traces of system events that have affected or have
been affected by the file or process given as input. However,
an analyst using Backtracker may not know what input to
provide, since suspicious files and process IDs are not easy
to discover when the analysis takes place long after the
intrusion. Unfortunately, Backtracker does not help identify
the starting point; it was not a stated goal of Backtracker.
There have been useful improvements to the “pruning”
function of the BackTracker’s event-dependency graph [35],
which makes the event graphs easier to analyze, but since
the process of invoking BackTracker is unchanged, the same
limitations on its usefulness still apply.

PEISERT ET AL.: ANALYSIS OF COMPUTER INTRUSIONS USING SEQUENCES OF FUNCTION CALLS 139

BackTracker has also been extended [36] to use alerts
from network intrusion detection systems to provide
additional clues to investigate “multihop attacks” and to
enable the creation of event graphs that include events
across multiple hosts. This added information is useful, but
since the alerts are from network intrusion detection
systems instead of host-based intrusion detection systems,
BackTracker is still limited in its ability to provide clues to
an analyst about what to give as input to generate the event
graphs.

Forensix [8] is a tool that collects system calls similar to
the way BackTracker does, but rather than generating an
event graph, it uses a database query system to answer
specific requets that an analyst might have, such as, “Show
me all processes that have written to this file.” It also
contained a feature that streamed audit data off of the host
machine in real time to append-only storage on a separate
machine in a different security domain. Forensix had
similar constraints as BackTracker, however. A forensic
analyst, for example, has to independently determine which
files might have been written to by an intruder’s code.

Data from intrusion detection systems has been pro-
posed for use as forensic evidence, but the papers contain-
ing those proposals focus on legal admissibility [37] and on
using intrusion detection systems simply because that the
data is already collected in real time [38] and not on the
utility of the data collected.

Previous research has also been performed to under-
stand the limits of auditing in general [39] and auditing for
policy enforcement [40], [41]. However, neither of these
previous research efforts were aimed at presenting useful
information to a human analyst. They were not specifically
aimed at forensic analysis but had different goals such as
process automation. Other work [42] evaluated the effect of
using different audit methods for different areas of focus
(attacks, intrusions, misuse, and forensics) with different
temporal divisions (real time, near real time, periodic, or
archival), but again, the results focused primarily on
performance rather than the forensic value to a human.

3 METHODS

3.1 Anomaly Detection Using Sequences of
Function Calls

With postmortem analysis, a system can record more data,
and analysts can examine the data more thoroughly than in
real-time intrusion detection. Ideally, the analysts have
available a complete record of execution, which enables
them to classify sequences as “rare” or “absent.” A real-time
intrusion detection system, on the other hand, must classify
sequences without a complete record because not all
executions have terminated. Hence, if a sequence generally
occurs near the end of an execution, classifying them as
“absent” in the beginning would produce a false positive.

Were we to capture events for forensic analysis on
replay, the state of the replayer would need to match that of
the system when the events occurred in order for the
capture to provide the same information—and this is very
difficult to guarantee. We are capturing events at runtime in
accordance with the principle stating that we are more
likely to obtain genuine data not distorted by an intruder or
a change of state in the hardware or software when we
capture the data as the event is occurring [2].

Our anomaly detection techniques use the instance-
based learning method mentioned previously [3], [20],
because it is simple to implement and comparable in
effectiveness to the other methods. However, rather than
system calls, as were previously used, we do so using
function calls and sometimes also indications of the points
at which functions return (hereafter, “returns”). The reason
for also including function returns is that we determined
that they are also useful and sometimes necessary to finding
anomalies in the sequences. Currently, our instance-based
learning uses a script to separate the calls into sequences of
length k, with k being from the set 1,...,20. We calculate
the Hamming distance between all “safe” sequences and
the new sequences for several different values of k.

The sequence length is important for anomaly detection
[6], [7], [25], [43]. However, the length to consider depends
on a number of factors. If k is small, the sequences may not
be long enough for an analyst to separate normal and
anomalous sequences. Also, short sequences can be so
common that they may be in the “safe” corpus even if they
are part of an anomalous sequence at another time. On the
other hand, with instance-based learning techniques, the
number of distinct sequences of length k increases
exponentially as k increases linearly. Also, the number of
anomalous sequences that a human analyst has to look at
grows as well, though not exponentially. Through experi-
mentation, we discovered that values of k larger than 10
generally should be avoided.

Generally, since our analysis is postmortem, we are more
concerned about the human analyst’s efficiency and
effectiveness than with computing efficiency. By using
automated parallel preprocessing that presents options for
several values of k, a forensic analyst can decide which
sequence lengths to use. We show the effects of choosing
different values of & in this paper, but do not claim that a
particular value of k is ideal. Ultimately, given that forensic
analysis will remain a lengthy iterative process, the
sequence length parameter is one that a human analyst
will choose and vary according to the situation being
analyzed.

3.2 Forensic Methods

Anomaly detection is the foundation for our forensic
analysis. The anomaly detection process flags anomalous
executions and presents the relevant data for further study.
Whereas the anomaly detection process is automated, the
forensic process involves a human. Though forensic
analysis will undoubtedly be more easily automated in
the future, automation is currently hard.

To begin the forensic analysis, a human analyst first
decides which sequence length to choose to investigate
further. Given that we calculate the number of differing
sequences for several values of k, the analyst should choose
one that is manageable to look at but in which anomalies are
present.

4 EXPERIMENTS AND RESULTS

We compared sequences of function calls from an original
(nonanomalous) program with several versions of that same
program modified to violate some security policy. Our goal
was to determine how readily the differences could be
detected and what we could learn about them. We chose the

140 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 4, NO.2, APRIL-JUNE 2007

experiments as examples of important and common classes
of exploits. They recreated common critical hacks and
exploits that have occurred on computer systems, including
spyware,2 buffer overflows [44], race conditions [45], and
Trojan horses [46]. Indeed, Somayaji [21] considered some
of these in his dissertation. They cover all classes of flaw
domains as enumerated in the Research In Secured
Operating Systems (RISOS) [47] and Protection Analysis
(PA) [48] reports, except for the “inconsistent parameter
validation” class from RISOS. The latter requires looking
exclusively at call parameters and not at sequences of calls
themselves, and this requires analysis techniques outside of
the scope of our work. It is possible that a large enough
collection of examples with enough overlapping coverage
of the flow domains might be sufficient to analyze not just
the attacks specified but any other attack in the same flaw
domain(s) as the specified attacks. At this time, we do not
assert this, but instead use the fact that these examples
cover all flaw domains in the two reports as a means of
demonstrating the effectiveness of our approach.

The following is a list of each experiment and the flaw
domain® that it covers:

1. Omitting or ignoring authentication (Section 4.1):

e RISOS: inadequate identification/authoriza-
tion/authentication
e DA #2: improper validation (of operands, queue
mgmt. depend)
e PA #4: improper choice of operand or operation
2. Spyware (Section 4.2):

e RISOS: implicit sharing of privileged/confiden-
tial data
e PA #la: improper choice of initial protection
domain
3. Ignoring permissions (Section 4.3):

e RISOS: inadequate identification/authoriza-
tion/authentication

e RISOS: asynchronous-validation/inadequate-se-
rialization

o PA #le: improper de-allocation or deletion

e PA #3a/b: improper synchronization (indivisi-
bility + sequencing)

4. Buffer overflow (Section 4.4):

e RISOS: violable prohibition/limit

e RISOS: incomplete parameter validation

e PA #1b: improper isolation of implementation
detail

e PA #lc: improper change

e DA #2: improper validation (of operands, queue
mgmt. depend.)

5. Trojan horse (Section 4.5):

e RISOS: Exploitable logic error
e PA #1d: Improper naming.

2. We define spyware to be a program or a modification to an existing
program that quietly gathers information and covertly shares it with an
attacker either locally or via the network.

3. The organization that we use for the PA flaws corresponds to the
revised hierarchy outlined by Neumann [49], not the organization in the
original PA paper.

We ran the first four experiments on an Intel-based
uniprocessor machine running FreeBSD 5.4. In those
experiments, we began by using Intel’s dynamic instru-
mentation tool Pin [50] to instrument the original and
modified versions of the programs to record all function
calls made. In the last experiment, we used the 1trace tool
on an Intel-based uniprocessor machine running Fedora
Core 4. The ltrace tool captures only dynamic library
calls, rather than user function calls, but unlike the Pin tool,
is type aware and therefore enables analysis of parameters
and return values. System calls are captured by both
instrumentation methods.*

To create a database of calls to test against, we ran
unmodified versions of the binaries one or more times. For
example, for our experiments with su below, one of the
variations that we tested included successful and unsuc-
cessful login attempts.

In the experiments, some sequences appeared multiple
times in a program’s execution. We refer to the number of
distinct sequences in an execution, counting multiple occur-
rences only once. (The total number of sequences is simply
the total number of calls minus the length of the sequence k
plus 1.) When we compare the safe program’s execution to
the modified program’s execution, we refer to the
sequences appearing only in one execution and not the
other as the different sequences. The relevant numbers are the
number of total different sequences in each version and the
number of distinct different sequences in each version, where,
again, multiple occurrences are counted only once.

4.1 Omitting and Ignoring Authentication

4.1.1 su Experiment 1

Our first experiment illustrates a simple manually con-
structed anomaly. We compared the execution of a normal
unaltered version of the UNIX su utility with one in which
the call to pam_authenticate was removed, thus
removing the need for a user to authenticate when using su.

Fig. la shows the number of distinct sequences of
function calls for the executions of the two su programs.
Fig. 1b shows the number of sequences of function calls
appearing only in one version of the execution but not the
other. The su-mod curve in Fig. 1b quickly jumps from 7
when k=2 to 46 when k=4 and 93 when k=6. This
pattern is typical and emphasizes why larger values of k can
be a hindrance to understanding the data. Ninety-three
sequences of length 6 is a lot of data to analyze visually.
Although shorter sequences may fail to highlight intrusions,
longer sequences can present overwhelming amounts of
data to a forensic analyst.

Choosing k = 4 somewhat arbitrarily, here is the sequence
information for the original and modified versions of su:

number of sequences

k=4 in each execution
37142 (2136 distinct)

8630 (1812 distinct)

su-original

su-modified

The discrepancy between the numbers of sequences in
each version is sufficient to determine that something is

4. We capture both the system call and 1ibc interface to the system call,
so we can determine when a function call to 1ibc just calls a system call
and when it does not.

PEISERT ET AL.: ANALYSIS OF COMPUTER INTRUSIONS USING SEQUENCES OF FUNCTION CALLS 141

10000
)
[o
[&]
(7]
(2]
k]
[0
Q
[8]
c
E
g 1000
(7]
k3]
£ J
@]
= su-orig —+— |
1 | 1 | | su-I;nOd 1777><|777

0O 2 4 6 8 10 12 14 16
sequence length

(@)

18 20

100000 F T T T T T T T T T
& [
3 r ﬁ/} | % 1
2 10000 — 7
Py
g 1000 &
(] 23
g I
I 100 F X 4
R r 1
5 10F 7
s r su-orig —F—]
2 r su-mod ---<--- 1

1 | | | | | 1 | 1 |

0 2 4 6 8 10 12 14 16
sequence length

(b) r

18 20

Fig. 1. Unique and different numbers of function call sequences in the original version of su and the version with pam_authenticate removed.
(a) Number of distinct call sequences in the original and modified versions. (b) Function call sequences present only in a single version.

different between the two executions, but little more can be
learned. Therefore, we compared the data between the two
more directly. Fig. 1b shows plots of the number of calls
appearing only in one version of su and not in the other
(using a logarithmic scale). Again, as k grows, the number
of sequences appearing in the original version and not in
the modified one quickly becomes too large for a human to
analyze easily (unless obvious patterns are present), but the
number of sequences appearing in the modified version and
not the original stays easily viewable until a sequence
length of about 6 is used. We chose a length of 4. Using the
instance-based method described earlier, a comparison
between sequences in the original and modified versions
of su shows

k=4 ‘ different sequences
17497 (370 distinct)

46 (all 46 distinct)

only in su-original
only in su-modified

Of the 370 distinct sequences appearing only in the
original version, we also learned that 14 sequences of
length 4 were called with unusually high frequency (see
Table 1).

These 14 sequences in Table 1 represent nearly half the
entire program execution. Looking more closely at the
14 sequences (which is easy to do, since they stand out so
voluminously from the others), all but one are clearly
related to MD5, which does checksumming and encryption.
This is an obvious clue to a forensic analyst that authentica-
tion is involved in the anomaly.

By comparison, it would not have been obvious what
functionality was removed had we looked only at kernel
calls, because they tend to be more utilitarian and less
descriptive. For example, setting k& = 1 (note that a sequence
of length k = 1 is the same thing as a single call) and looking
only at kernel calls, the calls absent in the modified version
of su but present in the original were setitimer and
write. Given k = 2, the number of sequences present in one
and not the other jumps considerably. Among the sequences
were the calls fstat, ioctl, nosys, sigaction, getuid,
and stat. These are clearly useful pieces of information but
not as descriptive as function calls.

Might there be an even easier way of finding the
anomalous function call sequences? When k = 2, the results
change significantly:

k=2 ‘ different distinct sequences
only in su-original 161
only in su-modified 7

The reduced number of anomalous sequences makes the
data much easier to look through. Using k=1,

k=1 ‘ different distinct sequences
only in su-original 45
only in su-modified 0

In fact, we can summarize the relevant calls for £k =1 in
four lines:

k=1 # total % of total
sequence | occurrences | program
MD5Update 5538 14.91%
MD5Final 1002 2.70%
MD5Init 1002 2.70%
MD5Pad 1002 2.70%
Total 9547 18.69%

In this experiment, k=1 provides a list of differing
function calls that provided large clues about what was
anomalous in the program. This is not always the case. In
experiments with other programs, we discovered that k£ = 1
showed no differences at all, and a minimum value of & = 2
or even k=4 was needed. Likewise, we discovered that
k = 4 provided manageable results similar to those in this
experiment, but k > 4 provided too many. In describing
future experiments, we will choose a value of k that shows a
differing number of sequences for at least one of the code
versions to be greater than 1 and less than 20. In most cases,
that means either k=2 or k = 4.

The experiment also showed that function calls provide
an additional value beyond that provided by system calls.

142

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 4, NO.2, APRIL-JUNE 2007

TABLE 1
Sequences of Length 4 Appearing Only in the Original Version of su and Not the Version
with the Call to pam_authenticate Removed

k = 4 sequences # total occurrences | % of total program
MD5Update,memcpy,MD5Update,memcpy 3533 9.51%
memcpy,MD5Update,memcpy,MD5Update 1528 4.11%

MD5Final, MD5Pad,MD5Update,memcpy 1002 2.70%
memcpy,MD5Update,memcpy,memcpy 1002 2.70%
memcpy,memcpy,memcpy,memcpy 1002 2.70%
MD5Update,memcpy,memcpy,memcpy 1002 2.70%
MD5Init, MD5Update,memcpy,MD5Update 1002 2.70%
MD5Pad,MD5Update,memcpy,MD5Update 1002 2.70%
memcpy,MD5Update,memcpy,MD5Final 1001 2.70%
memcpy,MD5Final, MD5Pad, MD5Update 1001 2.70%
MD5Update,memcpy,MD5Final, MD5Pad 1001 2.70%
memcpy,memcpy,memset,MD5Init 1000 2.69%
memcpy,memcpy,MD5Init, MD5Update 1000 2.69%
memcpy,MD5Init, MD5Update, memcpy 1000 2.69%
Total 17076 46.0%

Using k=2 and looking only at system calls, there are
23 sequences of system calls (19 distinct) occurring in the
original version of su and not the modified. The most
significant differences are as follows:

k = 2 sequences of system
calls only in su-orig # total occurrences
ioctl, write 2 (0.27%)
nosys, fstat 2 (0.27%)
getuid, stat 2 (0.27%)
open, close 2 (0.27%)
Istat, open 2 (0.27%)

These sequences suggest that an anomaly is occurring
but do not describe what the anomaly is. Indeed, none of
the sequences would provide any indication to most
forensic analysts as to where to look in the source for the
anomalous behavior. Contrast this to the much more useful
perspective that the sequences of function calls provided.
Also, we can see that though the amount of data captured
by recording function calls rather than system calls alone is
20-200 times higher, the amount of data necessary for an
analyst to examine is not nearly as high. In this case, the
number of distinct different function call sequences is only
seven times higher than the number of distinct different
system call sequences, with some sequences appearing so
frequently that they immediately stand out. The function
call data is more useful and does not require much more
work to examine.

4.1.2 su Experiment 2

We performed a second experiment with su, where we
modified su to run pam_authenticate but ignore the
results rather than just removing the function entirely. In
Fig. 2, we show a number of sequences appearing in one
version but not the other. Again, we see that a sequence of
length 4 gives a manageable amount of results for

sequences appearing only in the original version of su,
with four of the 13 sequences being

k = 4 sequences in su-original,

not in su-modified

strcmp,pam_set_item,memset,free
crypt_to64,crypt_to64,strcmp,pam_set_item
crypt_to64,strcmp,pam_set_item,memset

sys_wait4,login_getcapnum,cgetstr,cgetcap

That said, k& = 2 still gives us all we need to investigate
the anomaly. For a sequence of length 2, there are
13 distinct sequences occurring in su-original and
not in su-modified. One is “strcmp, pam_set_item,”
which is sufficient to raise concerns in any forensic
analyst’s mind because it indicates that the result of the
authentication is not being set (pam_set_item) after the
check (strcmp).

160 T T T T T T T T T
2 su-orig —F—
e 140 - su-mod --—X-~
5
g 120 - /,/ .
3
£ 100 [8
s -
kS 80 - -
©
©
5 60f b
S 40 4
[
o
E 20} 1
=

0 e 1 L 1 1 1 L 1 1

0 2 4 6 8 10 12
sequence length

14 16 18 20

Fig. 2. Number of function call sequences appearing only in the original
version of su and the version modified to ignore the results of
pam_authenticate.

PEISERT ET AL.: ANALYSIS OF COMPUTER INTRUSIONS USING SEQUENCES OF FUNCTION CALLS 143

140 T T T T T

T T
2 ssh-orig —F—
© 120+ ssh-mod f——>§7‘ i
g
g 100 .
5 80 - 7 4
2 y
©
< 60
e
S 40
3
£ 20
3
c

o 2

sequence length

Fig. 3. Number of function call sequences appearing only in the original
version of ssh and the version modified to echo the password back.

By comparison, looking only at system call traces, results
are again less forensically useful because they are less
descriptive. There are no different sequences of system calls
with k=1 or k= 2. With k= 4, we see three system calls
(three distinct) in the original version and not in the
modified and four system calls (four distinct) in the
modified version and not in the original. Unlike function
calls indicating a relationship with authentication and
cryptographic routines, however, we instead see

syscall sequences only in su-modified

ioctl,close,close,sigaction
setpgid,ioctl,close,close

close,close,sigaction,sigaction

syscall sequences only in su-original

ioctl,close,sigaction,close
sigaction,close,sigaction,sigaction
setpgid,ioctl,close,sigaction
close,sigaction,close,sigaction

The above table indicates something suspicious invol-
ving a socket call, leading to an inference that there is a
problem involving interprocess communication. There is
nothing indicating the nature of the problem. This again
emphasizes the value of function call sequences, which
clearly shows an authentication issue. In what follows, we
shall focus only on function call sequences rather than the
differences between function call sequences and system call
sequences.

4.2 Spyware

4.2.1 ssh Experiment 1

ssh is key to accessing systems over a network. Hence, it
offers opportunities for malice, especially when the attacker
has access to a password, private key, or other authentica-
tion token. Consider two versions of the ssh client: the
original and one that is modified to do nothing more than
echo the password back to the terminal. We wish to
determine which sequence length will alert the analyst to
the change. Fig. 3 shows the number of sequences that exist
only in the executions of the original and modified versions
of the ssh client. When a human analyst looks at a list of
function call sequences flagged as anomalous, he or she can
most easily spot the differences when at least one list of

sequences appearing in one execution but not the other is
relatively short. In this case, sequence lengths of k larger
than 2 or 4 can cause the resulting sequences to become
unmanageable. To the degree that an anomaly can be
caught by sequences of length 2 or 4, an analyst should use
those smaller values. It is difficult for an analyst to
determine whether he or she has captured an anomaly
with a sequence length of 2 or 4, but if an anomaly exists at
all, a larger value of k is probably unnecessary.

In this case, the comparison between each version with
sequence length k = 4 results in the following:

k=4 ‘ total different sequences
13 (13 distinct)

39 (39 distinct)

only in ssh-original

only in ssh-modified

Many of the functions in the anomalous sequences have
obscure names: rlock_release, rtld_bind,
rtld_bind_start, and localeconv. Although the
sequences clearly differ in the executions of both programs,
the interpretation of the differences is not clear. Therefore,
we include the function returns as tokens in addition to
function call points. In what follows, the function returns
are indicated with the suffix -RET:

total different sequences,
k=2 including function returns
6 (3 distinct)

25 (25 distinct)

only in ssh-original

only in ssh-modified

Now, using the additional data along with our previous
methods, we discover the following variances in between
all of the somewhat obscure sequences. In them, one
function stands out immediately: read_passphrase.
Table 2 shows sample sequences that appear only in each

version of ssh.
These sequences in Table 2 indicate a location that needs

to be examined more closely. Knowing about the read_
passphrase call directs an analyst’s attention to the

routine in the source code, simplifying the investigation.
We mentioned earlier that shorter sequences would

potentially be even easier to analyze if they catch the
anomaly. As it turns out, k = 2 does catch the anomaly. In
the two distinct sequences in the original version, the
read_passphrase call stands out. In fact, read_
passphrase is one of the only three nonkernel calls in
the list, which further indicates what we get by looking at
all calls rather than just kernel calls. In the 25 distinct
sequences in the modified version, we show a selection of
the sequences in the following chart. All but three involve
string operations, which would help a forensic analyst find
the offending location in the source code:

k = 2 sequences in ssh-original

memset-RET,read_passphrase-RET
BN _copy-RET,BN_div-RET
BN_div,BN _copy

144 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 4, NO.2, APRIL-JUNE 2007

TABLE 2
Sequences of Length 4 Only in a Single Version of ssh

k = 4 sequences in ssh—original, including function returns

memset-RET,read_passphrase-RET,input_userauth_info_req,packet_put_cstring
read_passphrase,memset-RET,read_passphrase-RET,input_userauth_info_req
xstrdup-RET,read_passphrase,memset-RET,read_passphrase-RET

k = 4 sequences in ssh-modified, including function returns

fprintf-RET,read_passphrase-RET,input_userauth_info_req,packet_put_cstring
viprintf-RET,fprintf-RET,read_passphrase-RET,input_userauth_info_req
memset-RET,read_passphrase,rtld_bind_start,rtld_bind

k = 2 sequences in ssh-modified
fprintf-RET,read_passphrase-RET
viprintf-RET,fprintf-RET

viprintf,viprintf

The inclusion of function returns effectively doubles the
amount of data collected. However, as with the addition of
function calls to system calls, the increase in the amount of
data collected does not necessarily result in a proportional
increase in the amount of data a human needs to examine.
In our experiments, when the amount of data collected
doubled, the increase in the amount of data presented to the
analyst was often closer to 50 percent.

Nevertheless, the resulting increase in the data to collect
and analyze was the reason why we do not use function
returns in all of our experiments. There are some cases
where function returns are helpful and others where they
are unnecessary. As with the value of the sequence length
parameter, an analyst will need to decide whether or not
function returns should be included.

4.2.2 ssh Experiment 2

This example recreates a malicious program that was used
by an intruder at the San Diego Supercomputer Center in
2004 and 2005 [51]. In the program, the intruder modified
the ssh client program to capture user passwords and send
the passwords via a network socket to another machine,
which collected them. The difference in the number of
function call sequences in the original and modified
versions of ssh are shown in Fig. 4. The initial comparison
shows the following;:

120 T T T T T T T
2 ssh-orig —+—
o ssh-mod --—><-—-
S 100 | A
=] >
=3 -
@ »
2 80f .
= . |
o -~
2
£ 60 /></ 7
5
2 40t .
;8_, ></f"’/‘></
o L i
g 20
2 .

0 1 1 1 1 1 1 1 1

1 2 3 4 5 6 7 8 9 10
sequence length

Fig. 4. Difference in the number of function call sequences in the original
version of ssh and the version modified to send the captured password
over a network socket.

k=2 total different sequences
8 (4 distinct)

24 (12 distinct)

only in ssh-original

only in ssh-modified

Several calls do stand out: read_passphrase, inet_
aton, inet_addr, socket, and sendto.

k = 2 key sequences in ssh-modified

inet_aton-RET,inet_addr-RET

read_passphrase,sys_close-RET
sys_close-RET,read_passphrase-RET
inet_addr,inet_aton
inet_addr-RET,read_passphrase
socket-RET,read_passphrase
sendto-RET,read_passphrase

In these examples, the four network-related functions,
inet_aton, inet_addr, socket, and sendto (which is
used to send data), might capture an analyst’s attention.
The first two are 1ibc calls, and the last two are system
calls. Whereas anomaly detection could have indicated a
potential anomaly in the program, based upon the system
calls, these forensic techniques draw an analyst’s attention
to the right place in the code to understand the anomaly. In
this case, the 1ibc calls help flag the anomaly, and using
that information, further exploration in the code by a
forensic analyst would reveal the purpose of the calls.

One complication results from the way Pin collects
function calls and function returns. Due to technical
limitations, Pin occasionally misses less than 1 percent of
the calls made. For example, note that in the above set of
key sequences, sendto-RET appears (showing the return
from the sendto function), but the sendto call itself does
not appear. Given the low volume of these missed calls, the
results of the analysis are not affected.

4.3 Ignoring Permissions in the File System
In this example, we have recreated an experiment performed
previously using anomaly detection techniques [3], [20], but
in our experiment, we have used function calls instead of just
system calls. The experiment involves a bug in an older
version of 1pr that allows an attacker to create or overwrite
any file on the system [52]. In this case, the bug was exploited
to replace /etc/passwd with /tmp/passwd.

Using k = 2 since that has been successful so far, we see
48 sequences (38 distinct) in the “test” version of 1pr that
are not in the “safe” corpus. In Table 3, the function calls

PEISERT ET AL.: ANALYSIS OF COMPUTER INTRUSIONS USING SEQUENCES OF FUNCTION CALLS 145

TABLE 3
Selected Sequences of Length 2 Appearing Only
in lpr-Modified

selected k£ = 2 sequences
only in lpr-modified
close, open
close, close
seteuid,creat
seteuid,sys_read
swhatbuf,sys_fstat
sys_write,nfile
copy,card
nfile,sys_umask
swrite,swrite
swrite,rtld_bind_start
printf,rtld_bind_start
swsetup,smakebuf
open,copy
link,error_unthreaded
sys_unlink,error_unthreaded
sys_unlink,sys_unlink
sys_unlink,rtld_bind_start
viprintf,vfprintf
smakebuf,swhatbuf
ioctl,sfvwrite
sys_umask,fchown
sys_read,sys_write
cleanup,signal
malloc,isatty
sys_sigaction,seteuid
error_unthreaded,sys_unlink

occur

—_

PO = = R e e e e e RO DD e e e e e e e e DD = N

that are part of 1pr are in boldface font, and the system
calls and libc calls are in standard font.

When one is printing a file, one may be surprised to find
that files are created, copied, and removed and have their
permissions changed in the process. Though each of the
sequences in the table above appear only once or twice, we
can see repeated calls to sys_unlink and seteuid, which
stand out among these results as being important and
suspicious. What actually helps to find the bug, however, is
the copy function call in line 7 of the Table 3, which is a
routine in lpr.c that creates a file and copies a file
descriptor.

The copy function contains a call to creat. creat is a
legitimate system call, though it is now deprecated in
FreeBSD. An analyst who knows of the deprecation might
be suspicious of a call to creat, because unlike open, it is
now known to be one of the two steps in a nonatomic
method for creating and opening a file, which must be used
carefully to avoid race conditions. At the time the exploit
was released, an analyst would not necessarily have known
that creat might be a problem, however.

The sys_unlink and seteuid calls that we see in the
table are not themselves the vulnerability but are the effect
of the exploit, since the creat call allows files to be
arbitrarily overwritten (sys_unlink) and permissions
reset (seteuid).

4.4 Buffer Overflows

In the first three experiments, we have shown full real
examples of actual exploits for the purpose of demonstrat-
ing the complete process of using our methods. However,
the results are also partially demonstrating the skill of the

analyst, not the simple results of our method. Therefore, in
the following experiments, we use simplified examples
rather than actual attacks. This is partially because the
simple examples show the essence of the attack and
analysis, and embedding them in more complex exploits
simply requires that the analyst winnow them out. It is also
due to space limitations, as there is not enough room for a
detailed analysis of two more large attacks that use these
exploits. Therefore, we present examples of the two attack
approaches without the extraneous entries.

There are many examples of attacks that exploit buffer
overflow vulnerabilities. One can invoke a root shell
directly, copy a setuid root version of a shell into /tmp, or,
instead of working directly to gain arbitrary access, write
shellcode’ to perform exactly the desired operations directly.
Unfortunately, at this point, we have not discovered a
universal pattern to buffer overflow exploits and therefore
cannot detect one directly. What we can do at this point is
understand when the order of events is unusual. Consider
the following piece of code [53]:

int main (int argc, char *argv[]) {
char buffer[500];
strcpy (buffer, argv([1l]);
printf (“Safe prog?”); return 0;

We run this program, called vulnerable, in two
different ways. The first way is one that is “safe” and does
not exploit the vulnerability by overflowing the buffer. It
simply passes 499 instances of the ASCII character “a” as
the argument to vulnerable. The second way exploits the
vulnerability. It copies more than 500 characters into the
buffer. The characters include shellcode that returns a shell
owned by root.

Although we see a discrepancy between the sequences
for the safe and exploited programs, the reason for the
difference, at first, is unclear. As we did in a previous
example, we add indications of where the functions return.
The following variances appear:

k = 4 sequences only in
non-overflowed vulnerable
viprintf-RE, printf-RET, main-RET, start
printf-RET, main-RET, start, rtld_bind_start

main-RET, start, rtld_bind_start, rtld_bind

The exploited program contains a sequence of length 3:
vprint f-RET, print £-RET, main-RET. The nonexploited
version of the program continues after main ends with
additional functions and finally ends with the exit syscall.
The exploited version stops at the end of main. A forensic
analyst who saw these results would realize that exit is
being skipped in one version (the exploited version), most
likely because the program has been altered. This means that
all the cleanup functions exit invokes are also skipped.

Our difficulty in analyzing buffer overflows stems from a
limit of the dynamic instrumentation tool we used. Pin
currently allows analysts to instrument a code written to the
stack and then executed, but a special command must be
called between the time the code is written and the time it is

5. Shellcode refers to the assembly language instructions in a buffer
overflow exploit designed to provide a shell.

146 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 4, NO.2, APRIL-JUNE 2007

executed. Unfortunately, implementing this special com-
mand would distort our view of the buffer overflow. That
said, the evidence of the buffer overflow already exists in
our view, even if the exact nature of the overflow does not.
The effects of some exploits will be more apparent than the
exploit itself. In this case, the exploited program does not
exit (the effect) because it is actually spawning a program
(the exploit itself, which we cannot see but can infer).

4.5 Trojan Horses

In an early version of Unix, there was a flaw in vi® such
that when an editing session was terminated unexpectedly,
it would mail the user about how to recover the data from
the lost session by calling the mail program without a full
path (for example, /bin/mail but with simpler a program
name: mail). As a result, if a binary called mail were
placed earlier in the search path order than /bin, the
binary, which could be a Trojan horse, would be executed.
Further, since vi used a privileged program to store
temporary files on the system and that program called
mail, the Trojaned version of mail would be executed
with superuser privileges.
Our experiment involves a very minimal program:

int main() {
FILE * F = popen (“date”, “r") ;
printf (“Opened\n”); pclose(F);

In this program, the date program is called with popen,
just as the original bug in vi. The circumstances are such
that the path is set to

.:/sbin:/bin:/usr/sbin: /usr/bin: /usr/local/
sbin:/usr/local/bin

The system’s date program is located in /bin. In the
first case, that is the only date in the path. In the second
case, a “rogue” date program is also in the current working
directory. In reality, it could be easier to modify a user’s
path without their knowledge or to put a malicious
program higher in their “search path” than the system’s
than to obtain root access. This is because inserting a
malicious program only requires access to a user’s account,
not the root account. Therefore, any number of password-
sniffing social engineering or other techniques might enable
an attacker to do this.

We test the same program under both circumstances.
Differences in each case show up with values of k£ > 6. With
k = 6 and comparing the library calls of the program that is
being “tricked” into executing the Trojan, not the Trojan
itself, the results show the following;:

k = 6 sequences only in version calling Trojan

malloc,strncpy,xstat64,malloc,xstat64,access
strncpy, xstat64,malloc,xstat64,access, free
xstat64,malloc,xstat64,access,free,xstat64

Without even looking at the function parameters
themselves, in the first execution, we can see multiple calls
relating to malloc, strncpy, access, free, and
xstat64.

6. See slide 171 in [54, p. 90].

sean:x4nPA20z:500:500:Sean the Wizard:/home/sean:/bin/sh
sean2::0:0::/home/sean:/bin/tcsh

Fig. 5. Two different possible entries in /etc/passwd.

Looking more carefully at the raw data of function calls,
parameters, and return values (the latter two are available
as a result of using 1trace in this experiment rather than
Pin), we can see why the version that runs the system date
does an xstat64 (related to stat) on the current working
directory and /sbin before /bin. Further, the first two
return nonzero values, which indicates the nonexistence of
a file, whereas the xstat64 returns zero in the /bin
directory for date. Conversely, when the Trojaned date is
in the directory, there is only one xstat64, and the
program goes no further.

Intuitively, we know why this is the case. The version of
the test program that gets tricked into calling the Trojan
searches its path (and, hence, uses xstat64) in different
sequences than the version that calls the system date. The
results are misleading, given that there are actually more
total sequences in the version calling the system date than
the Trojan but more distinct sequences in the other version.
This is an anomaly that sometimes occurs. In this case, it
occurs with k < 14. Nevertheless, the experiment shows
how sequences of function calls are helpful in analyzing
Trojan horses.

The results of this experiment show not only the value of
tracing library calls across forks, but also the value of and
ability to analyze call parameters and return values.

4.6 Invalid Parameters

Another early Unix flaw occurred in chsh and chfn.
Those programs would accept a new shell or full
username from the input line, even if the input contained
a colon character.” Since the password would get written
into the /etc/passwda file with the colons intact, a uid or
gid of zero, indicating superuser privileges (or any
arbitrary value), could be appended after a colon and
overwrite the existing values. For example, the first line in
Fig. 5 could be changed to the second line.

The solution is either to have the program stop reading
input from the user when it sees either a colon or a newline
or to have the program simply stop writing output to the
passwd file when it sees a colon or newline.

A modern example of this flaw is the conflict between
Unix and Mac OS X, wherein Unix uses a forward slash (“/”)
to designate directories, whereas in Mac OS X, a file can be
written with a forward slash contained in the name of a file
or directory.

We do not implement a method for forensic analysis of
this flaw because it requires observing only the call
parameters and not the calls themselves and, therefore,
our exact techniques are not applicable. Instead, the
experiment would benefit from more sophisticated data
mining techniques. However, the method itself is straight-
forward: Capture all calls and parameters and use data
mining techniques to build a “normal” database of the
parameters given to the chsh command. The results should
include histograms of character frequencies given as input.
We can assume that there will be large amounts of
alphanumeric characters and even many symbolic char-
acters. Some characters (such as control characters) are

7. See slide 85 in [54, p. 47].

PEISERT ET AL.: ANALYSIS OF COMPUTER INTRUSIONS USING SEQUENCES OF FUNCTION CALLS 147

disallowed and will not appear at all. If a colon character
were to appear, even an automated detection system could
know immediately that something unusual had been input
and should be flagged for observation.

5 FUTURE WORK

We now describe work that could be done in the future to
enhance or augment our methods.

5.1 HMMs

Generating HMMs of function calls requires considerable
computing resources, because the complexity is O(n?),
where n is the number of calls in a trace. Using a
supercomputer to generate these would speed up the task
considerably, which could make using HMMs practical in
limited situations. These models of function calls should be
generated so that the results could be compared to the
results described in this paper.

5.2 Data Mining

Machine learning techniques should also be revisited.
Function calls present more features than other data, which
allows for higher accuracy. For example, in addition to the
function calls, users, programs, and pathnames, there are
also return values, arguments, and their types. The
k-nearest-neighbor classification algorithm that was pre-
viously used in intrusion detection research is one possible
classification algorithm that could be used to process the
data. Another method of detecting possible anomalies is to
measure the entropy of the argument and return data to
determine whether the value appears normal or somehow
anomalous.

Data mining techniques may report many anomalies that
are not attacks. Analyzing function call sequences may
produce models that constrain and focus the data mining
techniques to minimize those false positives. The next step
is to model the function call data and use automated
classification techniques to search for previously unknown
anomalies. This will require many experiments from a wide
variety of program executions (both attacking and normal).
From these experiments, enough data will be gathered to
test these techniques.

5.3 Sessions

One method of avoiding detection of existing anomaly
detection and forensics software is to have programs work
together to exploit a vulnerability such that each program
individually is doing something seemingly normal, but
together could be exploiting a vulnerability. Therefore, the
techniques presented in this paper should be applied to
not only anomalous programs but also anomalous sessions
and users and, therefore, also masquerade attacks [55] and
insiders [56].

5.4 Masquerade Attacks

One technique to attempt to defeat our methods is mimicry
attacks [57], [58]. Mimicry attacks are an attempt to make an
attack on a computer system seem like another attack or
perhaps seem like normal computer use and not an attack at
all. They are an attempt at misdirection and confusion.
Mimicry attacks are a concern with any kind of intrusion
detection or forensic analysis. However, the fact that
function calls encompass system calls helps significantly in

this regard. If function parameters and return values to
system calls (and system library calls) were recorded, the
execution trace would show whether the calls were truly
mimicry (for example, no-ops) or an actual execution.
Further, many of the programs that are exploited to attack
a system locally are not user-compiled programs at all but
are rather already compiled and on the system, because they
are quite often setuid root. Therefore, mimicry attacks
would generally not apply in this situation since the setuid
root program is almost always unwritable by nonroot
users, and also using the setuid root program to execute a
new binary would be significantly easier than adding
functions and instructions to the exploited binary for
mimicry purposes. In any case, in this situation, function
call traces would be no more susceptible to mimicry than
system call traces. To provide a greater assurance of
avoiding mimicry attacks, the technique of interleaving
known (but innocuous) calls with actual calls [59] could
address the issue for both system calls and function calls,
albeit at a considerable computational cost. More research
might reveal ways in which masquerade attacks could be
dealt with even more effectively in forensic analysis.

5.5 Implementation

Precisely measuring the effectiveness of forensic methods is
hard. Even experiments that claim to objectively and
thoroughly evaluate intrusion detection systems are incom-
plete, since they rely on a corpus of “good” and “bad” tests,
yet none of these can practically do a complete evaluation of
all possible experiments.

We intend to implement these forensic tools and
techniques on systems that receive broader use. Ultimately,
it is the use of these tools and techniques and the feedback
from them that will help to both evaluate its effectiveness
and refine it to improve utility and efficiency.

6 PRACTICAL ISSUES

If this system were to be implemented and used on a live
system, there are a number of considerations that would
enhance its practicality. We will briefly discuss a few of them.

From an instrumentation standpoint, combining the use
of a dynamic instrumentation tool and a static binary
rewriter could help performance. The kernel and related
system binaries could be instrumented statically using the
binary rewriter, and all user binaries could be forced to be
run through a dynamic instrumentation tool by modifying
the exec system call. Ideally, a tool that had the combined
benefit of capturing all calls, as does Pin, as well as all
parameters and return values, and the ability to follow
forks and vforks, as does the ltrace tool, and finally
captures calls made by a self-modifying code would be
ideal. At the time of this writing, the authors are not aware
of any such tool.

Because Pin runs in the user space, it might be possible
to bypass reliable function call recording. However, when
run as root, Pin is no more vulnerable than the kernel.
Further, since all programs are instrumented, the act and
methods of bypassing Pin would be recorded. Finally, the
absence of data from Pin or the intentional distortion of
data would be observed and raise a red flag. A variety of
techniques have emerged to defend against attacks on
system call tracing mechanisms, which could also be
implemented [60], [61], [62].

148 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 4, NO.2, APRIL-JUNE 2007

A method of storing audit logs in a tamper-resistant way
would also be helpful. Possible tamper-resistant solutions
include encryption [63], streaming real-time logs to an
independent system [8], [64] in an entirely different security
domain, and/or a write-once mechanism.

The forensic analysis might involve a detailed examina-
tion of the source code after an analyst notices a function
call among the anomalous sequences that is descriptive and
significant. The source code for the operating system and
related binaries should be kept available for this purpose.
However, if users are allowed to compile their own
binaries, a good practice would be to put the source code
in escrow. A policy disallowing binaries not compiled on
the instrumented system could be enforced using features
such as NetBSD's verified-exec [65] so that the source code is
always captured for later analysis.

7 RELATIONSHIP OF FORENSICS AND INTRUSION
DETECTION

Auditing for intrusion detection began as largely a manual
process [66]. Since that time, the field that began as
intrusion detection has divided into a field that has focused
on an automated process [19] and one that has focused on
forensic analysis. The problems of forensic analysis and
intrusion detection overlap. Both are based on system
behavior, and at a high level, both are looking for some-
thing that seems wrong. The differences between the
problems, however, are significant.

The primary goal of intrusion detection is to determine
whether an intrusion has occurred [1]. Intrusion detection is
ideally automated, online, and real time. The goal is to
detect an intrusion as quickly as possible so that the damage
can be contained. The response to a suspected intrusion can
be either manual or automated [22], but that is distinct from
detection [1], [14]. Forensic analysis is one possible
postmortem response to a suspected intrusion.

In the forensic process, currently a human—the ana-
lyst—must often interpret the results of unpredictable
activity. One reason for this is that the state of the art of
forensic analysis research is significantly behind intrusion
detection. The process of analyzing and understanding
unexpected events—those that are not predefined in an
attack or event model [67]—is currently hard, whereas the
process of detecting unexpected events in the intrusion
detection process is easy. Another reason is that in some
cases, forensic analysis ultimately needs to account for
events that occur outside the computer system. If an
intruder logs into a system using a password, an important
question is how it was obtained. It may have been the result
of a password sniffer, or it may have been the result of
eavesdropping on a conversation in a hallway.

Despite the overlap between the intrusion detection and
forensic analysis processes, they are distinct problems.
Because of this, there has not been as much cross
fertilization as one might wish. In this paper, we have
borrowed one technique from intrusion detection and, with
modifications, successfully applied it to forensic analysis.

8 CONCLUSIONS

The set of all orderings of safe events on a computer system
is finite (as a computer is a finite state machine), and upon
many repeated executions, the total number of distinct

sequences actually executed levels off asymptotically. If an
ordering of events in that set occurs, the program is
behaving anomalously. We cannot always determine this
in real time, however, because nondeterministic events such
as user inputs and variable system state cause programs to
perform deterministic events at different times. However,
when known “good” events do happen, they do so in an
order that can often be predicted by gathering enough data
about the safe operation of a program ahead of time.
Therefore, we need to use anomaly detection techniques on
data in a postmortem manner, even though this only tells an
analyst whether the program is anomalous after the data for
the entire program has been analyzed.

Anomalies among short sequences of function calls
indicate not only that a process is anomalous but also the
part of the process (code) that is anomalous. This signifi-
cantly reduces the amount of the recorded function call data
that actually needs to be analyzed by a human. We can then
check the source code. A fundamental requirement of
forensics is to understand not only if an anomaly is
occurring but also exactly where it occurs. This requires
detail without overwhelming volumes of data. Anomalous
sequences of function calls fit this criteria better than other
levels of abstraction and analysis methods previously used.
Function calls are also a helpful abstraction, because
humans generally find them more descriptive than system
calls alone. Although we do not claim that function calls,
rather than system calls alone, are required to analyze all
attacks, we have shown that function calls can help to
analyze the attacks much more easily due to the descrip-
tiveness of the calls. The function call sequence length,
previously shown to have no optimal answer, appears to be
most desirable when 1 <k <10, because it produces
manageable but not overwhelming amounts of data.

That a program execution has a finite set of function call
sequences suggests that it should be possible to model
programs formally as sequences of function calls. Correlat-
ing the types of anomalies that an analyst looks for
generates automated common models of anomalous beha-
vior based on those models. At present, we do not know
enough about the behavior of most programs to formulate
such a formal specification or some other formal model that
would define the vulnerabilities better [68]. Given the
success of our experiments, the development of more
universal analysis techniques and formal models that show
commonalities between exploits seems promising.

“Is there any point to which you would wish to draw my

attention?”

“To the curious incident of the dog in the night-time.”

“The dog did nothing in the night-time.”

“That was the curious incident,” remarked Sherlock Holmes.
—Sir Arthur Conan Doyle, “Silver Blaze,”

The Strand Magazine (1892)

Anomaly detection techniques on function call data in
the postmortem analysis allows one to find unexpected
events, including the absence of expected function calls, as
well as the presence of unexpected function calls. This
enables an analyst to discover when an event that should
occur does not.

PEISERT ET AL.: ANALYSIS OF COMPUTER INTRUSIONS USING SEQUENCES OF FUNCTION CALLS

Some techniques fail. Looking for calls that are “rare” in
one version and “common” in the other did not bear much
fruit in our experiments, although even those failed
experiments suggest that the technique has potential value,
and further experimentation is warranted. Additionally,
more descriptive information should help address the
previously unanalyzable scenarios. However, as we noted
earlier, evaluation of these techniques is difficult and
ultimately will require further study to determine which
technique is most effective.

ACKNOWLEDGMENTS

This research was supported in part by a Lockheed-Martin
Information Assurance Technology Focus Group 2005
University Grant, Award ANI-0330634, “Integrative Testing
of Grid Software and Grid Environments,” from the US
National Science Foundation, and by the US Air Force
Office of Scientific Research Multidisciplinary University
Research Initiative (AFOSR MURI) Grant 41131-6865. Matt
Bishop was supported by Awards CCR-0311671 and CCR-
0311723 from the US National Science Foundation to the
University of California, Davis. The authors wish to thank
Robert S. Cohn and Steven Wallace at Intel for their
enhancements to the FreeBSD version of Pin.

REFERENCES

[1] M. Bishop, Computer Security: Art and Science. Addison-Wesley
Professional, 2003.

[2] S. Peisert, M. Bishop, S. Karin, and K. Marzullo, “Principles-
Driven Forensic Analysis,” Proc. New Security Paradigms Workshop
(NSPW '05), pp. 85-93, Oct. 2005.

[3] S.A. Hofmeyr, S. Forrest, and A. Somayaji, “Intrusion Detection
Using Sequences of System Calls,”]. Computer Security, vol. 6,
pp- 151-180, 1999.

[4] C.Kruegel, D. Mutz, F. Valeur, and G. Vigna, “On the Detection of
Anomalous System Call Arguments,” Proc. European Symp.
Research in Computer Security (ESORICS '03), pp. 326-343, 2003.

[5] W. Lee and S]J. Stolfo, “Data Mining Approaches for Intrusion
Detection,” Proc. Seventh Usenix Security Symp., pp. 26-29, Jan.
1998.

[6] R. Sekar, M. Bendre, D. Dhurjati, and P. Bollineni, “A Fast
Automaton-Based Method for Detecting Anomalous Program
Behaviors,” Proc. IEEE Symp. Security and Privacy (S&P '01),
pp. 144-155, 2001.

[71 A. Wespi, M. Dacier, and H. Debar, “Intrusion Detection Using
Variable-Length Audit Trail Patterns,” Proc. Third Int’l Workshop
Recent Advances in Intrusion Detection (RAID '00), pp. 110-129, 2000.

[8] A.Goel, W. Feng, D. Maier, W. Feng, and J. Walpole, “Forensix: A
Robust, High-Performance Reconstruction System,” Proc. 25th Int’l
Conf. Distributed Computing Systems Workshop, pp. 155-162, 2005.

[9] S.T.King and P.M. Chen, “Backtracking Intrusions,” ACM Trans.

Computer Systems, vol. 23, no. 1, pp. 51-76, Feb. 2005.

D.S. Peterson, M. Bishop, and R. Pandey, “A Flexible Containment

Mechanism for Executing Untrusted Code,” Proc. 11th Usenix

Security Symp., pp. 207-225, Aug. 2002.

N. Provos, “Improving Host Security with System Call Policies,”

Proc. 12th Usenix Security Symp., pp. 257-272, 2003.

S.-P. Shieh and V.D. Gligor, “Detecting Illicit Leakage of

Information in Operating Systems,”]. Computer Security, vol. 4,

nos. 2-3, pp. 123-148, Jan. 1996.

W. Osser and A. Noordergraaf, Auditing in the Solaris Operating

Environment. Sun Microsystems, Inc., Feb. 2001.

R.G. Bace, Intrusion Detection. Macmillan Technical Publishing,

2000.

M. Bishop, “Profiling under Unix by Patching,” Software—Practice

and Experience, vol. 17, no. 10, pp. 729-740, Oct. 1987.

H.H. Feng,].T. Griffin, Y. Huang, S. Jha, W. Lee, and B.P. Miller,

“Formalizing Sensitivity in Static Analysis for Intrusion Detec-

tion,” Proc. IEEE Symp. Security and Privacy (S&P '04), 2004.

[10]

(1]
(12]

(13]
(14]
[15]

[lo]

(7]

(18]

[19]

(20]

(21]

[22]
[23]

(24]

(23]

(26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

[35]

(36]

(371

(38]

(39]

(40]

(41]

(42]

149

J.T. Giffin, S. Jha, and B.P. Miller, “Efficient Context-Sensitive
Intrusion Detection,” Proc. 11th Ann. Network and Distributed
Systems Security Symp. (NDSS "04), Feb. 2004.

D. Mutz, F. Valeur, G. Vigna, and C. Kruegel, “Anomalous System
Call Detection,” ACM Trans. Information and System Security, vol. 9,
no. 1, pp. 61-93, Feb. 2006.

D.E. Denning, “An Intrusion-Detection Model,” IEEE Trans.
Software Eng., vol. 13, no. 2, pp. 222-232, Feb. 1987.

S. Forrest, S.A. Hofmeyr, A. Somayaji, and T.A. Longstaff, “A
Sense of Self for Unix Processes,” Proc. IEEE Symp. Security and
Privacy (S&P '96), pp. 120-128, 1996.

A.B. Somayaji, “Operating System Stability and Security through
Process Homeostasis,” PhD dissertation, Univ. of New Mexico,
July 2002.

A. Somayaji and S. Forrest, “Automated Response Using System
Call Delays,” Proc. Ninth Usenix Security Symp., Aug. 2000.

LH. Witten and E. Frank, Data Mining: Practical Machine Learning
Tools and Techniques, second ed. Morgan Kaufmann, 2005.

C. Warrender, S. Forrest, and B. Pearlmutter, “Detecting Intru-
sions Using System Calls: Alternative Data Models,” Proc. IEEE
Symp. Security and Privacy (S&P '99), pp. 133-145, 1999.

K.M. Tan and R.A. Maxion, “"Why 6?"—Defining the Operational
Limits of Stide, an Anomaly-Based Intrusion Detector,” Proc. IEEE
Symp. Security and Privacy (S&P '02), pp. 188-201, 2002.

H. Inoue and S. Forrest, “Anomaly Intrusion Detection in
Dynamic Execution Environments,” Proc. New Security Paradigms
Workshop (NSPW °02), pp. 52-60, 2002.

L. Lankewicz and M. Benard, “Real-Time Anomaly Detection
Using a Nonparametric Pattern Recognition Approach,” Proc.
Seventh Ann. Computer Security Applications Conf., pp. 80-89, Dec.
1989.

H.S. Vaccaro and G.E. Liepins, “Detection of Anomalous
Computer Session Activity (“Wisdom and Sense”),” Proc. IEEE
Symp. Security and Privacy (S&P '89), pp. 280-289, 1989.

J. Frank, “Artificial Intelligence and Intrusion Detection: Current
and Future Directions,” Proc. 17th Nat’l Computer Security Conf.,
June 1994.

G.W. Dunlap, S.T. King, S. Cinar, M.A. Basrai, and P.M. Chen,
“ReVirt: Enabling Intrusion Analysis through Virtual-Machine
Logging and Replay,” Proc. Symp. Operating Systems Design and
Implementation (OSDI '02), 2002.

M. Xu, R. Bodik, and M.D. Hill, “A ‘Flight Data Recorder’ for
Enabling Full-System Multiprocessor Deterministic Replay,” Proc.
30th Ann. Int’l Symp. Computer Architecture (ISCA "03), pp. 122-133,
2003.

S. Narayanasamy, G. Pokam, and B. Calder, “BugNet: Continu-
ously Recording Program Execution for Deterministic Replay
Debugging,” Proc. 32nd Int'l Symp. Computer Architecture (ISCA
’05), June 2005.

M. Bishop, “A Standard Audit Trail Format,” Proc. 18th Nat'l
Information Systems Security Conf., pp. 136-145, Oct. 1995.

A.H. Gross, “Analyzing Computer Intrusions,” PhD dissertation,
Dept. Electrical and Computer Eng., Univ. of California, San
Diego, 1997.

S. Sitaraman and S. Venkatesan, “Forensic Analysis of File System
Intrusions Using Improved Backtracking,” Proc. Third IEEE Int’l
Workshop Information Assurance, pp. 154-163, 2005.

S.T. King, Z.M. Mao, D.G. Lucchetti, and P.M. Chen, “Enriching
Intrusion Alerts through Multi-Host Causality,” Proc. 12th Ann.
Network and Distributed System Security Symp. (NDSS 05), 2005.
P. Sommer, “Intrusion Detection Systems as Evidence,” Proc. First
Int’l Workshop Recent Advances in Intrusion Detection (RAID '98),
1998.

P. Stephenson, “The Application of Intrusion Detection Systems in
a Forensic Environment (extended abstract),” Proc. Third Int’l
Workshop Recent Advances in Intrusion Detection (RAID '00), 2000.
M. Bishop, “A Model of Security Monitoring,” Proc. Fifth Ann.
Computer Security Applications Conf. (ACSAC '89), pp. 46-52, Dec.
1989.

F.B. Schneider, “Enforceable Security Policies,” ACM Trans.
Information and System Security, vol. 3, no. 1, pp. 30-50, Feb. 2000.
K.W. Hamlen, G. Morrisett, and F.B. Schneider, “Computability
Classes for Enforcement Mechanisms,” ACM Trans. Information
and System Security, vol. 28, no. 1, pp. 174-205, 2005.

B.A. Kuperman, “A Categorization of Computer Security Mon-
itoring Systems and the Impact on the Design of Audit Sources,”
PhD dissertation, Purdue Univ., 2004.

150

(43]

(44]
[43]

[46]

[47]

(48]

[49]

[50]

(51]
[52]
(53]

(54]

[55]

[56]
[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[00]

[67]

[68]

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 4, NO.2, APRIL-JUNE 2007

E. Eskin, W. Lee, and S.J. Stolfo, “Modeling System Calls for
Intrusion Detection with Dynamic Window Sizes,” Proc. DARPA
Information Survivability Conf. and Exposition I1I (DISCEX II '01),
2001.

Aleph One, “Smashing the Stack for Fun and Profit,” Phrack,
vol. 7, no. 49, 1996.

M. Bishop and M. Dilger, “Checking for Race Conditions in File
Accesses,” Computing Systems, vol. 9, no. 2, pp. 131-152, 1996.
J.P. Anderson, “Computer Security Technology Planning Study,”
Technical Report ESD-TR-73-51, vol. II, ESD/AFSC, Hanscom
AFB, Bedford, MA, Oct. 1972.

R.P. Abbott, J. Chin, J.E. Donnelly, W. Konigsford, S. Tokubo, and
D.A. Webb, “Security Analysis and Enhancements of Computer
Operating Systems (RISOS),” technical report, Lawrence Liver-
more Laboratory, Apr. 1976.

R. Bisbey and D. Hollingworth, “Protection Analysis: Final Report
(PA),” technical report, Information Sciences Inst., May 1978.

P. Neumann, “Computer Security Evaluation,” 1978 Nat'l Compu-
ter Conf., AFIPS Conf. Proc., vol. 47, pp. 1087-1095, 1978.

C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S.
Wallace, V.J. Reddi, and K. Hazelwood, “Pin: Building Custo-
mized Program Analysis Tools with Dynamic Instrumentation,”
Proc. ACM SIGPLAN Conf. Programming Language Design and
Implementation (PLDI '05), June 2005.

A. Singer, “Tempting Fate,” ;login:, vol. 30, no. 1, pp. 27-30, Feb.
2005.

8LGM, “Unix lpr Security Advisory,” http://www.8lgm.org/
advisories/[8lgm]-Advisory-3.UNIX.lpr.19-Aug-1991.html, 2005.
fides, “Simple Buffer-Overflow Exploits,” Collusion E-Zine, vol. 23,
May 2001, http:/ /www.collusion.org/ Article.cfm?ID=176.

M. Bishop, “How Attackers Break Programs and How to Write
Programs More Securely,” Proc. SANS 2002 Ann. Conf., May 2002,
http:/ /nob.cs.ucdavis.edu/bishop /secprog/sans2002.pdf.

R.A. Maxion, “Masquerade Detection Using Enriched Command
Lines,” Proc. Int’l Conf. Dependable Systems and Networks (DSN "03),
pp. 5-14, 2003.

M. Bishop, “The Insider Problem Revisited,” Proc. New Security
Paradigms Workshop (NSPW '05), pp. 75-76, Oct. 2005.

D. Wagner and D. Dean, “Intrusion Detection via Static Analysis,”
Proc. IEEE Symp. Security and Privacy (S&P '01), pp. 156-168, 2001.
D. Wagner and P. Soto, “Mimicry Attacks on Host-Based
Intrusion Detection Systems,” Proc. Ninth ACM Conf. Computer
and Comm. Security, 2002.

H. Xu, W. Du, and SJ. Chapin, “Context Sensitive Anomaly
Monitoring of Process Control Flow to Detect Mimicry Attacks
and Impossible Paths,” Proc. Seventh Int’l Symp. Recent Advances in
Intrusion Detection (RAID '04), pp. 21-38, 2004.

T. Garfinkel, “Traps and Pitfalls: Practical Problems in System Call
Interposition Based Security Tools,” Proc. Network and Distributed
System Security Symp. (NDSS '03), 2003.

T. Garfinkel, B. Pfaff, and M. Rosenblum, “Ostia: A Delegating
Architecture for Secure System Call Interposition,” Proc. Network
and Distributed System Security Symp. (NDSS '03), 2003.

M. Rajagopalan, M.A. Hiltunen, T. Jim, and R.D. Schilichting,
“System Call Monitoring Using Authenticated System Calls,”
IEEE Trans. Dependable and Secure Computing, vol. 3, no. 3, pp. 216-
228, July-Sept. 2006.

B. Schneier and J. Kelsey, “Secure Audit Logs to Support
Computer Forensics,” ACM Trans. Information and System Security,
vol. 2, no. 2, pp. 159-176, May 1999.

D. Zagorodnov, K. Marzullo, L. Alvisi, and T.C. Bressoud,
“Engineering Fault-Tolerant TCP/IP Servers Using FT-TCP,”
Proc. Int’l Conf. Dependable Systems and Networks (DSN "03), 2003.
B. Lymn, “Verified Exec—Extending the Security Perimeter,” Proc.
Linux.Conf.Au, 2004.

J.P. Anderson, “Computer Security Threat Monitoring and
Surveillance,” technical report, James P. Anderson, Fort Washing-
ton, PA, Apr. 1980.

B. Schneier, “Attack Trees: Modeling Security Threats,” Dr. Dobb’s
J., vol. 24, no. 12, pp. 21-29, Dec. 1999.

M. Bishop, “Vulnerabilities Analysis,” Proc. Second Int'l Workshop
Recent Advances in Intrusion Detection (RAID '99), pp. 125-136, Sept.
1999.

Sean Peisert received the PhD degree in
computer science from the University of Califor-
nia, San Diego (UCSD) in 2007. He is currently a
postdoctoral scholar in the Department of
Computer Science and Engineering at UCSD.
He works on issues of computer security,
particularly forensic analysis and security policy
modeling. He is a student member of the IEEE.

Matt Bishop received the PhD degree in
computer science from Purdue University in
1984. He is a professor in the Department of
Computer Science at the University of California
at Davis, where he has been since 1993. He
works on issues of computer security, especially
on vulnerabilities analysis, intrusion detection,
attack analysis, and data sanitization. He is a
member of the IEEE.

Sidney Karin received the PhD degree in
nuclear engineering from the University of
Michigan in 1973. He is a professor in the
Department of Computer Science and Engineer-
ing at the University of California, San Diego
(UCSD), and is the former director of the San
Diego Supercomputer Center (SDSC), which he
founded in 1985. He is a member of the IEEE.

Keith Marzullo received the PhD degree in
electrical engineering from Stanford University in
1984. He is a professor and the chair of the
Computer Science and Engineering Department
at the University of California, San Diego
(UCSD), where he has been since 1993. He
works on both theoretical and practical issues of
fault-tolerant distributed computing in various
domains.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

