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Abstract
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secure against sender corruptions in this setting. The underlying tool is lossy encryption. The schemes
have short keys. (Public and secret keys of a fixed length suffice for encrypting an arbitrary number of
messages.) The schemes are stateless and noninteractive, and security does not rely on erasures. The
schemes are without random oracles, proven secure under standard assumptions (DDH, Paillier’s DCR,
QR, lattices), and even efficient. We are able to meet both an indistinguishability (IND-SO-ENC) and a
simulation-style, semantic security (SEM-SO-ENC) definition.
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1 Introduction

IND-CPA and IND-CCA are generally viewed as strong notions of encryption security that suffice for
applications. However, there is an important setting where these standard notions do not in fact im-
ply security and the search for solutions continues, namely, in the presence of selective-opening attack
(SOA) [DNRS03, CFGN96, Nie02, DN00, CHK05, CDNO97]. Let us provide some background on SOA
and then discuss our results.

1.1 Background

THE PROBLEM. Suppose a receiver with public encryption key pk receives a vector c = (c[1], . . . , c[n])
of ciphertexts, where sender i created ciphertext c[i] = E(pk,m[i]; r[i]) by encrypting a message m[i]
under pk and coins r[i] (1 ≤ i ≤ n). It is important here that the messages m[1], . . . ,m[n] might be
related, but the coins r[1], . . . , r[n] are random and independent. Now, the adversary, given c, is allowed
to corrupt some size t subset I ⊆ {1, . . . , n} of senders (say t = n/2), obtaining not only their mes-
sages but also their coins, so that it has m[i], r[i] for all i ∈ I . This is called a selective opening attack
(SOA). The security requirement is that the privacy of the unopened messages, namely m[i1], . . . ,m[in−t]
where {i1, . . . , in−t} = {1, . . . , n} \ I , is preserved. (Meaning the adversary learns nothing more about
the unopened messages than it could predict given the opened messages and knowledge of the message
distribution. Formal definitions to capture this will be discussed later.) The question is whether SOA-secure
encryption schemes exist.

STATUS AND MOTIVATION. One’s first impression would be that a simple hybrid argument would show that
any IND-CPA scheme is SOA-secure. Nobody has yet been able to push such an argument through. (And,
today, regarding whether IND-CPA implies SOA-security we have neither a proof nor a counterexample.)
Next one might think that IND-CCA, at least, would suffice, but even this is not known. The difficulty of the
problem is well understood and documented [DNRS03, CFGN96, CHK05, Nie02, DN00, CDNO97], and
whether or not SOA-secure schemes exist remains open.

Very roughly, the difficulties come from a combination of two factors. The first is that it is the random
coins underlying the encryption, not just the messages, that are revealed. The second is that the messages
can be related.

We clarify that the problem becomes moot if senders can erase their randomness after encryption, but it
is well understood that true and reliable erasure is difficult on a real system. We will only be interested in
solutions that avoid erasures.

The problem first arose in the context of multiparty computation, where it is standard to assume secure
communication channels between parties [BOGW88, CCD88]. But, how are these to be implemented?
Presumably, via encryption. But due to the fact that parties can be corrupted, the encryption would need to
be SOA-secure. We contend, however, that there are important practical motivations as well. For example,
suppose a server has SSL connections with a large number of clients. Suppose a virus corrupts some fraction
of the clients, thereby exposing the randomness underlying their encryptions. Are the encryptions of the
uncorrupted clients secure?

COMMITMENT. Notice that possession of the coins allows the adversary to verify that the opening is correct,
since it can compute E(pk,m[i]; r[i]) and check that this equals c[i] for all i ∈ I . This apparent commitment
property has been viewed as the core technical difficulty in obtaining a proof. The view that commitment
is in this way at the heart of the problem has led researchers to formulate and focus on the problem of
commitment secure against SOA [DNRS03]. Here, think of the algorithm E in our description above as the
commitment algorithm of a commitment scheme, with the public key being the empty string. The question
is then exactly the same.
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DEFINITIONS. Previous work [DNRS03] has introduced and used (for commitment) a simulation-based,
semantic-style security formalization of security under SOA. A contribution of our paper is to provide (for
encryption) an alternative indistinguishability-based formalization that we denote IND-SO-ENC. We will
also refer to a simulation-based, semantic security formalization SEM-SO-ENC for encryption.

1.2 Results

We provide the first public-key encryption schemes provably secure against selective-opening attack. The
schemes have short keys. (Public and secret keys of a fixed length suffice for encrypting an arbitrary number
of messages.) The schemes are stateless and noninteractive, and security does not rely on erasures. The
schemes are without random oracles, proven secure under standard assumptions, and even efficient. We
are able to meet both the indistinguishability (IND-SO-ENC) and the semantic security (SEM-SO-ENC)
definitions, although under different assumptions.

CLOSER LOOK. The main tool (that we define and employ) is lossy encryption, an encryption analogue
of lossy trapdoor functions (LTDFs) [PW08] that is closely related to meaningful-meaningless encryp-
tion [KN08] and dual-mode encryption [PVW08]. We provide an efficient implementation of lossy en-
cryption based on DDH. We also show that any (sufficiently) lossy trapdoor function yields lossy encryp-
tion. Via [PW08, BFO08, RS08] we thereby obtain lossy encryption schemes based on DDH, Paillier’s
DCR [Pai99] and lattices.

We then show that any lossy encryption scheme is IND-SO-ENC secure, thereby obtaining IND-SO-
ENC secure schemes based on DDH, DCR and lattices. If the lossy encryption scheme has an additional
property that we call efficient openability, we show that it is also SEM-SO-ENC secure. We observe that
the classical quadratic residuosity-based encryption scheme of Goldwasser and Micali [GM84] is lossy with
efficient openability, thereby obtaining SEM-SO-ENC secure encryption. It is interesting in this regard that
the solution to a long-standing open problem is a scheme that has been known for 25 years. (Only the proof
was missing until now.)

1.3 Discussion and related work

SOA SECURE ENCRYPTION. In the version of the problem that we consider, there is one receiver and many
senders. Senders may be corrupted, with the corruption exposing their randomness and message. An alter-
native version of the problem considers a single sender and many receivers, each receiver having its own
public and secret key. Receivers may be corrupted, with corruption exposing their secret key. Previous work
has mostly focused on the receiver corruption version of the problem. Canetti, Feige, Goldreich and Naor
[CFGN96] introduce and implement non-committing encryption, which yields SOA-secure encryption in
the receiver corruption setting. However, their scheme does not have short keys. (Both the public and the
secret key in their scheme are as long as the total number of message bits ever encrypted.) Furthermore,
Nielsen [Nie02] shows that this is necessary. Canetti, Halevi and Katz [CHK05] provide SOA-secure en-
cryption schemes for the receiver corruption setting with short public keys, but they make use of (limited)
erasures. (They use a key-evolving system where, at the end of every day, the receiver’s key is updated
and the previous version of the key is securely erased.) In the symmetric setting, Panjwani [Pan07] proves
SOA-security against a limited class of attacks.

Our schemes do not suffer from any of the restrictions of previous ones. We have short public and secret
keys, do not rely on erasures, and achieve strong notions of security.

A natural question is why our results do not contradict Nielsen’s negative result saying that no non-
interactive public key encryption scheme with short and fixed keys is SOA-secure without erasures for an
unbounded number of messages [Nie02]. The reason is that we consider sender corruptions as opposed to
receiver corruptions.
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REMARK. It has generally been thought that the two versions of the problem (sender or receiver corruptions)
are of equal difficulty. The reason is that corruptions, in either case, allow the adversary to verify an opening
and appear to create a commitment. (Either the randomness or the decryption key suffices to verify an
opening.) Our work refutes this impression and shows that sender corruptions are easier to handle than
receiver ones. Indeed, we can fully resolve the problem in the former case, while the latter case remains
open. (Achieving a simulation-based notion for receiver corruptions is ruled out by [Nie02] but achieving
an indistinguishability-based notion may still be possible.)

COMMITMENT. The first explicit treatment of SOA-secure commitment is by [DNRS03]. They formalized
the problem and defined a simulation style security notion that we will call SEM-SO-COM. On the negative
side, they showed that the existence of a one-shot (this means non-interactive and without setup assumptions)
SEM-SO-COM-secure commitment scheme implied solutions to other well-known cryptographic problems,
namely, three-round ZK and “magic functions.” This is evidence that simulation-based one-shot SOA-secure
commitment is difficult to achieve. On the positive side [DNRS03] showed that any statistically hiding
chameleon commitment scheme is SOA-secure. (This scheme would not be one-shot, which is why this
does not contradict their negative results.) In the zero-knowledge (ZK) setting, [GM06] notice a selective
opening attack and circumvent it by adapting the distribution of the committed messages.

In work that was independent of, and concurrent to, ours, Hofheinz [Hof08] continued the investigation
of SDA-secure commitment. He showed that no one-shot or perfectly binding commitment scheme can be
shown SEM-SO-COM-secure using black-box reductions to standard assumptions. On the other hand, via
non-black-box techniques, he showed that there exists an interactive SEM-SO-COM-secure commitment
scheme under the assumption that one-way permutations exist. He also introduced an indistinguishabil-
ity style notion that we will call IND-SO-COM. He showed that no perfectly hiding commitment scheme
(whether interactive or not) can be shown IND-SO-COM secure using black-box reductions to standard
assumptions. On the positive side, he showed that any statistically hiding commitment scheme is IND-
SO-COM secure. (We note that a special case of this result was already implicit in [BR07].) He does not
consider encryption.

An obvious question is why our results for encryption do not contradict the above negative results for
commitment. The answer is that our SOA-secure encryption schemes do not give rise to commitment
schemes. The commitment results do show that the SOA-security of an encryption scheme cannot be proved
using a black-box reduction, but only if encryption constitutes a commitment. Because we consider SOA-
security under sender corruptions in the encryption setting, this is not the case. (Recall that with sender
corruptions, an encryption opening does not reveal the secret key, so the information-theoretic argument of
[Nie02] that any encryption scheme is committing does not apply.)

BHY. Our paper, along with that of Hofheinz, were submitted to Eurocrypt 2009. They were accepted under
the condition that they be merged. The resulting merged paper appeared as [BHY09]. Full versions have,
however, been written separately as the present paper and [Hof08].

2 Notation

For any integer n, let 1n be its unary representation and let [n] denote the set {1, . . . , n}. If b is a tuple of
values of sizem, we will write (b1, . . . , bm)← b when we mean that b is parsed into b1 to bm. We let a←$ b
denote choosing a value uniformly at random from random variable b and assigning it to a.

We say a function µ(n) is negligible if µ ∈ o(n−ω(1)). We let neg(n) denote an arbitrary negligible
function. If we say some p(n) = poly(n), we mean that there is some polynomial q such that for all
sufficiently large n, p(n) ≤ q(n). The statistical distance between two random variable X and Y over
common domain D is ∆(X,Y ) = 1

2

∑
z∈D |Pr [X = z ] − Pr [ Y = z ] | and we say that two random
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variables X and Y are δ-close if their statistical distance is at most δ and if δ is negligible, we might say
X ≡s Y .

We denote by ε the empty string. For any strings m0 and m1, let m0 ⊕m1 denote the bitwise xor of the
two strings. We use boldface letters for vectors, and for any vector m of n messages (called an n-vector)
and i ∈ [n], let m[i] denote the ith message in m. For a set I ⊆ [n] of indices i1 < i2 < . . . < il, let
m[I] = (m[i1],m[i2], . . . ,m[il]). For any set I (resp. any vector m)(resp. any stringm), let |I| (resp. |m|)
(resp. |m|) denote the size of the set (resp. length of the vector) (resp. length of the string). An n-message
samplerM is an algorithm that on input a security parameter λ in unary ouputs an n(λ)-vector of messages.

All algorithms in this paper are randomized, unless otherwise specified as being deterministic. For any
algorithm A, let CoinsA(x1, x2, . . .) denote the set of possible coins A uses when run on inputs x1, x2, . . ..
LetA(x1, x2, . . . ; r) denote running algorithmA on inputs x1, x2, . . . and with coins r ∈ CoinsA(x1, x2, . . .).
Then A(x1, x2, . . .) denotes the random variable A(x1, x2, . . . ; r) with r chosen uniformly at random from
CoinsA(x1, x2, . . .). When we say an algorithm is efficient, we mean that it runs in polynomial time in its
first input; if the algorithm is randomized we might also say it runs in probabilistic polynomial time (PPT).
An unbounded algorithm does not necessarily run in polynomial time.

3 Encryption Related Definitions

3.1 Public-Key Encryption Schemes

A public-key encryption schemeAE = (K, E ,D) is a triple of PT algorithms. The key generation algorithm
K takes as input 1λ and outputs a public key/secret key pair (pk, sk). The encryption algorithm E takes
as input a public key pk and a message m and outputs a ciphertext c. The decryption algorithm takes as
input a secret key sk and a ciphertext c and outputs either a message m, or ⊥, denoting failure. We require
the correctness condition that for all (pk, sk) generated by K, and for all messages m, D(sk, E(pk,m)) =
m. The standard notion of security for public-key encryption scheme is indistinguishability under chosen-
plaintext attack (IND-CPA) [GM84].

3.2 Encryption Security under Selective Opening Attack

We consider both indistinguishability-based and simulation-based definitions of security for encryption un-
der selective opening which we call IND-SO-ENC and SEM-SO-ENC, respectively. In the following defini-
tions we say that a pair of functions (n, t) is a valid SOA parameter pair if both n and t are integer functions
of the security parameter, n is at most polynomial in the security parameter, and for all λ ∈ N, t(λ) ≤ n(λ).

INDISTINGUISHABILITY-BASED. Let AE = (K, E ,D) be a public-key encryption scheme, n and t be
integer functions,M be an n-message sampler. The game INDSO in Figure 3 provides an adversary with
a single Corrupt oracle. An indso-adversary makes exactly one query to this Corrupt oracle. We say the
indso-advantage of an indso-adversary A with respect toM, n, t is

Advind-so-enc
A,AE,M,n,t(λ) = 2 · Pr

[
INDSOA

AE,M,n,t(λ)⇒ true
]
− 1,

where M|I,m0[I] returns a random n-vector m1 according to M, subject to m1[I] = m0[I]. In other
words, M|I,m0[I] denotes conditionally resampling from the message space subject to the constraint that
the messages corresponding to indices in I are equal to m0[I]. If there is an efficient algorithm that does
this resampling (for all I , m0), we sayM supports efficient conditional resampling.

We say that a public-key encryption schemeAE is IND-SO-ENC-secure if for any valid SOA parameter
pair (n, t), any efficient n-message sampler M that supports efficient conditional resampling and for all
efficient indso-adversaries A, the indso-advantage of A with respect toM, n, t is negligible.
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procedure Initialize(λ):

(pk, sk)←$K(1λ)
m0←$M(1λ) ; b←$ {0, 1}
For i = 1, . . . , n(λ) do

r[i]←$ CoinsE(pk,m0[i])
c[i]← E(pk,m0[i]; r[i])

Return (pk, c)

procedure Corrupt(I): INDSOAE,M,n,t

If |I| 6= t return ⊥
m1←$M|I,m0[I]

Return (r[I],mb)

procedure Finalize(b′):

Return (b = b′)

Figure 1: Security game for indistinguishability-based definition.

In words, the game proceeds as follows. The adversary is given a public key pk and n ciphertexts
c encrypted under public key pk. The messages corresponding to the n ciphertexts come from the joint
distributionM. The adversary can query Corrupt once with a set I of t ciphertexts. In response, it receives
the randomness r[I] used to generate those ciphertexts in addition to a message vector mb such that mb[I]
were the actual messages encrypted using r[I] and the rest of mb depends on the bit b. If b, which the
experiment chooses randomly, is 0, the rest of the messages in the vector are the actual messages used to
create the ciphertexts c that were given to the adversary. If b = 1, the rest of the messages are instead
resampled fromM, conditioned on I and mb[I]. The adversary must then try to guess the bit b.

The definition is a natural extension of IND-CPA to the selective decryption setting. Intuitively, the
definition means that an adversary, after adaptively choosing to open some ciphertexts, cannot distinguish
between the actual unopened messages and another set of messages that are equally likely given the opened
messages that the adversary has seen.

SIMULATION-BASED. LetAE = (K, E ,D) be a public-key encryption scheme, n and t be integer functions,
M be an n-message sampler, and R be a relation. Game SEMSOREAL gives an adversaryA a single oracle
Corrupt and game SEMSOIDEAL gives a simulator a single oracle Corrupt as well; the games are found
in Figure 2. A semso-adversary (resp. semso-simulator) makes a single query to its Corrupt oracle. The
the semso-advantage of a semso-adversary A with respect to n, t,M, R, and semso-simulator S is

Advsem-so-enc
A,S,AE,M,R,n,t(λ) = Pr

[
SEMSOREALAAE,M,R,n,t(λ)⇒ 1

]
− Pr

[
SEMSOIDEALSAE,M,R,n,t(λ)⇒ 1

]
We say that a public-key encryption schemeAE is SEM-SO-ENC-secure if for any valid SOA paramter

pair (n, t), any efficient n-message sampler M, any efficiently computable relation R, and any efficient
semso-adversary A, there exists an efficient semso-simulator S such that the semso-advantage of A with
respect to n, t,M, R, and S is negligible in the security parameter.

In words, the games proceed as follows. In the game SEMSOREAL, the adversary A is given a public
key pk and n ciphertexts c encrypted under public key pk. The messages corresponding to the n ciphertexts
come from the joint distributionM. The adversary can then make one query to Corrupt consisting of a set
I of t ciphertexts. In return, the adversary receives the messages m[I] and randomness r[I] used to generate
those ciphertexts. The adversary then outputs a string w to Finalize and the output of the game is R(m, w),
the relation applied to the message vector and adversary’s output. In the game SEMSOIDEAL, a vector
m of messages is chosen and the simulator is given only the security parameter. The simulator is allowed
one query to Corrupt, which is a set I of t indices. In response, the simulator is given m[I], the messages
corresponding to the index set I it queried. Finally, the simulator outputs a string w and the output of the
game is R(m, w).
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procedure Initialize(λ):

(pk, sk)←$K(1λ)
m←$M(1λ)
For i = 1, . . . , n(λ) do

r[i]←$ CoinsE(pk,m[i])
c[i]← E(pk,m[i]; r[i])

Return (pk, c)

procedure Corrupt(I): SEMSOREALAE,M,R,n,t

If |I| 6= t return ⊥
Return (r[I],m[I])

procedure Finalize(w):

Return R(m, w)

procedure Initialize(λ):

m←$M(1λ)
Return 1λ

procedure Corrupt(I): SEMSOREALAE,M,R,n,t

If |I| 6= t return ⊥
Return m[I]

procedure Finalize(w):

Return R(m, w)

Figure 2: Security games for simulation-based definition.

4 Lossy Encryption

The main tool we use in our results is what we call a Lossy Encryption Scheme. Informally, a lossy encryp-
tion scheme is a public-key encryption scheme with a standard key generation algorithm (which produces
‘real’ keys) and a lossy key generation algorithm (which produces ‘lossy’ keys), such that encryptions with
real keys are committing, while encryptions with lossy keys are not committing. Peikert, Vaikuntanathan,
and Waters [PVW08] called such lossy keys “messy keys”, for message lossy, while defining a related notion
called Dual-Mode Encryption. The notion of Lossy Encryption is also similar to Meaningful/Meaningless
Encryption [KN08], formalized by Kol and Naor.

More formally, a lossy public-key encryption scheme AE = (K,K`, E ,D) is a tuple of PT algorithms
defined as follows. The key generation algorithm K takes as input the security parameter 1λ and outputs a
keypair (pk, sk); we call public keys generated by K real public keys. The lossy key generation algorithm
K` takes as input the security parameter and outputs a keypair (pk, sk); we call such pk lossy public keys.
The encryption algorithm E takes as input a public key pk (either from K or K`) and a message m and
outputs a ciphertext c. The decryption algorithm takes as input a secret key sk and a ciphertext c and outputs
either a message m, or ⊥ in the case of failure. We require the following properties from AE :

1. Correctness on real keys. For all (pk, sk)←$K it must be the case that D(sk, E(pk,m)) = m.
In other words, when the real key generation algorithm is used, the standard public-key encryption
correctness condition must hold.

2. Indistinguishability of real keys from lossy keys. No polynomial-time adversary can distinguish be-
tween the first outputs of K and K`. We call the advantage of an adversary A distinguishing between
the two the los-key-advantage of A and take it to mean the obvious thing, i.e., the probability that A
outputs 1 when given the first output of K is about the same as the probability it outputs 1 when given
the first output of K`.

3. Lossiness of encryption with lossy keys. For any (pk, sk) ← K` and two distinct messages m0,m1,
it must be the case that E(pk,m0) ≡s E(pk,m1). We say the advantage of an adversary A in
distinguishing between the two is the los-ind advantage of A and take it to mean the advantage of A
in the standard ind-cpa game when the public key pk in the ind-cpa game is lossy. Notice that because
the ciphertexts are statistically close, even an unbounded distinguisher will have low advantage. We
sometimes call ciphertexts created with lossy public keys lossy ciphertexts.
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4. Possible to claim any plaintext. There exists a (possibly unbounded) algorithm Opener that, given a
lossy public key pk`, message m, and ciphertext c = E(pk`,m), will output r′ ∈R CoinsE(pk`,m)
such that E(pk`,m; r′) = c. In other words, Opener will find correctly distributed randomness to
open a lossy ciphertext to the plaintext it encrypts. It then directly follows from the lossiness of
encryption that with high probability the opener algorithm can successfully open any ciphertext to
any plaintext.

We note that the fourth property is already implied by the first three properties; the canonical (inefficient)
Opener algorithm will, given pk`, m, and c, simply try all possible coins to find the set of all r such that
E(pk`,m; r) = c and output a random element of that set. Nevertheless, we explicitly include the property
because it is convenient in the proofs, and later we will consider variations of the definition which consider
other (more efficient) opener algorithms.

We also note that the definition of lossy encryption already implies IND-CPA. We next provide two
instantiations of lossy public-key encryption, one from DDH and one from lossy trapdoor functions.

4.1 Instantiation from DDH

We now describe a lossy public-key encryption scheme based on the DDH assumption. Recall that the DDH
assumption for cyclic group G of order prime p says that for random generator g ∈ G∗ (we use G∗ to denote
the generators of G), the tuples (g, ga, gb, gab) and (g, ga, gb, gc) are computationally indistinguishable,
where a, b, c←$ Zp.

The scheme we describe below is originally from [NP01], yet some of our notation is taken from the
similar dual-mode encryption scheme of [PVW08]. The scheme has structure similar to ElGamal.

Let G be a prime order group of order prime p. The scheme AEddh = (K,K`, E ,D) is a tuple of
polynomial-time algorithms defined as follows:

Algorithm K(1λ)
g←$ G∗; x, r←$ Zp
pk ← (g, gr, gx, grx)
sk ← x
Return (pk, sk)

Algorithm E(pk,m)
(g, h, g′, h′)← pk
(u, v)←$ Rand(g, h, g′, h′)
Return (u, v ·m)

Algorithm D(sk, c)
(c0, c1)← c
Return c1/csk0

Algorithm K`(1λ)
g←$ G∗; r, x 6= y←$ Zp
pk ← (g, gr, gx, gry)
sk ← ⊥
Return (pk, sk)

Subroutine Rand(g, h, g′, h′)
s, t←$ Zp
u← gsht; v ← (g′)s(h′)t

Return (u, v)

We show that AEddh satisfies the four properties of lossy encryption schemes.

1. Correctness on real keys. To see the correctness property is satisfied, consider a (real) public key
pk = (g, gr, gx, grx) and corresponding secret key sk = x. Then, for some message m ∈ G

D(sk, E(pk,m)) = D(sk, (gs+rt, gxs+rxt ·m))
= (gxs+rxt ·m)/(gs+rt)x

= m
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2. Indistinguishability of real keys from lossy keys. This follows from the assumption that DDH is hard
in the groups we are using, since the first output of K is (g, gr, gx, grx) and the first output of K` is
(g, gr, gx, gry) for y 6= x.

3. Lossiness of encryption with lossy keys. We need to show that for any lossy public key pk gener-
ated by K`, and any messages m0 6= m1 ∈ G, it is the case that E(pk,m0) ≡s E(pk,m1). The
results of Peikert, Vaikuntanathan, and Waters can be applied here (specifically Lemma 4 from their
paper [PVW08]). We repeat their lemma for completeness.

Lemma 4.1 [Lemma 4 from [PVW08]] Let G be an arbitrary multiplicative group of prime order p.
For each x ∈ Zp, define DLOGG(x) = {(g, gx) : g ∈ G}. There is a probabilistic algorithm Rand
that takes generators g, h ∈ G and elements g′, h′ ∈ G, and outputs a pair (u, v) ∈ G2 such that:

• If (g, g′), (h, h′) ∈ DLOGG(x) for some x, then (u, v) is uniformly random in DLOGG(x).

• If (g, g′) ∈ DLOGG(x) and (h, h′) ∈ DLOGG(y) for x 6= y, then (u, v) is uniformly random in
G2.

The Rand procedure mentioned in the lemma is exactly our Rand procedure defined above. As [PVW08]
proves, this lemma shows that encryptions under a lossy key are statistically close, since such encryp-
tions are just pairs of uniformly random group elements.

4. Possible to claim any plaintext. The unbounded algorithm Opener is simply the canonical opener
mentioned above. Specifically, on input lossy public key pk = (g, h, g′, h′), message m ∈ G, and
ciphertext (c1, c2) ∈ G2, it computes the set of all s, t ∈ Zp such that Rand(g, h, g′, h′; s, t) outputs
(c1, c2/m). It then outputs a random element of this set.

4.2 Instantiation from Lossy TDFs

Before giving our scheme we will recall a few definitions.

Definition 4.2 [Pairwise Independent Function Family] A family of functionsHn,m from {0, 1}n to {0, 1}m
is pairwise-independent if for any distinct x, x′ ∈ {0, 1}n and any y, y ∈ {0, 1}m,

Pr
h←$Hn,m

[h(x) = y ∧ h(x′) = y′] =
1

22m
.

For our results, we make use of lossy trapdoor functions, a primitive recently introduced by Peikert
and Waters [PW08]. Informally, a lossy trapdoor function is similar to a traditional injective trapdoor func-
tion, but with the extra property that the trapdoor function is indistinguishable from another function that
loses information about its input. We recall the definition from Peikert and Waters (with minor notational
changes):

Definition 4.3 [Collection of (n, k) Lossy Trapdoor Functions] Let λ be a security parameter, n = n(λ) =
poly(λ), and k = k(λ) ≤ n. A collection of (n, k)-lossy trapdoor functions Ln,k = (Stdf , Sloss, Ftdf , F

−1
tdf )

is a tuple of algorithms with the following properties:

1. Easy to sample, compute, and invert given a trapdoor, an injective trapdoor function. The sampler
Stdf , on input 1λ outputs (s, t), algorithm Ftdf , on input index s and some point x ∈ {0, 1}n, outputs
fs(x), and algorithm F−1

tdf , on input t and y outputs f−1
s (y).
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2. Easy to sample and compute lossy functions. Algorithm Sloss, on input 1λ, outputs (s,⊥), and algo-
rithm Ftdf , on input index s and some point x ∈ {0, 1}n, outputs fs(x), and the image size of fs is at
most 2r = 2n−k.

3. Difficult to distinguish between injective and lossy. The function indices outputted by the sampling
algorithms Stdf and Sloss should be computationally indistinguishable. We say the advantage of dis-
tinguishing between the indices is the ltdf-advantage.

We now describe an instantiation of lossy encryption based on lossy trapdoor functions.
Let λ be a security parameter and let (Stdf , Sloss, Ftdf , F

−1
tdf ) define a collection of (n, k)-lossy trapdoor

functions. Also let H be a collection of pair-wise independent hash functions from n bits to ` bits; the
message space of the cryptosystem will then be {0, 1}`. The parameter ` should be such that ` ≤ k −
2 log(1/δ), where δ is a negligible function in the security parameter λ. The scheme AE` = (K,K`, E ,D)
is then defined as follows:

Algorithm K(1λ)
(s, t)←$ Stdf(1λ)
h←$H
pk ← (s, h); sk ← (t, h)
Return (pk, sk)

Algorithm E(pk,m)
(s, h)← pk
x←$ {0, 1}n
c1 ← Ftdf(s, x)
c2 ← m⊕ h(x)
Return (c1, c2)

Algorithm D(sk, c)
(t, h)← sk
(c1, c2)← c
x← F−1

tdf (t, c1)
Return h(x)⊕ c2

The K` algorithm is simply the same as K, but using Sloss instead of Stdf . (In this case, the trapdoor t
will be ⊥.)

We now show that AE` satisfies the four properties of lossy encryption schemes.

1. Correctness on real keys. This follows since when pk = (s, h) was generated by K, s is such that
(s, t)←$ Stdf(1λ) and h←$H so that

D(sk, E(pk,m)) = h(F−1
tdf (t, Ftdf(s, x)))⊕ (m⊕ h(x))

= h(x)⊕m⊕ h(x)
= m

2. Indistinguishability of real keys from lossy keys. We need to show that any efficient adversary has low
los-key advantage in distinguishing between a real public key (s, h) and a lossy key (s′, h′), where
(s, h)←$K(1λ) and (s′, h′)←$K`(1λ). Since s is the first output of Stdf and s′ is the first output
of Sloss, we use the third property of lossy trapdoor functions, specifically that the function indices
outputted by Stdf and Sloss are computationally indistinguishable.

3. Lossiness of encryption with lossy keys. We need to show that for any lossy public key pk generated
by K`, and any messages m0 6= m1 ∈ {0, 1}`, it is the case that E(pk,m0) ≡s E(pk,m1). As
Peikert and Waters show in [PW08], this is true because of the lossiness of fs (where s is part of
pk, generated by Sloss). Specifically, they show that the average min-entropy H̃∞(x|(c1,pk)) of the
random variable x, given fs(x) and pk is at least k, and since ` ≤ k− 2 log(1/δ), it follows that h(x)
will be δ-close to uniform and mb ⊕ h(x) will also be δ-close to uniform for either bit b.

4. Possible to claim any plaintext. Again, the opener is simply the canonical opener that is guaranteed
to be correct by the first three properties. Specifically, the (unbounded) algorithm Opener, on input a
public key pk = (s, h), message m′ ∈ {0, 1}`, and ciphertext c = (c1, c2) = (fs(x), h(x) ⊕m) for
some x ∈ {0, 1}n and m ∈ {0, 1}`, must output x′ ∈ {0, 1}n such that fs(x′) = c1 and h(x′)⊕m′ =
c2. To do so, Opener enumerates over all {0, 1}n and creates a set X = {x′ ∈ {0, 1}n : fs(x′) =
c1 ∧ h(x′) = m′ ⊕ c2} before returning a random x ∈ X .
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4.3 An Extension: Efficient Opening

Recall that in the above definition of lossy encryption, the Opener algorithm could be unbounded. We will
now consider a refinement of the definition that will be useful for achieving the simulation-based selective
opening definition. We say that a PKE scheme AE is a lossy encryption scheme with efficient opening if it
satisfies the following four properties:

1. Correctness on real keys. For all (pk, sk)←$K it must be the case that D(sk, E(pk,m)) = m.

2. Indistinguishability of real keys from lossy keys. No polynomial-time adversary can distinguish be-
tween the first outputs of K and K`.

3. Lossiness of encryption with lossy keys. For any (pk`, sk`)← K` and two distinct messages m0,m1,
it must be the case that sk`, E(pk`,m0) ≡s sk`, E(pk`,m1). We call the advantage of an adversary
in the ind-cpa game when given the lossy public key and lossy secret key the los-ind2 advantage.

4. Possible to efficiently claim any plaintext. There exists an efficient algorithm Opener that on input
lossy keys sk` and pk`, message m, and ciphertext c = E(pk`,m), outputs an r′ ∈R CoinsE(pk`,m)
such that E(pk`,m; r′) = c. It again follows from the above properties that Opener can open cipher-
texts to arbitrary plaintexts with high probability.

We emphasize that it is important for the opener algorithm to take as input the lossy secret key. This may
seem strange, since in the two schemes described above the lossy secret key was simply⊥, but this need not
be the case. We also emphasize that the third property is slightly modified to allow the adversary access to
the lossy secret key when trying to distinguish ciphertexts.

4.4 The GM Probabilistic Encryption Scheme

The Goldwasser-Micali Probabilistic encryption scheme [GM84] is an example of a lossy encryption scheme
with efficient opening. We briefly recall the GM scheme. Let Par be an algorithm that efficiently chooses
two large random primes p and q and outputs them along with their product N . Let Jp(x) denote the Jacobi
symbol of x modulo p. We denote by QRN the group of quadratic residues modulo N and we denote by
QNR+1

N the group of quadratic non-residues x such that JN (x) = +1. Recall that the security of the GM
scheme is based on the Quadratic Residuosity Assumption, which states that it is difficult to distinguish a
random element of QRN from a random element of QNR+1

N . The schemeAEGM = (K,K`, E ,D) is defined
as follows.

Algorithm K(1λ)
(N, p, q)←$ Par(1λ)
x←$ QNR+1

N

pk ← (N, x)
sk ← (p, q)
Return (pk, sk)

Algorithm E(pk,m)
(N, x)← pk
For i = 1 to |m|
ri←$ Z∗N
c[i]← r2i · xmi mod N

Return c

Algorithm D(sk, c)
(p, q)← sk
For i = 1 to |c|

If Jp(c[i]) = Jq(c[i]) = +1
mi ← 0

Else mi ← 1
Return m

The algorithm K` is the same as K except that x is chosen at random from QRN instead of QNR+1
N ; in

the lossy case the secret key is still the factorization of N .
It is easy to see that the scheme AEGM meets the first three properties of lossy PKE schemes with effi-

cient opening: the correctness of the scheme under real keys was shown in [GM84], the indistinguishability
of real keys from lossy keys follows directly from the Quadratic Residuosity Assumption, and encryptions
under lossy keys are lossy since in that case all ciphertexts are just sequences of random quadratic residues.
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We claim that AEGM is also efficiently openable. To see this consider the (efficient) algorithm Opener that
takes as input secret key sk = (p, q), public key pk = (N, x), plaintext m, and encryption c. For simplicity,
say m has length n bits. For each i ∈ [n], Opener uses p and q to efficiently compute the four square roots
of c[i]/xmi and lets r[i] be a randomly chosen one of the four. The output of Opener is the sequence r,
which is just a sequence of random elements in Z∗N .

5 SOA-Security from Lossy Encryption

We now state our main results for encryption: any lossy public-key encryption scheme is IND-SO-ENC-
secure, and any lossy public-key encryption scheme with efficient opening is SEM-SO-ENC-secure.

Theorem 5.1 [Lossy Encryption implies IND-SO-ENC security] Let λ be a security parameter, AE =
(K,K`, E ,D) be any lossy public-key encryption scheme, (n, t) any valid SOA parameters,M any efficient
n-message sampler that supports efficient resampling, and A be any efficient indso-adversary. Then, there
exists an unbounded los-ind adversary C and an efficient los-key adversary B such that

Advind-so-enc
A,AE,M,n,t(λ) ≤ 2n ·Advlos-ind

C,AE (λ) + 2 ·Advlos-key
B,AE (λ) .

Proof: Without loss consider an indso-adversary A that never makes a query to Corrupt that results in ⊥.
We will prove the theorem using a sequence of game transitions. We start with a game that is simply the
game INDSO run with A, and end with a game in which A has no advantage, showing that each subsequent
game is either computationally or statistically indistinguishable from the previous game. Now, we know that

Advind-so-enc
A,AE,M,n,t(λ) = 2 · Pr

[
INDSOA

AE,M,n,t(λ)⇒ true
]
− 1

by the definition of IND-SO-ENC-security (see Section 3.2). We let G0 be the game INDSO. We will now
explain the game transitions.

G1: The only change from G0 is that Initialize uses the lossy key generation, and thus the adversary is
given a lossy public key and lossy ciphertexts.

H0: In the Corrupt procedure, instead of opening the ciphertexts corresponding to index I by revealing
the actual coins used to generate the ciphertexts,H0 runs the Opener algorithm on the actual messages
and ciphertexts and returns the output. By the definition of the Opener algorithm (see Section 4), the
coins will still be correctly distributed and consistent with the ciphertexts.

Hj : We generalize H0 with a sequence of hybrid games. In the jth hybrid game, the first j ciphertexts
returned by Initialize are encryptions of dummy messages instead of the first j messages outputted
byM. Yet, in Corrupt the game still opens the ciphertexts to the actual messages produced byM
by using the Opener algorithm.

Hn: In the last hybrid game, Initialize returns encryptions of only the dummy message, yet Corrupt
returns openings of the ciphertexts to the actual messages generated byM (again, by using the Opener
algorithm).

G?: The same as Hn except the choice of m0 and the bit b are moved to the Corrupt procedure since they
are no longer needed in Initialize.

More detailed code for the games can be found in Figure 3. Now, we first claim that there is an efficient
adversary B such that

Pr
[
GA0 ⇒ true

]
− Pr

[
GA1 ⇒ true

]
= Advlos-key

B,AE (λ) . (1)
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To see this consider a B that is given a challenge public key pk∗ and must decide whether or not it is lossy.
The adversary uses the IND-SO-ENC-adversary A and executes exactly the same as G0 and G1, giving the
adversary the challenge key pk∗ and ciphertexts generated using pk∗. It is important for the conditional
resamplability ofM to be efficient in order for adversary B to be efficient.

Next, we claim that
Pr
[
GA1 ⇒ true

]
= Pr

[
HA

0 ⇒ true
]
. (2)

Recall that H0 opens ciphertexts c[i] = E(pk,m0[i]) by using the Opener procedure. The key point is that
in H0, c[i] is still opened to m0[i]. This ensures us that Opener will always succeed in finding coins that
open the ciphertext correctly, and ensures us that the output of Opener is identically distributed to the actual
coins used to encrypt m. Thus, the claim follows.

We can now use a standard hybrid argument to show there is an unbounded adversary C such that

Pr
[
HA

0 ⇒ true
]
− Pr

[
HA
n ⇒ true

]
≤ n ·Advlos-ind

C,AE (λ) . (3)

Adversary C, on input a lossy public key pk∗, will operate the same as Hj (for some guess j) except
that it will use the challenge key, and for the jth ciphertext it will use the result of issuing an IND-CPA
challenge consisting of the dummy message mdum and the real message m0[j]. The adversary C needs
to be unbounded because it runs the (possibly inefficient) procedure Opener. With standard IND-CPA, the
unbounded nature of C would be problematic. However, in the case of lossy encryption, the encryptions of
two lossy ciphertexts are statistically close instead of just computationally indistinguishable, so C will still
have only negligible advantage.

It is easy to see that

Pr
[
HA
n ⇒ true

]
= Pr

[
GA? ⇒ true

]
,

since G? is just a syntactic rewrite of Hn where the choice of messages and challenge bit are moved to the
Corrupt procedure. They can be moved because Initialize no longer uses them.

Finally, we claim that
Pr
[
GA? ⇒ true

]
= 1/2 , (4)

which is true since in G? the adversary is given encryptions of dummy messages and the challenge bit is not
even chosen until Corrupt.

Combining the above equations, we see that

Advind-so-enc
A,AE,M,n,t(λ) ≤ 2n ·Advlos-ind

C,AE (λ) + 2 ·Advlos-key
B,AE (λ) ,

which proves the theorem.

Theorem 5.2 [Lossy Encryption with Efficient Opening implies SEM-SO-ENC security] Let λ be a security
parameter, AE = (K,K`, E ,D) be any lossy public-key encryption scheme with efficient opening, (n, t) any
valid SOA parameter pair, M any efficient n-message sampler, R an efficiently computable relation, and
A be any polynomial-time semso-adversary. Then, there exists an efficient semso-simulator S, an efficient
los-key adversary B, and an unbounded los-ind2 adversary C such that

Advsem-so-enc
A,S,AE,M,R,n,t(λ) ≤ Advlos-key

B,AE (λ) + n ·Advlos-ind2
C,AE (λ) .

Proof: The proof of Theorem 5.2 is very similar to the proof of Theorem 5.1. Let AE be a lossy encryption
scheme with efficient opening, (n, t) be arbitrary valid SOA parameters,M an efficient n-message sampler,
R an efficiently computable relation, and A be some poly-time semso-adversary. We will prove the theorem
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procedure Initialize(λ):

(pk, sk)←$K`(1λ)
m0←$M(1λ) ; b←$ {0, 1}
For i = 1, . . . , n(λ) do

r[i]←$ CoinsE(pk,m0[i])
c[i]← E(pk,m0[i]; r[i])

Return (pk, c)

procedure Corrupt(I): G1

m1←$M|I,m0[I]

Return (r[I],mb)

procedure Finalize(b′):

Return (b = b′)

procedure Initialize(λ):

(pk, sk)←$K`(1λ)
m0←$M(1λ) ; b←$ {0, 1}
For i = 1, . . . , n(λ) do

r[i]←$ CoinsE(pk,m0[i])
c[i]← E(pk,m0[i]; r[i])

Return (pk, c)

procedure Corrupt(I): H0

m1←$M|I,m0[I]

For i ∈ I do
r′[i]←$ Opener(pk,m0[i], c[i])

Return (r′[I],mb)

procedure Finalize(b′):

Return (b = b′)

procedure Initialize(λ):

(pk, sk)←$K`(1λ)
m0←$M(1λ) ; b←$ {0, 1}
For i = 1, . . . , n(λ) do

If i ≤ j then
r[i]←$ CoinsE(pk,mdum [i])
c[i]← E(pk,mdum [i]; r[i])

Else
r[i]←$ CoinsE(pk,m0[i])
c[i]← E(pk,m0[i]; r[i])

Return (pk, c)

procedure Corrupt(I): Hj

m1←$M|I,m0[I]

For i ∈ I do
r′[i]←$ Opener(pk,m0[i], c[i])

Return (r′[I],mb)

procedure Finalize(b′):

Return (b = b′)

procedure Initialize(λ):

(pk, sk)←$K`(1λ)
m0←$M(1λ) ; b←$ {0, 1}
For i = 1, . . . , n(λ) do

r[i]←$ CoinsE(pk,mdum [i])
c[i]← E(pk,mdum [i]; r[i])

Return (pk, c)

procedure Corrupt(I): Hn

m1←$M|I,m0[I]

For i ∈ I do
r′[i]←$ Opener(pk,m0[i], c[i])

Return (r′[I],mb)

procedure Finalize(b′):

Return (b = b′)

procedure Initialize(λ):

(pk, sk)←$K`(1λ)
For i = 1, . . . , n(λ) do

r[i]←$ CoinsE(pk,mdum [i])
c[i]← E(pk,mdum [i]; r[i])

Return (pk, c)

procedure Corrupt(I): G?

m0←$M(1λ) ; b←$ {0, 1}
m1←$M|I,m0[I]

For i ∈ I do
r′[i]←$ Opener(pk,m0[i], c[i])

Return (r′[I],mb)

procedure Finalize(b′):

Return (b = b′)

Figure 3: Game transitions for proof of Theorem 5.1
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using a sequence of game transitions. We will start with the game SEMSOREAL run withA and eventually
end up with an efficient semso-simulator S in game SEMSOIDEAL. Let G0 be the game SEMSOREAL
and consider the following sequence of games:

G1: The only change from G0 is that Initialize uses the lossy key generation, and thus the adversary is
given a lossy public key and lossy ciphertexts.

H0: In the Corrupt procedure, instead of opening the ciphertexts corresponding to index I by revealing
the actual coins used to generate the ciphertexts,H0 runs the Opener algorithm on the actual messages
and ciphertexts and returns the output. By the definition of the Opener algorithm (see Section 4), the
coins will still be correctly distributed and consistent with the ciphertexts.

Hj : We generalize H0 with a sequence of hybrid games. In the jth hybrid game, the first j ciphertexts
returned by Initialize are encryptions of dummy messages instead of the first j messages outputted
byM. Yet, in Corrupt the game still opens the ciphertexts to the actual messages produced byM
by using the Opener algorithm.

Hn: In the last hybrid game, Initialize returns encryptions of only the dummy message, yet Corrupt
returns openings of the ciphertexts to the actual messages generated byM (again, by using the Opener
algorithm).

G?: The same as Hn except the choice of m is moved to the Corrupt procedure since the vector is no
longer needed in Initialize.

More detailed descriptions of the games can be found in Figure 2. Now, by definition we know that

Pr
[

SEMSOREALAAE,M,R,n,t(λ)⇒ 1
]

= Pr
[
GA0 ⇒ 1

]
.

Our first claim is that there is an efficient adversary B such that

Pr
[
GA0 ⇒ 1

]
− Pr

[
GA1 ⇒ 1

]
≤ Advlos-key

B,AE (λ) .

This is easy to see because the adversary B simply runs A exactly as in games G0 and G1, but instead of
generating its own key pair, B substitutes its challenge key. Now, we claim that

Pr
[
GA1 ⇒ 1

]
= Pr

[
HA

0 ⇒ 1
]
. (5)

The claim follows for the same reasons given in the proof of Theorem 5.1 above. Also similar to that proof,
we can use a standard hybrid argument to show there is an unbounded adversary C such that

Pr
[
HA

0 ⇒ 1
]
− Pr

[
HA
n ⇒ 1

]
≤ n ·Advlos-ind2

C,AE (λ) . (6)

The only difference from the above proof is that now we need to bound the difference by the los-ind2
advantage of C, since C will have access to the lossy secret key.

We can now rewrite gameHn and move the choice of the message vector m to the Corrupt procedure. This
is because Initialize only uses the dummy message vector in Hn. We call the resulting game G?. It is clear
that

Pr
[
HA
n ⇒ 1

]
= Pr

[
GA? ⇒ 1

]
.

Lastly, we claim that there exists a semso-simulator S such that

Pr
[

SEMSOIDEALSAE,M,R,n,t(λ)⇒ 1
]

= Pr
[
GA? ⇒ 1

]
.
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procedure Initialize(λ):

(pk, sk)←$K`(1λ)
m←$M(1λ)
For i = 1, . . . , n(λ) do

r[i]←$ CoinsE(pk,m[i])
c[i]← E(pk,m[i]; r[i])

Return (pk, c)

procedure Corrupt(I): G1

Return (r[I],m[I])

procedure Finalize(w):

Return R(m, w)

procedure Initialize(λ):

(pk, sk)←$K`(1λ)
m←$M(1λ)
For i = 1, . . . , n(λ) do

r[i]←$ CoinsE(pk,m[i])
c[i]← E(pk,m[i]; r[i])

Return (pk, c)

procedure Corrupt(I): H0

For i ∈ I do
r′[i]←$ Opener(sk, pk,m[i], c[i])

Return (r′[I],m[I])

procedure Finalize(w):

Return R(m, w)

procedure Initialize(λ):

(pk, sk)←$K`(1λ)
m←$M(1λ)
For i = 1, . . . , n(λ) do

If i ≤ j then
r[i]←$ CoinsE(pk,mdum [i])
c[i]← E(pk,mdum [i]; r[i])

Else
r[i]←$ CoinsE(pk,m[i])
c[i]← E(pk,m[i]; r[i])

Return (pk, c)

procedure Corrupt(I): Hj

For i ∈ I do
r′[i]←$ Opener(sk, pk,m[i], c[i])

Return (r′[I],m[I])

procedure Finalize(w):

Return R(m, w)

procedure Initialize(λ):

(pk, sk)←$K`(1λ)
m←$M(1λ)
For i = 1, . . . , n(λ) do

r[i]←$ CoinsE(pk,mdum [i])
c[i]← E(pk,mdum [i]; r[i])

Return (pk, c)

procedure Corrupt(I): Hn

For i ∈ I do
r′[i]←$ Opener(sk, pk,m[i], c[i])

Return (r′[I],m[I])

procedure Finalize(w):

Return R(m, w)

procedure Initialize(λ):

(pk, sk)←$K`(1λ)
For i = 1, . . . , n(λ) do

r[i]←$ CoinsE(pk,mdum [i])
c[i]← E(pk,mdum [i]; r[i])

Return (pk, c)

procedure Corrupt(I): G?

m←$M(1λ)
For i ∈ I do

r′[i]←$ Opener(sk,pk,m[i], c[i])
Return (r′[I],m[I])

procedure Finalize(w):

Return R(m, w)

Figure 4: Game transitions for proof of Theorem 5.2

17



The simulator S executes A internally exactly as in G?. In particular, S chooses a lossy key pair and gives
A the lossy public key and dummy encryptions. When A makes a Corrupt query I , S makes the same
Corrupt query to learn m[I] and uses the efficient Opener algorithm to open the dummy ciphertexts to
m[I]. Finally, when A outputs w, S will output the same. Since A and Opener are efficient, S will also be
efficient.

Combining all of the above equations, we see that

Advsem-so-enc
A,S,AE,M,R,n,t(λ) = Pr

[
SEMSOREALAAE,M,R,n,t(λ)⇒ 1

]
−Pr

[
SEMSOIDEALSAE,M,R,n,t(λ)⇒ 1

]
≤ Advlos-key

B,AE (λ) + n ·Advlos-ind2
C,AE (λ) .

which proves the theorem.
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