
FaCT: A Flexible, Constant-Time
Programming Language

Sunjay Cauligi† Gary Soeller† Fraser Brown? Brian Johannesmeyer† Yunlu Huang†

Ranjit Jhala† Deian Stefan†

?Stanford University †UC San Diego

Abstract—We argue that C is unsuitable for writing timing-
channel free cryptographic code that is both fast and readable.
Readable implementations of crypto routines would contain high-
level constructs like if statements, constructs that also introduce
timing vulnerabilities. To avoid vulnerabilities, programmers
must rewrite their code to dodge intuitive yet dangerous con-
structs, cluttering the codebase and potentially introducing new
errors. Moreover, even when programmers are diligent, compiler
optimization passes may still introduce branches and other
sources of timing side channels. This status quo is the worst of
both worlds: tortured source code that can still yield vulnerable
machine code. We propose to solve this problem with a domain-
specific language that permits programmers to intuitively express
crypto routines and reason about secret values, and a compiler
that generates efficient, timing-channel free assembly code.

I. INTRODUCTION

Cryptographic routines must be fast. Though these routines
are computationally intensive, they must not impose significant
overhead on the operations that they are intended to secure.
Cryptosystem designers take pains to ensure good perfor-
mance; in fact, whole venues like Fast Software Encryption
are dedicated to high-speed cryptography. As one extreme
example, the Curve25519 elliptic curve cryptosystem set new
speed records by making heroic use of floating-point hardware
to accelerate integer arithmetic [33]. At the very least, though,
developers implement cryptographic libraries in low-level,
efficient languages like C.

The C language is fast, but it does not help crypto de-
velopers safely handle sensitive data. Like most general-
purpose languages, C has no notion of “sensitive data” at all.
Consequently, developers are on their own to avoid—and often
fail to avoid—leaking secrets. For example, a developer imple-
menting RSA decryption may betray information by branching
on the bits of a secret key [41]. The developer follows the
textbook RSA decryption algorithm, raising the cipher to the
power of the secret key. This amounts to performing a squaring
operation for each bit of the key—and, for each set bit,
performing an additional bignum multiplication. An attacker
can recover individual bits from the secret key by measuring
the time it takes to decrypt a message: because of the bignum
multiplication, decryption takes far longer if a bit is set. Timing
attacks like this one are a practical concern. For example,
implementations of both RSA [35, 41] and AES [32, 49] have

been susceptible to timing attacks that allowed (even remote
network) attackers to recover secret keys.

To avoid introducing timing vulnerabilities, developers
translate unsafe C functions into safe constant-time func-
tions using a selection of standard recipes. For example,
to implement a safe version of the conditional assignment
from the RSA function above, the alert developer rewrites
“if (secret) x = expr” to avoid branching on the se-
cret; they choose their favorite “recipe” to convert the
snippet into constant-time code. Conceptually, this vulnera-
ble code is equivalent to the branchless arithmetic assign-
ment “x = (secret * expr) + (1 - secret) * x.” In this
rewrite, x takes on the value expr if the secret bit is
equal to one; it remains the same when secret is equal
to 0 (since 0 + 1 * x is x). This rewrite is no longer
vulnerable, as its runtime does not depend on the value
of secret. There are other safe rewrite alternatives for the
vulnerable RSA code: the developer could choose the bitwise
rewrite “x = (expr & -secret) | (x & (secret-1)),” or
“x ˆ= (expr ˆ x) & -secret,” or another folk remedy for
curing timing-vulnerable crypto code.

But following constant-time rewrite recipes is error-
prone. For example, the “Lucky 13” timing vulnerability in
OpenSSL [26] was introduced in a patch intended to fix a
different timing attack vulnerability in TLS [45]. It didn’t end
there. The patch addressing Lucky 13 itself introduced a new,
separate vulnerability—CVE-2016-2107 [57].

Even if the developer manages to string together a cor-
rect series of constant-time translations, they face a further
challenge: the compiler. Compiler optimization passes can
introduce new vulnerabilities into correctly written code. For
example, an optimization pass may introduce branching in-
structions in originally branchless C code [46]. Compilers may
also generate instructions that have inherent data-dependent
timing variations, like div and idiv [28]. As a result, crypto
developers must manually inspect all generated assembly code
to ensure that it only consists of instructions that handle secret
data “safely”—but figuring out which instructions are safe
can seem like divination. Cryptography Stack Exchange user
dave thompson 085 sums up the frustration: “you aren’t
guaranteed that even bitwise operations are constant-time but
in practice they’re your best bet” [21].

We propose a domain-specific language and compiler,

FaCT, for writing correct, fast, maintainable, and readable
constant-time routines without resorting to rewrite recipes.
Developers use the FaCT language to write idiomatic code like
“if (secret) x = expr” in a *.fact file. The FaCT type
system stops developers from accidentally leaking sensitive
data. Since the FaCT compiler is aware of which data are
sensitive, it can generate constant-time machine code and
avoid optimizations that betray secrets. The FaCT compiler
produces object files that developers link with their existing
projects (e.g., OpenSSL); they write their general-purpose
code in C and only rely on FaCT for constant time routines.

II. CONSTANT-TIME C: TRAPS AND PITFALLS

It is notoriously difficult to write correct constant-time
code in C [2–4, 7, 20, 21, 25–27, 32, 35]. To avoid leaking
sensitive data through timing side-channels, developers must
avoid common C language features like if statements on
secret data; moreover, they must structure their code to prevent
the compiler from introducing timing variabilities during opti-
mization passes. In this section, we recount Homerean tales of
developers avoiding and succumbing to constant-time C traps.
These Odysseys reveal how general-purpose languages like C
render writing safe crypto code a Herculean challenge.

A. Developers must avoid unsafe language features

Since C has no notion of data sensitivity, it can’t treat
computations on sensitive data any differently from those on
public data. Developers must manually structure their code
so that it compiles to constant-time assembly without help
from the language or compiler. To this end, developers often
use a “safe” subset of C, encoding operations that rely on
dangerous constructs like if statements into more attack-
resilient alternatives—often straight-line bitwise operations.
Below, we describe some of the unsafe constructs and the
recipes for encoding the constructs in the safe C subset.

Control-flow constructs As mentioned in the introduction,
developers should not use control flow constructs that branch
on secret data. For example, the following code is unsafe:

if (secret)
for(i = 0; i < Y->n; i++)

X->p[i] = Y->p[i];

This code assigns every element of Y->p to a corresponding
location in X->p if the boolean flag secret is true. Unfortu-
nately, this code is not constant-time—the if branch iterates
Y->n times while the else branch is a no-op. An attacker
who can measure the duration of the computation (e.g., over
the network [35]) can infer the value of secret. Furthermore,
even if the duration of both branches were the same, a local
attacker can infer secret through other means like the data
cache [32] or the branch predictor [24, 25, 39].

Safely expressing control flow statements (e.g., conditional,
iterative, and switch statements [40]) on sensitive data amounts
to transforming the statements into branch-free, arithmetic or
bitwise expression statements [46]. Following this kind of

recipe, a developer could rewrite the snippet in the previous
paragraph to be constant-time:

/* mbedtls/library/bignum.c */

240 for(i = 0; i < Y->n; i++)
241 X->p[i] = X->p[i] * (1 - secret) + Y->p[i] * secret;

In this mbedTLS version of the code snippet, the conditional
is folded into the for-loop and then transformed into an
arithmetic expression, so the control flow of the program is
no longer affected by secret. Unfortunately, this example is
deceptively simple—transforming programs with only slightly
more interesting control flow (e.g., one that has nested if
statements) becomes unwieldy [18].

Logical and relational expressions Conditional state-
ments and expressions obviously compile to assembly
code that contains branches. These statements, however,
are not the only source of timing-vulnerable code: log-
ical expressions—expressions involving &&, ||, and !—
and relational expressions—expressions involving >, !=,
<, etc.—do not always compile down to constant-time
code. For example, mbedTLS developers deemed a func-
tion get_zeros_and_len_padding unsafe because a logical-
expression (involving ||) was compiled to a branch [50].

To avoid traps like this, some crypto libraries (e.g.,
OpenSSL and libsodium) forgo C’s built-in operators and, in-
stead, rely on helper functions that implement the operators in
constant time. This approach requires reimplementing almost
all of C’s operators. Moreover, it can require transforming even
public expressions into different representations, ones that the
rewritten functions expect.

Other libraries (e.g., mbedTLS, libsignal, and Crypto++)
only transform logical and relational expressions when neces-
sary. To this end, their developers inspect the assembly code
and, if the generated assembly contains branches, they rewrite
the culprit C code into a series of expression-statements using
bitwise operators. This approach is brittle because it requires
developers to examine assembly generated by different com-
pilers, compiler versions, and optimization levels [20]. Some
transformations are necessary for certain architectures but not
others; some are only necessary when using certain compilers,
compiler versions, or when certain optimizations are enabled.
Finally, these selective rewrites often sacrifice readability, a
trade-off that developers don’t always find worthwhile [18].

Memory access Developers must also ensure that memory
access patterns do not reveal information about secret data.
Consider, for example, the mbedTLS get_zeros_padding
function. This function takes a buffer of secret data, whose
length is public, and computes the number of elements in
the buffer before the all-0x00 suffix. Even a function this
simple can leak secret information. For example, the original
mbedTLS implementation [43] scanned the input buffer from
the tail end until it found first non-zero element, exposing the
length of the data in the process:

/* mbedtls/library/cipher.c */

645 static int get_zeros_padding(unsigned char *input,

size_t input_len, size_t *data_len) {
unsigned char *p = input + input_len - 1;
...

while(*p == 0x00 && p > input)
--p;

*data_len = *p == 0x00 ? 0 : p - input + 1;
...

}

By measuring the duration of the function, an attacker can
determine how many iterations the while loop performs—the
length of the padding—and therefore the secret length of the
data. This is possible because the loop ends immediately after
it identifies the first non-zero byte.

In general, accessing memory based on secret data is unsafe.
To safely express memory access computations, developers
must remove any dependency on secret values. Most often, this
means transforming the memory access code to instead depend
on publicly computable bounds that encompass the secret. For
example, the mbedTLS developers rewrote the buggy function
above to iterate over all elements of the buffer [51]. The
function now updates the secret data length every iteration,
using the done and prev_done variables to mask the proper
values:

/* mbedtls/library/cipher.c */
533 static int get_zeros_padding(unsigned char *input,

size_t input_len, size_t *data_len) {
size_t i;
unsigned char done = 0, prev_done;
...

*data_len = 0;
for(i = input_len; i > 0; i--)
{

prev_done = done;
done |= (input[i-1] != 0);
*data_len |= i * (done != prev_done);

}
...

}

This is not an isolated example: BoringSSL implements
Base64 encoding and decoding similarly [31].

Variable-time, data-dependent operations Developers must
also avoid using C language features and standard library func-
tions whose running time varies according to input values [7].
For example, C operators like division and modulo often get
compiled to instructions whose cycle time depends on the
input values. On some architectures (e.g., ARM and Pow-
erPC), even multiplication can be variable-time [8]! Similarly,
some standard library buffer comparison functions like memcmp
return early depending on the values of their input buffers [7].
An attacker can often leverage these variable-time operations
to learn the contents of individual words or, sometimes, whole
buffers [28].

Developers avoid variable-time operations, once again, by
using transformations. For example, they translate divisions
and modulo operations into explicit bit shifts. Similarly, they
rewrite string and buffer comparisons to constant-time alterna-
tives: some crypto libraries rely on comparisons implemented

by an underlying library, while others (e.g., mbedTLS) resort
to manually transforming uses of functions like memcpy to
constant-time memory access patterns. This transformation is
both easy to forget and easy to get wrong [29].

B. Compiler optimizations may introduce vulnerabilities

Like the C language itself, C compilers do not account for
data sensitivity, and may therefore introduce new vulnerabil-
ities during optimization passes. In other words, compilers
may take C code that appears to be constant-time—code that
does not include problematic constructs from the previous
section (e.g., conditional, relational, or logical statements)—
and still generate assembly that is vulnerable to timing attacks.
Consider, for example, the following C code that implements
the ternary operator according to a constant-time recipe [7]:

/* Return either x or y depending on whether bit is set */
uint32_t ct_select_u32(uint32_t x, uint32_t y, bool bit) {

// Generate a mask: 0xFFFFFFFF if bit != 0, 0 otherwise
uint32_t mask = ct_mask_u32(bit);
return (x&mask) | (y&˜mask);

}

When compiled with clang versions 3.9.1 or 4.0.0 using flags
-O2 -m32 -march=i386, the generated code is not constant-
time: the compiler generates code that contains conditional
jump instructions.

Compilers may not only introduce dangerous operations
like conditional jumps, but also optimize away seemingly
superfluous code—code that exists to prevent information
leaks. For example, in Crypto++, the compiler removed unused
array reads that developers had added on purpose. These reads
were meant to preload a cache line so that memory accesses
at secret indices did not leak the indices via cache access
patterns. Unsurprisingly, since the compiler optimized away
the reads, the library was vulnerable to a timing attack [11].

C. Compilers may not generate optimal constant-time code

Today’s approach to writing constant-time in a subset of C
is not only extremely difficult and error-prone, but also comes
at the cost of performance. Specifically, when transforming
high-level idiomatic C code to a series of low-level arithmetic
and bitwise operations developers also introduce a semantic
gap that makes makes it more difficult for compilers to
generate optimal code. This semantic gap is often purposeful:
by transforming conditional statements into bitwise operations,
developers conceptually “trick” the compiler into generating
straight-line assembly. Unfortunately, when maneuvering the
compiler away from dangerous instructions like conditional
jumps, developers also maneuver away from safe, more effi-
cient instructions. Below we describe some of these underuti-
lized hardware instructions.

Conditional move (cmov) Intel’s recent family of constant-
time [36] conditional move instructions, cmov, are a prime
example of underutilized hardware. These instructions check
the CPU status flags and perform a move depending on
flags. In practice, most of the constant-time transformations
for conditional statements simulate a cmov using arithmetic

or bitwise operations. Unfortunately, in our testing, only the
arithmetic-based transformations compile to cmov instructions.
Neither clang nor gcc optimize bitwise transformations to
their equivalent cmov operations.

Byte swap (bswap) The family of byte swap instructions
(bswap)—instructions that change the endianness of a value in
constant time [23]—are another example of hardware features
that can benefit crypto libraries. Unfortunately, as with cmov,
most libraries implement equivalent computations using a
series of bitwise operations, in turn, making it difficult for
compilers to leverage bswap.

Add-with-carry (adc) Almost all processors have add-with-
carry (adc) instructions. Since C does not expose these instruc-
tions at the language level, though, libraries like mbedTLS
and wolfSSL manually recompute carry bits—via several bit
shifting operations—when implementing “bignum” arithmetic.
This reimplementation not only hurts readability of already
hard-to-read constant-time code, but also leads to less efficient
code—multiple instructions are used in place of a single adc.

Vector operations Most modern processors are also
equipped with single instruction multiple data (SIMD) instruc-
tions that allow developers to perform operations on multiple,
packed operands in parallel. Crypto libraries take advantage of
these instructions by using elaborate macro definitions that boil
down to either intrinsic functions [12, 19]—compiler-provided
assembly-instruction wrappers—or inline assembly [20]. For
example, the Crypto++ implementation of the Galois counter
mode algorithm uses a set of preprocessor directives that
check the compiler, compiler version, and architecture type to
generate appropriate macros for accessing packed operations
as such. Unfortunately, this approach is not only error-prone—
macros that generate macros of inline assembly—but also
does not scale: while some library developers can take on the
job of a compiler to generate SIMD instructions for certain
architectures, other libraries simply do not leverage these
hardware features.

III. FACT: FLEXIBLE AND CONSTANT-TIME

We propose to solve the hazards outlined in the previ-
ous section by designing a new, flexible and constant-time
(FaCT) programming language. FaCT is not a general purpose
language. Rather, it is a domain specific language (DSL)
explicitly designed to be used within existing, larger C crypto
projects (e.g., wolfSSL or mbedTLS). Developers can continue
to write the majority of their crypto code in C, and only need
to use FaCT for the low-level functions that must to be resilient
to timing attacks.

FaCT is designed to: (1) allow developers to easily write
idiomatic code that runs in constant time, (2) be flexible
enough to express real-world crypto code, (3) interoperate with
C code, (4) produce fast assembly code, and (5) be verified to
be resilient against timing attacks. In the rest of this section
we describe how FaCT addresses these design points.

Easy to write constant-time code FaCT allows developers
to write idiomatic, C-like code while ensuring that any code

that computes on sensitive data is compiled to assembly
that runs in constant time. To accomplish this, FaCT forces
developers to specify the sensitivity of function arguments
and return values—either public or secret—alongside their
types. Using these public and secret labels, the FaCT
compiler frontend infers the types and labels of intermediate
values with an information flow control (IFC) type system. The
compiler ensures that developers cannot express computations
that would leak secret data [44, 52, 56]. For example, if
a code snippet tries to access array elements based on a
secret index, the compiler will report an error: the code
snippet will not compile. The compiler also ensures that
any variable-time operations (e.g., division or modulo) are
restricted to public operands and that loops are bounded
by public expressions. These restrictions force developers to
reason about data sensitivity and write code that is resilient to
timing leaks.

FaCT also allows developers to safely and idiomatically
write conditional, logical, and relational expressions on secret
values. The FaCT compiler will transform this idiomatic code
into constant-time assembly. For example, with FaCT, we
can write the get_zeros_padding mbedTLS function using
standard programming language constructs:

public uint32 get_zeros_padding(secret uint8[] input,
secret mut size_t data_len) {

...
for (size_t i from len input to 1 by -1) {

if (input[i-1] == 0)
data_len = i;

}
...

}

The FaCT compiler, as shown in Fig. 1, automatically trans-
forms this code (e.g., by executing both branches of a secret
conditional and merging stores, as in [44, 52]) to generate
straight-line, constant-time assembly.

Finally, the FaCT system can do more than just code
transformation to make constant-time code easy to write. The
compiler can ensure that developers do not violate memory
safety by using an SMT solver (e.g., Z3 [37]) to statically
check that memory accesses are within bounds. Furthermore,
FaCT provides a debug mode the allows developers to use
otherwise unsafe operations (e.g., C’s printf), to generate
code that has not been transformed to constant-time, and to
interact with their implementation using a read-eval-print loop
(REPL) tool.

Express real-world crypto operations To ensure that FaCT
is expressive enough to capture practical, real-world constant-
time crypto code, we manually analyzed several popular
cryptographic libraries and codebases [5, 9, 13–15, 17, 22].
Beyond standard features (e.g., functions, arrays, loops, muta-
ble variables, etc.), FaCT has several built-in features specific
to crypto code, features that we outline in Fig 2. For example,
FaCT has built-ins for manipulating, testing, and packing bits,
bytes, and words, since many hash functions and encryption
algorithms rely on such operations. FaCT also exposes types

Fig. 1. The FaCT compiler consists of several phases. The type checking phase entails type and label inference as well as information flow and memory
safety checks. The CT transformation phase applies a constant-time recipe over the typed AST before public and secret optimizations occur. The codegen
phase generates label-annotated LLVM IR as well as the necessary C header files. Using ct-verif, the LLVM IR is verified to be constant-time before being
sent to clang to produce an object file. Finally, when used in debug mode, the REPL will use the LLVM MCJIT execution engine to compile and execute
FaCT code on the fly. We highlight the components that are trusted to be correct in yellow.

and operators for add-with-carry and vector operations, as we
have observed many real libraries abuse the C macro system
to accomplish a similar goal.

C interoperability FaCT is a DSL intended to be used within
a larger C codebase. The FaCT compiler produces both an
object file and a C header file (see Fig. 1). Developers can link
the object file into an existing project and include the header
files in order to call exposed FaCT functions as C functions.

We designed FaCT to interoperate with C code. To this end,
all datatypes in FaCT have the same memory layout as their
corresponding C datatypes. FaCT functions that are exposed to
C code end up having very similar type declarations. Consider,
for example, the following FaCT function:

export public int16 fn(public int32 value,
public mut uint32 modifiable_value,
secret mut uint8[8] fixed_len_array,
secret uint8[] var_len_array) {

...
}

For this function, the FaCT compiler will generate a C header
file with the following C function declaration:

// generated C declaration
/* public */ int16_t fn(

/* public */ int32_t value,
/* public */ uint32_t * modifiable_value,
/* secret */ uint8_t fixed_len_array[8],
/* secret */ const uint_8 * var_len_array,
/* public */ size_t _var_len_array_len);

Given the general similarity between FaCT and C function
types, we only highlight some of the notable differences.
First, public and secret labels have no meaning in C;
when generating C declarations, however, FaCT leaves them
in as comments for documentation. Simple types are passed
by value, while mut types are passed by address. Structs
and arrays are also passed by address. More subtly, FaCT
functions that accept arrays with dynamically specified length
are silently transformed to accept an additional, implicit length
parameter. The corresponding C declaration reveals this extra

parameter, so that C functions can provide the proper infor-
mation upon invocation.

While we encourage developers to use FaCT for all low-
level crypto code, we acknowledge that developers may need
to call external assembly or C functions (highly tuned hash
function implementations, for example). To this end, FaCT
provides the unsafe_foreign function declarator that allows
developers to omit function definitions and only declare the
types and labels of their arguments and return values. While
using such functions is generally considered unsafe, we can
leverage verification tools like ct-verif [27] to ensure that
foreign functions cannot leak sensitive data. This allows FaCT
to retain its security guarantees even when calling C or
assembly code.

Fast assembly code By bridging the semantic gap between
the language features exposed to developers and the underlying
hardware, FaCT can not only ensure security more easily, but
also generate faster code. For example, because FaCT develop-
ers do not unnecessarily transform conditional statements into
arithmetic or bitwise operations, the FaCT compiler can often
emit fast instructions such as cmov to implement conditionals.
Since FaCT exposes several language features (see Fig. 2) that
have direct instruction-level analogues, the FaCT compiler can
simply emit instructions to leverage these hardware features on
architectures like x86-64. On architectures that do not natively
have analogous instructions, the FaCT compiler can easily
generate code that has the equivalent functionality.

In addition to using fast, constant-time instructions, the
FaCT compiler can optimize code in a way that preserves
the security guarantees of the IFC type system. Specifically,
since we propagate sensitivity labels to the optimizer, the FaCT
compiler can aggressively optimize the parts of the program
that operate on public data while applying less aggressive
(but safe!) optimizations to the secret parts (as suggested
by [38]).

Resilient against timing attacks The FaCT compiler pre-
serves label information through different compilation stages
and eventually generates label-annotated LLVM. This label-
annotated LLVM is then directly fed to the ct-verif tool,

Feature Description Example

Add-with-carry Add two integers, producing carry bit in addition to sum sum, carry = value1 + value2;

Byte packing Treat multiple smaller words as one larger word large_word = pack(a, b, c, d);
Byte unpacking Split one large word into multiple smaller words a, b, c, d = unpack(large_word);
Bit extraction Extract the value of a single bit from a word bit_value = get_bit(word, index);
Bit setting Set the value of a single bit in a word set_bit(word, index, new_value);
Bit rotation Shift bits, adding the shifted bits back on the other end rotate_l = word <<< n;

rotate_r = word >>> n;
Vector operations Parallel arithmetic on packed values vec1 += vec2;

vec1 ˆ= vec2;
Vector operations Parallel arithmetic on packed values, without carrying vec1 .+= vec2;
with saturation (modular polynomial operations) vec1 .*= vec2;

Fig. 2. Non-standard language features in FaCT.

which verifies that the generated code does not leak any
secret data [27]. An alternative approach to verifying the
compiler output would be to verify the compiler itself—by
proving noninterference [56] and translation validation [47]—
and ensure that it always generates constant-time assembly.
While potentially interesting, our current approach of using
ct-verif is drastically simpler and more flexible. Indeed, ct-
verif allows us to modify parts of the compiler to, say,
add potentially dangerous optimization passes without giving
up on security or having to prove anything: if a particular
optimization leads to unintended leakages, ct-verif will catch
it, and the FaCT compiler can fall back to less risky ones.

IV. RELATED WORK

There are several approaches to verifying whether code is
constant-time, from static analysis [27, 55], to dynamic taint
tracking [6] and fuzzing [54]. These verification tools are
useful for ensuring that neither the developer nor the compiler
have accidentally introduced timing variations in their code.
However, they do not save developers from having to write or
understand abstruse constant-time C code.

Many proposed solutions to producing code free of timing
side channels perform source-to-source transformations [30,
46, 48]. Other systems operate on annotated C code, but
because C’s relaxed type system complicates IFC typing,
these systems are conservative and transform more code
to constant-time than necessary [36, 46, 53]. To address
timing differences in conditional statements, some of these
approaches use transactions to execute both sides of a branch
while only committing the “correct” branch, similar to our
approach [30, 53]. Unfortunately, code generated by the above
tools is still subject to general compiler optimizations. Other
systems rely on an assembly-like language [16], or otherwise
operate directly on annotated assembly [34] to avoid compiler
pitfalls, giving up on the portability of writing code in a high-
level language.

HACL [61] allows developers to write cryptographic func-
tions in F* [58], a high level functional language, and ver-
ify that these functions do not leak information via covert-

channels, such as timing. Their system, however, does not
perform any automatic program transformations, leaving de-
velopers to manually write their code using the same constant-
time recipes as in C.

The problem of compiler optimizations adversely impact-
ing security is well known and goes beyond introducing
timing attack vulnerabilities [38]. For example, dead store
elimination—an optimization which removes stores that are
never read from again—has been known to remove sensi-
tive data scrubbing operations. This optimization alone has
littered bug reports going as far back as 2002 [1] and
still plagues developers with vulnerabilities through at least
January 2016 [10]. In response, many developers reputedly
devise source code level, compiler-specific “solutions” that
trick the compiler into leaving the security relevant code
unoptimized [60]. Other systems propose to introduce new
LLVM passes that instrument the compiler itself and prevent
it from making unsafe optimizations (e.g., [42, 59]).

ACKNOWLEDGEMENTS

We thank David Kohlbrenner, Ariana Mirian, Hovav
Shacham, and the anonymous reviewers for their insightful
comments and suggestions. We give special thanks to Riad
S. Wahby for his superb skill in prettifying our code snippets
and formatting our paper. This work was supported in part by
NSF grant CNS-1514435.

REFERENCES

[1] 8537 – Optimizer removes code necessary for security.
https://gcc.gnu.org/bugzilla/show bug.cgi?id=8537.

[2] 868948 – A patch for NSS: a constant-time
implementation of the GHASH function of AES-GCM,
for processors that do not have the
AES-NI/PCLMULQDQ.
https://bugzilla.mozilla.org/show bug.cgi?id=868948.

[3] Added more constant-time code / removed biases in the
prime number generation routines.
https://github.com/ARMmbed/mbedtls/pull/182.

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=8537
https://bugzilla.mozilla.org/show_bug.cgi?id=868948
https://github.com/ARMmbed/mbedtls/pull/182

[4] AES timing attack countermeasures.
https://github.com/weidai11/cryptopp/commit/
c8e2f8959414846031634477b2a0614434843ca3.

[5] BearSSL. https://bearssl.org/gitweb/?p=BearSSL.
[6] Checking that functions are constant time with valgrind.

https://github.com/agl/ctgrind/.
[7] Coding rules.

https://cryptocoding.net/index.php/Coding rules.
[8] Constant-time MUL.

https://www.bearssl.org/ctmul.html.
[9] Crypto++. https://github.com/weidai11/cryptopp.

[10] CVE-2016-0777. https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2016-0777.

[11] CVE-2016-3995. https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2016-3995.

[12] ”Jumbo” update for crypto/modes.
https://github.com/openssl/openssl/commit/
f472ec8c2f354314d278e11be567b43630acf090.

[13] libsodium. https://github.com/jedisct1/libsodium.
[14] mbed TLS. https://github.com/armmbed/mbedtls.
[15] OpenSSL. https://github.com/openssl/openssl.
[16] qhasm: tools to help write high-speed software.

https://cr.yp.to/qhasm.html.
[17] Signal protocol C library.

https://github.com/WhisperSystems/libsignal-protocol-c.
[18] Simplify some constant-time code.

https://github.com/ARMmbed/mbedtls/commit/
2ee8d24ca273487caa0b9b75e8791db75a77f51e.

[19] speed up GCM key setup.
https://github.com/weidai11/cryptopp/commit/
35820c22c226ac9b25a995efafadee708ca3c27f.

[20] Why constant-time crypto?
https://www.bearssl.org/constanttime.html.

[21] Why not use `<`, `>` or `==` in constant time
comparison? https://crypto.stackexchange.com/a/39432.

[22] wolfSSL. https://github.com/wolfSSL/wolfssl.
[23] Intel® 64 and IA-32 architectures software developer’s

manual. Volume 2: Instruction Set Reference, A-Z, 2016.
[24] O. Aciiçmez, Ç. K. Koç, and J.-P. Seifert. On the

power of simple branch prediction analysis. In 2nd
ACM Symposium on Information, Computer, and
Communications Security, pages 312–320. ACM, 2007.

[25] O. Acıiçmez, Ç. K. Koç, and J.-P. Seifert. Predicting
secret keys via branch prediction. In Cryptographers’
Track at the RSA Conference, pages 225–242. Springer,
2007.

[26] N. J. Al Fardan and K. G. Paterson. Lucky thirteen:
Breaking the TLS and DTLS record protocols. In 34th
IEEE Symposium on Security and Privacy, pages
526–540. IEEE, 2013.

[27] J. B. Almeida, M. Barbosa, G. Barthe, F. Dupressoir,
and M. Emmi. Verifying constant-time
implementations. In 25th USENIX Security Symposium.
USENIX Association, 2016.

[28] M. Andrysco, D. Kohlbrenner, K. Mowery, R. Jhala,
S. Lerner, and H. Shacham. On subnormal floating

point and abnormal timing. In 36th IEEE Symposium
on Security and Privacy, pages 623–639. IEEE, 2015.

[29] P. Bakker. Check HMAC in constant-time in
crypt and hash.
https://github.com/ARMmbed/mbedtls/commit/424cd69.

[30] G. Barthe, T. Rezk, and M. Warnier. Preventing timing
leaks through transactional branching instructions.
Electronic Notes in Theoretical Computer Science,
153(2):33–55, 2006.

[31] D. Benjamin. Implement base64 in constant-time.
https://boringssl-review.googlesource.com/c/15047/.

[32] D. J. Bernstein. Cache-timing attacks on AES, 2005.
[33] D. J. Bernstein. Curve25519: new Diffie-Hellman speed

records. In International Workshop on Public Key
Cryptography, pages 207–228. Springer, 2006.

[34] B. Bond, C. Hawblitzel, M. Kapritsos, K. R. M. Leino,
J. R. Lorch, B. Parno, A. Rane, S. Setty, and
L. Thompson. Vale: Verifying high-performance
cryptographic assembly code. In 26th USENIX Security
Symposium. USENIX Association, 2017.

[35] D. Brumley and D. Boneh. Remote timing attacks are
practical. Computer Networks, 48(5):701–716, 2005.

[36] B. Coppens, I. Verbauwhede, K. De Bosschere, and
B. De Sutter. Practical mitigations for timing-based
side-channel attacks on modern x86 processors. In 30th
IEEE Symposium on Security and Privacy,, pages
45–60. IEEE, 2009.

[37] L. De Moura and N. Bjørner. Z3: An efficient smt
solver. Tools and Algorithms for the Construction and
Analysis of Systems, pages 337–340, 2008.

[38] V. D’Silva, M. Payer, and D. Song. The
correctness-security gap in compiler optimization. In
Security and Privacy Workshops, 2015 IEEE, pages
73–87. IEEE, 2015.

[39] D. Evtyushkin, D. Ponomarev, and N. Abu-Ghazaleh.
Jump over aslr: Attacking branch predictors to bypass
ASLR. In 49th Annual IEEE/ACM International
Symposium on Microarchitecture, pages 1–13.
IEEE/ACM, 2016.

[40] I. ISO. IEC 9899-2011: Programming languages—C.
ISO Working Group, 14, 2012.

[41] P. Kocher. Timing attacks on implementations of
Diffie-Hellman, RSA, DSS, and other systems. In
Advances in Cryptology, pages 104–113. Springer,
1996.

[42] K. Lu, C. Song, T. Kim, and W. Lee. UniSan:
Proactive kernel memory initialization to eliminate data
leakages. In 23rd ACM Conference on Computer and
Communications Security, pages 920–932. ACM, 2016.

[43] Manuel Pégourié-Gonnard. Add zero padding.
https://github.com/ARMmbed/mbedtls/commit/
0e7d2c0f9537d66007a1a914f4c7e5b064f4c6ac.

[44] J. C. Mitchell, R. Sharma, D. Stefan, and
J. Zimmerman. Information-flow control for
programming on encrypted data. In Computer Security
Foundations Symposium (CSF). IEEE, June 2012.

https://github.com/weidai11/cryptopp/commit/c8e2f8959414846031634477b2a0614434843ca3
https://github.com/weidai11/cryptopp/commit/c8e2f8959414846031634477b2a0614434843ca3
https://bearssl.org/gitweb/?p=BearSSL
https://github.com/agl/ctgrind/
https://cryptocoding.net/index.php/Coding_rules
https://www.bearssl.org/ctmul.html
https://github.com/weidai11/cryptopp
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0777
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0777
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-3995
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-3995
https://github.com/openssl/openssl/commit/f472ec8c2f354314d278e11be567b43630acf090
https://github.com/openssl/openssl/commit/f472ec8c2f354314d278e11be567b43630acf090
https://github.com/jedisct1/libsodium
https://github.com/armmbed/mbedtls
https://github.com/openssl/openssl
https://cr.yp.to/qhasm.html
https://github.com/WhisperSystems/libsignal-protocol-c
https://github.com/ARMmbed/mbedtls/commit/2ee8d24ca273487caa0b9b75e8791db75a77f51e
https://github.com/ARMmbed/mbedtls/commit/2ee8d24ca273487caa0b9b75e8791db75a77f51e
https://github.com/weidai11/cryptopp/commit/35820c22c226ac9b25a995efafadee708ca3c27f
https://github.com/weidai11/cryptopp/commit/35820c22c226ac9b25a995efafadee708ca3c27f
https://www.bearssl.org/constanttime.html
https://crypto.stackexchange.com/a/39432
https://github.com/wolfSSL/wolfssl
https://github.com/ARMmbed/mbedtls/commit/424cd69
https://boringssl-review.googlesource.com/c/15047/
https://github.com/ARMmbed/mbedtls/commit/0e7d2c0f9537d66007a1a914f4c7e5b064f4c6ac
https://github.com/ARMmbed/mbedtls/commit/0e7d2c0f9537d66007a1a914f4c7e5b064f4c6ac

[45] B. Moeller et al. Security of CBC ciphersuites in
SSL/TLS: Problems and countermeasures. 2004.

[46] D. Molnar, M. Piotrowski, D. Schultz, and D. Wagner.
The program counter security model: Automatic
detection and removal of control-flow side channel
attacks. In International Conference on Information
Security and Cryptology, pages 156–168. Springer,
2005.

[47] G. C. Necula. Translation validation for an optimizing
compiler. In ACM sigplan notices, volume 35, pages
83–94. ACM, 2000.

[48] V. C. Ngo, M. Dehesa-Azuara, M. Fredrikson, and
J. Hoffmann. Verifying and synthesizing
constant-resource implementations with types. In 38th
IEEE Symposium on Security and Privacy, pages
710–728. IEEE, 2017.

[49] D. A. Osvik, A. Shamir, and E. Tromer. Cache attacks
and countermeasures: the case of AES. In
Cryptographers’ Track at the RSA Conference, pages
1–20. Springer, 2006.

[50] M. Pégourié-Gonnard. Make
get zeros and len padding() constant-time.
https://github.com/ARMmbed/mbedtls/commit/
d17df51277d74ba6f487b3e72c4c0bb4ba55eb9c.

[51] M. Pégourié-Gonnard. Make get zeros padding()
constant-time. https://github.com/ARMmbed/mbedtls/
commit/e68bf171eb9ac92404d42c54984ea90101899430.

[52] J. Planul and J. C. Mitchell. Oblivious program
execution and path-sensitive non-interference. In
Computer Security Foundations Symposium (CSF),
2013 IEEE 26th, pages 66–80. IEEE, 2013.

[53] A. Rane, C. Lin, and M. Tiwari. Raccoon: Closing
digital side-channels through obfuscated execution. In
24th USENIX Security Symposium, pages 431–446.
USENIX Association, 2015.

[54] O. Reparaz, J. Balasch, and I. Verbauwhede. Dude, is
my code constant time? In 2017 Design, Automation &
Test in Europe Conference & Exhibition, pages
1697–1702. IEEE, 2017.

[55] B. Rodrigues, F. M. Quintão Pereira, and D. F. Aranha.
Sparse representation of implicit flows with applications
to side-channel detection. In 25th International
Conference on Compiler Construction, pages 110–120.
ACM, 2016.

[56] A. Sabelfeld and A. C. Myers. Language-based
information-flow security. IEEE Journal on selected
areas in communications, 21(1):5–19, 2003.

[57] J. Somorovsky. Curious padding oracle in OpenSSL
(CVE-2016-2107).
https://web-in-security.blogspot.co.uk/2016/05/curious-
padding-oracle-in-openssl-cve.html, 2016.

[58] N. Swamy, C. Hriţcu, C. Keller, A. Rastogi,
A. Delignat-Lavaud, S. Forest, K. Bhargavan,
C. Fournet, P.-Y. Strub, M. Kohlweiss, et al. Dependent
types and multi-monadic effects in F*. In ACM
SIGPLAN Notices, volume 51, pages 256–270. ACM,

2016.
[59] X. Wang, N. Zeldovich, M. F. Kaashoek, and

A. Solar-Lezama. Towards optimization-safe systems:
Analyzing the impact of undefined behavior. In 24th
ACM Symposium on Operating Systems Principles,
pages 260–275. ACM, 2013.

[60] Z. Yang, B. Johannesmeyer, A. Trier Olesen, S. Lerner,
and K. Levchenko. Dead store elimination (still)
considered harmful. In 26th USENIX Security
Symposium. USENIX Association, 2017.

[61] J.-K. Zinzindohoué, K. Bhargavan, J. Protzenko, and
B. Beurdouche. HACL*: A verified modern
cryptographic library.

https://github.com/ARMmbed/mbedtls/commit/d17df51277d74ba6f487b3e72c4c0bb4ba55eb9c
https://github.com/ARMmbed/mbedtls/commit/d17df51277d74ba6f487b3e72c4c0bb4ba55eb9c
https://github.com/ARMmbed/mbedtls/commit/e68bf171eb9ac92404d42c54984ea90101899430
https://github.com/ARMmbed/mbedtls/commit/e68bf171eb9ac92404d42c54984ea90101899430
https://web-in-security.blogspot.co.uk/2016/05/curious-padding-oracle-in-openssl-cve.html
https://web-in-security.blogspot.co.uk/2016/05/curious-padding-oracle-in-openssl-cve.html

	Introduction
	Constant-time C: traps and pitfalls
	Developers must avoid unsafe language features
	Compiler optimizations may introduce vulnerabilities
	Compilers may not generate optimal constant-time code

	FaCT: Flexible and constant-time
	Related Work

