
Multi-player Soccer and Wireless Embedded Systems
Gaetano Borriello, Carl Hartung, Bruce Hemingway, Karl Koscher, Brian Mayton

Department of Computer Science & Engineering
Box 352350

University of Washington
Seattle, WA 98195-2350 [USA]

+1.206.543.1695

{gaetano, chartung, bruceh, supersat, bmayton}@cs.washington.edu

ABSTRACT
Embedded systems are increasingly becoming connected through
wireless networking. These devices now form the basis of many
of today’s consumer products including cell phones and video
game controllers. In the “Software for Embedded Systems” class
in the Department of Computer Science & Engineering at the
University of Washington, we used the design of a multi-player
video game as motivation for the principal concepts in wireless
embedded systems. Each student in the class designed an
accelerometer-based game controller and then, the class as a
whole, developed a multi-player video game that allowed 28
players (the number of students in the course) to play
simultaneously. In this paper, we first describe the context of the
course and its goals followed by the hardware/software platform
we used to realize the game controller. We then detail the
pedagogical approach we used to collectively design the video
game (loosely based on soccer) and conclude with the lessons
learned from this group design experience and how we would
enhance the project and course in the future.

Categories and Subject Descriptors
C.3 SPECIAL-PURPOSE AND APPLICATION-BASED
SYSTEMS, Real-time and embedded systems.

B.4 INPUT/OUTPUT AND DATA COMMUNICATIONS, B.4.1
Data Communications Devices, B.4.2 Input/Output Devices,
B.4.5 Reliability, Testing, and Fault-Tolerance;

General Terms
Design, Reliability, Experimentation.

Keywords
Multi-player video games, sensor-based input devices,
accelerometers, pedagogy, group design.

1. INTRODUCTION
Wirelessly connected embedded systems are increasingly
common in today’s consumer electronics ranging from wireless
keyboards/mice to music players to running shoes. These devices
often involve a simple point-to-point connection, often between a
simple sensing device (e.g., mouse) and a base station that is
attached to a more capable computing device (e.g., a PC). On the
horizon, there are even more products on the way that will extend
this model to multi-point connections. These include home
automation systems built around the new Zigbee standards [1] as
well as various applications of multi-hop sensor networks [2].

Computer Engineering curricula have traditionally included the
interfacing of sensing and actuation devices to microcontrollers
but have not emphasized wireless communication. However,
wireless communication is quickly becoming the preferred
method of interconnecting ubiquitous electronic devices. The
elimination of cables and the ports at which to connect them helps
greatly in improving the form factor of consumer products and
permits automatic transfers of data that lower the cognitive
burden on the user. For example, a cell phone that automatically
connects to the speakers/microphone in a vehicle for hands-free
operation is much more useful, convenient, and safe than one that
the user must remember to connect manually.

Wireless communication between embedded devices has been
part of the Computer Engineering curriculum at the University of
Washington for several years [3, 4]. We began with simple
“virtual wire” radio for point-to-point connection and then moved
on to sensor networking platforms such as the UCB motes. In our
courses, we always strive to provide projects that motivate
students. The last few years, we have used the creation of a
“flock of birds” as the large project in our “Software for
Embedded Systems” course [5]. Students used a UCB mote
platform [6], augmented with an additional board of our own
design that gave each node sound synthesis capabilities, to
develop an autonomous “bird” that could sing a variety of bird
songs. The birds communicated with their neighbors to
coordinate their song choice through a simple algorithm that gave
the illusion of flock behavior including propagating a song from
bird to bird and occasionally initiating new songs. The “flock”,
with a “bird” contributed by each student, was demonstrated in
our building’s atrium at the end of every quarter to entertain our
community.

This past year, we undertook the task of updating the platform we
use in this course to the Intel iMote2 which runs an embedded
Linux operating system [7]. Along with the transition, we also
undertook the creation of a new project. The remainder of this

paper describes the curricular context of the course, the platform
we created, and the project we collectively designed in the class
to demonstrate key concepts for wireless embedded systems. The
paper concludes with the lessons we learned and how we are
likely to extend and improve the project in the future.

2. COURSE CONTEXT AND GOALS
CSE466, Software for Embedded Systems, is a required course in
our Computer Engineering curriculum. It has data structures and
computer architecture as prerequisites. Students also complete
courses in operating systems and networking but these are not in a
prerequisite chain with CSE466. Students are mostly seniors with
some juniors. This is the course where students are first
introduced to microcontrollers, detailed timing of I/O operations,
basics of device drivers, and interfacing techniques [3].

In the first part of the course, students design their own USB
device from basic ICs wired together on a breadboard. They
connect some simple sensors to a microcontroller and write the
interfacing firmware. Since they do not have any run-time
support, they must access the microcontroller configuration
registers directly and use the timers to schedule their sensor
readings and communications. They use a USB interface chip
(connected via an SPI bus) to create a connection between their
microcontroller and a PC and then write a simple USB device
driver for the PC so that their application can communicate with
the microcontroller and sensor [8].

In this edition of the course, we used a light sensor to construct a
heart-rate monitor. Light readings from a person’s finger vary as
blood moves through his or her capillaries. Readings from the
light sensor are sent to the PC where peaks in the signal are
detected by a C program. From the spacing of the peaks, the PC
application determines the heart rate and sends that value back to
the microcontroller, which then blinks an LED at the same rate.
The PC application also displays the numeric value of the heart
rate in a window.

The second half of the course introduces students to wireless
communication and moves them to a more capable pre-fabricated
platform that includes runtime support. We do this to ensure that
larger projects are built on reliable hardware and firmware
primitives, but only after students have built their own device and
have understood the underpinnings of microcontroller-based
systems.

At this point, the course focuses on wireless networking protocols
including common standards such as Bluetooth, Zigbee (802.15.4)
and WiFi. Lectures describe the MAC layers and protocol stacks
of each with their advantages and disadvantages. Application
examples include consumer electronics (e.g., Bluetooth headsets
for cell phones) and multi-hop sensor networks (e.g., UCB motes
and their data collection and aggregation functions).

The course concludes with a large design project that connects
sensors over a wireless link to a PC application. In this latest
edition of CSE466, we decided to develop a multi-player video
game using controllers modeled on the, then just introduced,
Nintendo Wii video game controller. Each student designed their
own Wii-like accelerometer-based 2-D game controller [9]. We
added an LCD screen so that game state could be displayed on the
user’s controller during the game.

3. HARDWARE/SOFTWARE PLATFORM
The platform we used is based on Intel’s iMote2 [7]. The iMote2
was designed as a highly capable wireless sensor network node.
It consists of a PXA271 processor running at adjustable speeds
from 13 to 416MHz. It uses embedded Linux for its run-time
support and comes with 64MB of memory (half RAM, half Flash)
within the same package as the processor. In addition, the base
board includes an 802.15.4 radio based on the ChipCon2420 for a
bandwidth of up to 250Kb/sec in the 2.4GHz unregulated band. It
is commercially available from Crossbow Technology, Inc. [10].

Figure 1. The top and bottom of the Intel iMote2. The top, on
the left, has the PXA271 and memory in the large chip at the

top center. The bottom, on the right, has the 802.15.4
ChipCon2420 radio (within the square in the center). The

long connectors on both sides connect to the other two boards.

The iMote2 has expansion connectors for attaching sensing and
actuation hardware. On one side, we attached Intel’s basic sensor
board (BSB) which includes: a 3-axis accelerometer, two
temperature sensors, a humidity sensor, a light sensor, and a 4-
channel A/D for further additions. On the other side, we designed
our own board to provide some actuation. We included a cell
phone-size color LCD screen as well as sound generation
capabilities, a speaker, microphone, and audio jacks. This board
also includes a cell phone camera, jog dial, USB host port,
barometer, and a heart rate sensor and is the form factor of a large
cell phone. While not all of the board’s capabilities were used, we
developed the board to be flexible enough to accommodate a
variety of projects (such as a video phone, music player, or an
enhanced version of the “Flock”) in the future.

Figure 2. The top and bottom of the Intel iMote2 basic sensor
board. The 3-D accelerometer sensor is just below the yellow

dot on the right.

The iMote2 software is all based on Linux. We provided the
students with device drivers for most of the peripherals they used.
The one exception is that they had to complete the accelerometer
driver (we provided some skeleton code) and write the utilities to
turn readings into 2-D movements. We also provided a very
simple packet sending and receiving API for the 802.15.4 radio
using a MAC layer and packet format borrowed from the UCB
MicaZ motes [6]. The details of the packet payload were derived
as part of the collective design experience that developed the
precise specifications for the project.

Figure 3. The top and bottom of the Intel iMote2

“SuperBird” board containing LCD, microphone, speaker,
jog dial (near center), USB connector (left, on bottom right),
and heart rate sensor (diagonally arranged area on right).

Figure 4. The three-board set stacked together with their
rechargeable battery. The side view in the inset on the left

shows the other two boards that lie below the large board in
the larger picture.

4. DESIGNING THE GAME
Although we decided on the idea of a multi-player video game
before the course began, the precise details of the game and its
data packets were developed as the course progressed. We
decided on utilizing controllers that could move a player in two
dimensions. Soccer quickly emerged as a game that could be
varied to accommodate our requirements for the project, namely,
that it should involve every student simultaneously and require
only two-dimensional control of each player. In addition, we
wanted to have some collaborative elements between players that
would spur real team play.

The variation on soccer that we developed does not use a ball!
This greatly simplifies the dynamics that have to be modeled to
render the game. Players score by moving through the goal rather
than kicking the ball through it. When players collide, the game
controller randomly moves them to their end of the playing field.
The collaborative element is introduced when two players of the
same team make contact. In that case, they are combined into a
single larger player that occupies twice the area. In general, any
number of players on the same team can combine into a single
larger player whose area is proportional to the numbers of players
combined to form it. When “merged” players from opposing
teams collide, they are disaggregated and the individual players
assigned to random locations. When a smaller player (n) collides
with a larger player (m), the number of players in the smaller
player is subtracted from the larger player to yield a single
smaller player (of size n-m) and 2n individual players that are
randomly repositioned on the field. In this manner, a defense can
“nibble” away at a larger player heading for the goal.

Figure 5. The game display showing 28 players with three red

players merged into a larger player (#21 near the center).

There are many parameter values that need to be determined for
making such a game visually pleasing and exciting for the
participants. These include: the size of the players and the field,
the speed at which the players can move, how much faster merged
players can move, what defines a collision, etc. In addition, we

had to develop a game protocol to coordinate the information that
needs to flow from each player’s controller to the game
coordinator (which updates the playing field), and back to each
player so that a user can have appropriate feedback about what
just happened to their player. We used the LCD screen and
speaker to provide this feedback.

The game was developed in steps. We began with the basic
player controller, that is, the mapping of values from the
accelerometer to an X-Y velocity vector. One of the authors,
Brian Mayton, who was also one of the students in the course,
developed the game controller and display so that students were
able to quickly observe the motions on the playing field. The
experiences in the laboratory were reported back in the classroom
where we collectively made decisions about what some of the
parameter values should be.

Figure 6. Examples of different messages from the game
controller to individual players indicating when a player

merged with another player, when they scored a goal, or were
teleported to a random position on the field.

Some of the most complex decisions involved merged players.
We quickly decided that they should be able to move faster than
singleton players in order to provide an incentive to merging.
However, we also decided that the motions of the individual
players that made up the merged player needed to be coordinated
in order to have this advantage. Thus, the motions provided by
the individual players were first averaged (so that motions of
opposite sign would work against each other) and then scaled by a
factor proportional to the square root of the cardinality of the
merged player.

Finally, we had to devise a communication protocol – on top of
the basic MAC of the 802.15.4 radio – to handle the
communication between players and the game coordinator. To
ensure that we included some inter-player communication, we
decided to let the “captain” of the merged players (the player with
the highest number) collect all the moves of the constituent
players and report that result to the game coordinator. The
scheme is basically round-robin. The game coordinator polls the
first player for its move and waits for a response before
proceeding to the next player. If a player is too slow in
responding, its movement is ignored for that round. This
provided some timing constraints on our students’
implementations to quickly handle packets from the game
coordinator. This forced a degree of parallelism in the
implementation of each controller that would not have otherwise
been required. When the game coordinator polls a merged player,
its response is broadcast back to both the game controller and the
merged player captain (we make the highest numbered player in
each merged player the captain for this reason). The game
coordinator ignores a response from a merged player and waits for
the aggregated response from the merged player captain. At the
end of a round, the game controller updates the field. With 28

players we were able to do a complete round at the rate of about 3
to 5Hz. With about 500 bits/packet, 28 players, and 2
packets/player (one to and one from each player), we used about
20% of the bandwidth available on our radio. The remainder of
the time was used to allow adequate timeout intervals when
awaiting a return packet from a player’s controller in response to
the polling packet issued by the game coordinator. The graphics
in the game coordinator used these 3-5Hz samples to smoothly
animate the motion.

An important exercise in determining the contents of each packet
was to ensure that the game could recover from inevitable packet
losses. This was a very educational exercise for the students as
they quickly began to comprehend how networking protocols
grow in complexity as design requirements add more constraints.
To compensate for packet loss, we decided to send game status
information redundantly in each packet to ensure that each
player’s display reflects an up-to-date picture of what is
happening in the game.

5. LESSONS LEARNED AND NEXT STEPS
This was an ambitious exercise as we developed an entirely new
project along with updating the hardware/software platforms used
in the course. Due to time constraints we were forced to leave the
detailed design decisions for the project unbound when the course
started. This turned out be an excellent approach as it led to much
deeper student learning. We were able to collectively design the
game through initial brainstorming, experimentation and data
collection through lab assignments, and then further refinements
as a group leading to a highly engaging final demonstration: a 30-
minute soccer match between the two sections of the class
(Tuesday and Thursday) on the final day of the course. The
match was held in our building’s atrium on a large projection
screen during the lunch hour to guarantee a large audience and
increase awareness of our efforts within our department. A video
of the match can be found at the following web address:
http://www.cs.washington.edu/homes/gaetano/CSE466.wmv [11].

As is usually the case, testing turned out be an important issue
that we need to resolve for future editions of the course.
Although we created a test environment that allowed students to
check out the basic functionality of their player controllers, we
did not pay enough attention to timing issues. For example, it
would have been much more useful to provide round-trip timing
for packet exchanges with the game controller. Several of the
students ended up with implementations that often missed their
timing deadlines during the round-robin polling (we know this
because we instrumented the game coordinator to keep statistics
during the final match).

Wireless congestion also proved to a bit more of an issue than we
had anticipated. In retrospect, we should have had the
communication between merged players happen on separate
channels from the one on which the round-robin polling was
occurring. This would require captains to keep track of which
players have responded (rather than the game controller), and
when to switch channels. The radio API allows us to switch
channels on a per packet basis, so this is a feasible approach.

Finally, although there was no cheating during the final match
(which we would have discovered through our monitoring of the
wireless traffic), the collective design process helped to highlight

the many security issues associated with our protocols. Students
were quite imaginative in figuring out ways they could
theoretically cheat the system and make players that could disrupt
others as well as enhance their own performance. Future editions
of the course could consider adding security measures to the
protocol. This will be especially important if we consider using
multiple channels and thereby make it more difficult to simply
monitor the packet transmissions at the game coordinator.

6. ACKNOWLEDGMENTS
Our thanks to the students of the Winter 2007 edition of CSE466
“Software for Embedded Systems” for the patience, perseverance,
and enthusiasm in helping us develop a new approach to teaching
the course and for a fantastically fun final soccer match. Special
thanks to Intel Corporation and its University Relations Program
for generously providing the wireless platforms (iMote2s) and
sensor boards we used for this course as well as their consistent
support of our educational mission. We would also like to thank
Roy Want and his team at Intel Research for providing an
excellent starting point for the 802.15.4 protocols we used.

7. REFERENCES
[1] IEEE 802.15 WPAN Task Group 4 (TG4):

http://www.ieee802.org/15/pub/TG4.html.
[2] Estrin, D., G. Borriello, et. al. Embedded, Everywhere: A

Research Agenda for Networked Systems of Embedded
Computers, Committee on Networked Systems of Embedded

Computers, Computer Science and Telecommunications
Board , National Research Council, Washington, DC, 2001.

[3] University of Washington, Department of Computer Science
& Engineering, CSE466: Software for Embedded Systems:
http://www.cs.washington.edu/education/courses/cse466/.

[4] University of Washington, Department of Computer Science
& Engineering, CSE477: Computer Engineering Capstone:
http://www.cs.washington.edu/education/courses/cse477/.

[5] Hemingway, B., Brunette, W., Anderl,T., and Borriello, G.
The Flock: Using Wireless Mote Networks in an
Undergraduate Curriculum. IEEE Computer (special issue
on Sensor Networks), Vol. 37, No. 8, pp. 72-78, August
2004.

[6] TinyOS Exchange: http://www.tinyos.net/.
[7] Intel iMote2: http://embedded.seattle.intel-

research.net/wiki/index.php?title=Intel_Mote_2.
[8] University of Washington, Department of Computer Science

& Engineering, CSE466: Software for Embedded Systems:
(Winter 2007 edition): http://www.cs.washington.edu/
education/courses/cse466/07wi/.

[9] Nintendo Wii: http://wii.com/.
[10] Crossbow Technology, Inc.: http://www.xbow.com/.
[11] University of Washington, Department of Computer Science

& Engineering, CSE466: Software for Embedded Systems:
(Winter 2007 edition), video of final project:
http://www.cs.washington.edu/homes/gaetano/CSE466.wmv.

Figure 7. The big match on the last day of the course. The top three pictures show students playing the game with each holding

the player controller they developed. The bottom picture shows the final result when time ran out after 2 15-minute halves:
Thursday beat Tuesday by a score of 134-122.

