
Aircraft Mesh Networks

Sam Crow
scrow@eng.ucsd.edu

Duong Nguyen
duong@eng.ucsd.edu

ABSTRACT

Aircraft flying over oceans, out of range of ground stations,

must either use expensive satellite relays to communicate

with the rest of the world or go without communication for

long periods of time. To solve this problem, we propose

a system of mesh networks to connect aircraft to distant

ground stations. We simulate an aircraft mesh network and

compare the OLSR and DREAM protocols. Our results show

that either protocol may be an effective way to create mesh

networks.

1 INTRODUCTION

Commercial aircraft have many ways to communicate with

land-based transmitters and receivers. They support voice

communication over VHF radio for air traffic control and

navigation, text communication over ACARS for aircraft

maintenance and dispatch information, and Internet access

and phone service. These systems all work well for aircraft

flying over land or near coasts. However, many flights travel

across oceans, far outside the range of any standard land-

based communication method. In these areas, aircraft use

high-frequency (HF) radio for air traffic control. HF radio

works over long distances but does not have enough band-

width for more data-intensive communication tasks. The

only current alternative is to communicate with satellites

that relay messages to ground stations. Satellite communica-

tion works worldwide, but it can be very expensive due to

the high cost of launching satellites.

In remote areas with dense air traffic, like the north At-

lantic Ocean, aircraft could instead form a mesh network

that would allow any aircraft to communicate with a ground

station over a series of high-bandwidth, short-range commu-

nication links. This would reduce the costs of non-critical

communications that would otherwise use satellites, and it

could allow ADS-B transmissions from aircraft to be recorded

on the ground. Figure 1 shows a possible mesh network that

connects several aircraft to a few ground stations.

Because each aircraft knows its position and velocity, the

aircraft can use this information to form a more stable net-

work of aircraft moving in approximately the same direction.

Multipath routing could make transmissions more reliable.

In this paper, we start by describing some related work and

our basic design ideas for aircraft mesh networks. Next, we

explain the two routing protocols that we have investigated.

Figure 1: A possible aircraft mesh network in

the north Atlantic Ocean. Black circles repre-

sent aircraft, green circles represent ground sta-

tions, and lines represent communication links. The

background map is based on data from the Open-

StreetMap project, which is copyrighted by Open-

StreetMap contributors.

Finally, we describe our simulations of the protocols and the

results.

2 RELATED WORK

A few other projects have worked on similar topics involving

aircraft communication. The most closely related project is

Wi-Fly [1], which simulates how aircraft flying over land can

use their existing Internet connections to provide Internet

access to people on the ground below flight paths. Another

paper, Simulating Large-Scale Airborne Networks with ns-3

[6], describes a similar network of aircraft flying over land and

communicating with directional links. The authors developed

a simulation based on ns-3 and tested the OLSR protocol.



3 DESIGN

We designed this networking system to take advantage of

communication technology that is already installed on air-

craft.

3.1 Addressing

Aircraft already have unique 24-bit ICAO addresses. These

addresses are currently used to identify aircraft in ADS-B

broadcasts and mode C transponder communication. Our

simulations use ICAO addresses to identify aircraft and

ground stations.

3.2 Network Layer and Physical Layer

Two existing communication standards describe network-

layer communication methods that aircraft mesh networks

could use. VHF Data Link (VDL) mode 2 allows aircraft

to communicate with ground stations and exchange data.

Because controller-pilot data link communication uses VDL

mode 2, many aircraft implement it. VDL mode 4 was

designed for communication between aircraft, which is es-

sential for mesh networks. The International Civil Aviation

Organization supports both of these standards.

4 PROTOCOLS

We investigated two protocols for potential use in aircraft

mesh networks: Optimized Link State Routing (OLSR) and

Distance Routing Effect Algorithm for Mobility (DREAM).

4.1 OLSR - Optimized Link State Routing

OLSR is a proactive protocol that attempts to find a route

to each other aircraft before any packets are transmitted. It

does not take advantage of position information. OLSR is de-

scribed in [4]. This section provides a simplified explanation

of the protocol.

OLSR is a link-state and selective flooding protocol. In

OLSR, a node does not forward packets to all of its neighbors,

only to a subset of its neighbor set. The selected neighbors

are called multipoint relays (MPRs). To reduce the number

of retransmissions and guarantee network coverage, OLSR

chooses a minimal subset of one-hop neighbors that can cover

all of its two-hop neighbors. Figure 2 shows the MPR nodes

(in red) of node 4. Finding that set is a NP-hard problem [3],

so OLSR uses a greedy algorithm instead.

In each loop (lines 3-6), a node of the one-hop neighbor set

(N1(v)) which connects to the highest number of uncovered

two-hop neighbors will be selected to become the next MPR.

The selecting process is repeated until all of the two-hop

neighbors are covered. In general, each node in the network

Figure 2: An illustration of the MPR set of node 4 in

the OLSR protocol. The one-hop neighbors of node

4 are nodes 2, 5, 7, and 8. The MPR set contains

nodes 5 and 7, which together provide connectivity

to all the two-hop neighbors of node 4.

Algorithm 1: A greedy algorithm for finding an MPR

set

Input: A network G = (V,E) and node v ∈ V

Output: The MPR set of v

1 MPRS ← [ ] /* Initialize the MPR set */

2 Uncov ← N2(v) /* The uncovered two-hop neighbors of

v */

3 while Uncov 6= ∅ do

4 u← arg maxz∈N1(z)
|Uncov ∩Adj(z)|

5 MPRS ←MPRS ∪ {u}
6 Uncov ← Adj(u)

7 return MPRS

should have a neighbor table that contains information on

its one-hop and two-hop neighbors. Each entry of the table

has a holding time. When the node does not receive any

2



messages that update the entry, the holding expires and the

entry is removed from the table.

Each node also has an MPR selector table, which keeps

track of neighbors for which that node is a multipoint relay.

The table also stores a sequence number which specifies

the most recent MPR set. After a node updates its MPR

selector table, the sequence number is increased by 1. Nodes

periodically send messages with information from this table.

Based on these messages, each node also builds a topology

table, which stores the one-hop neighbors of every other node

in the network. Each node uses the topology table to find a

route to every other node.

4.2 DREAM - Distance Routing Effect

Algorithm for Mobility

DREAM is a reactive protocol that makes routing decisions

one packet at a time. It decides where to forward each

packet based on the positions of the local node and the

packet’s destination. DREAM is described in [2]. This

section provides a simplified explanation of the protocol.

In the dream protocol, we assume that each node stores

other nodes’ location and velocity. At time t1, the sender

S receives a packet whose destination is R. Sender S will

look at its local information to retrieve the last location

(x0, y0) and velocity v of the destination (receiver R) that

it obtained at time t0. Based on the information, S can

estimate the area that R can travel from t0 to t1. It should

be a circle of radius L = v(t1 − t0). Then S will forward

the packet to its neighbors that are in the same direction as

the destination. Figure 3 illustrates the method for selecting

forwarders. The angle between the tangent line and the line

SR can be calculated as a = arcsin L
D

where D is distance

between the sender and the receiver at time t0. Neighbors of

S which are in the angle interval [z−a, z+a] will be selected

as the forwarders.

Figure 4 shows a special case when the distance that the

receiver can travel during time t1 − t0 exceeds the distance

between the sender and the receiver. This can happen if the

velocity of the receiver is high or the sender’s local information

is out-of-date. In this case, the receiver can be in any direction

at time t1 and the sender should send the packet to all of its

one-hop neighbors to guarantee that forwarding nodes can

cover all possible positions of the receiver.

5 SIMULATION

To compare the performance of OLSR and DREAM, we

created a packet-level simulation based on the ns-3 library.

Figure 3: An illustration of selecting forwarders in

the DREAM protocol.

5.1 Flight Data

To define the movement of aircraft in the simulation, we

used flight tracking data from real-world flights. We down-

loaded records of many flights from FlightAware (https:

//flightaware.com) and selected 19 transatlantic flights to use

in our simulation. Appendix A contains details about the

selected flights.

The tracking information for each flight was provided by

the website as a Keyhole Markup Language (KML) file. Each

file contains the origin and destination airports, as well as

a list of data points. Each data point contains a time and

the latitude, longitude, and altitude of the aircraft. The list

of points can contain gaps during periods when the aircraft

was flying over an ocean, out of range of all ground-based

tracking stations.

We created a simple C++ library to parse KML files into

lists of points. Because the ns-3 components use a Carte-

sian coordinate system, our simulation converts the points

from latitude, longitude, and altitude into an Earth-Centered,

3

https://flightaware.com
https://flightaware.com


Figure 4: A special case happens when the maximum

distance that the receiver can travel from time t0 to

t1 exceeds the distance D. In this case the sender

needs to forward the packet to all of its neighbors.

Earth-Fixed (ECEF) coordinate system. The ECEF coordi-

nate system, as shown in figure 5, is a Cartesian coordinate

system with its origin at the center of the Earth.

The simulation adds the converted points for each flight

to an ns-3 WaypointMobilityModel instance. The mobility

model calculates the position and velocity of each aircraft

over time.

Because the waypoint mobility model interpolates between

points linearly in the ECEF coordinate system, aircraft do

not follow the curvature of the earth during gaps in the source

data. This causes aircraft to sometimes have lower altitude

than in reality. Because the gaps in the data are relatively

small and the altitudes of aircraft are small relative to the

range of communication, we expect that this error will not

have a significant effect on the results.

Figure 5: An illustration of the Earth-Centered,

Earth-Fixed coordinate system. This image is used

with permission from [5].

5.2 Ground Stations

Although our simulation software supports many ground

stations, for the tests described here we created one ground

station near Reykjavik, Iceland. Several of the flights in the

simulation fly near this ground station.

5.3 Addressing

The aircraft and ground stations in the simulation use 24-bit

ICAO addresses. The downloaded flight information does

not specify the addresses of the aircraft, so the simulation

assigns addresses to flights sequentially. The ground station

has the address 0x800000.

5.4 Applications

Each aircraft or ground station can have one or more associ-

ated applications. The simulation sets up an ADS-B sender

application for each aircraft. This application periodically

sends four bytes of data to the ground station.

5.5 Network Layer

In each simulation, each aircraft and ground stations uses

either OLSR or DREAM as the network-layer protocol con-

necting the ADS-B sender application to the network inter-

face.

5.6 Link Layer

The link layer simulation connects the network interfaces on

all aircraft and ground stations. When a network interface

4



Aircraft 1 Aircraft 2

ADS-B Sender

OLSR DREAM

Network Interface

Ether

ADS-B Sender

OLSR DREAM

Network Interface

Figure 6: The topology of two aircraft nodes in the

simulation. All nodes in each simulation run use

either OLSR or DREAM.

sends a packet, the link layer delivers the packet to all other

network interfaces that are within range. The packets arrive

after a delay that is calculated based on the speed of light

and a data rate of 100 000 bits per second.

5.7 Output

The simulation records information with two different subsys-

tems. The first subsystem periodically records the location

of each aircraft and ground station. When the simulation is

using OLSR, the subsystem also records each OLSR routing

table. After the simulation ends, the subsystem writes its

recorded information to a JSON file. The second subsystem

records the send time and receive time of every packet. It

categorizes each packet as a management packet, used to

maintain the structure of the network, or a data packet that

contains actual information to be transmitted. It saves the

recorded information in a CSV file.

6 VISUALIZATION

We created an application to visualize the output of the

simulation. This application reads a JSON file produced

by the simulation that contains information about aircraft

positions and routing. It uses the World Wind library to

display an interactive 3-dimensional model of the Earth, with

the path of each flight overlaid. Each orange line shows a

Figure 7: The main window of the visualization ap-

plication, showing several flights and routes

connection between an aircraft and the next hop on a route.

A slider at the bottom of the window allows the user to

navigate through time and see how the routes change.

7 RESULTS

7.1 OLSR Range Comparison

To see how communication range effects performance, we ran

three simulations using OLSR with communication range

values of 300, 600, and 900 kilometers. Figure 8 shows the

numbers of data packets that arrived and the number of data

packets that were lost for the three different range values.

Figure 9 shows the results for management packets.

As expected, with longer communication range more pack-

ets were received. For data packets, the relationship between

range and number of packets received is approximately linear.

Because data packets are only sent to the one ground station,

the packets can be delivered from more distant aircraft. The

fact that each aircraft may be within range of a larger number

of other aircraft does not affect data packets. However, for

management packets, changing the range from 300 to 600

kilometers results in a larger increase in delivered packets

than changing the range from 600 to 900 kilometers. Because

OLSR management packets are broadcast to all aircraft in

range, the first range increase allows each aircraft to success-

fully send more management packets. Increasing the range

to 900 kilometers only caused a small increase in the number

of other aircraft within range of each aircraft.

7.2 OLSR and DREAM comparison

To compare the performance of the two protocols, we ran

one simulation with OLSR and one simulation with DREAM.

Both simulations used a communication range of 300 kilome-

ters.

5



Received Lost
0

200

400

600

800

1000

1200

1400

300 km

600 km

900 km

Packet category

N
u

m
b

e
r 

o
f p

a
ck

e
ts

Figure 8: The numbers of data packets received and

lost using OLSR with different range values

Received Lost
0

1000

2000

3000

4000

5000

6000

300 km

600 km

900 km

Packet category

N
u

m
b

e
r 

o
f p

a
ck

e
ts

Figure 9: The numbers of management packets re-

ceived and lost using OLSR with different range val-

ues

Table 1: Packet counts from the two simulations

comparing OLSR and DREAM

Protocol Data Management

Received Lost Received Lost

OLSR 51 1317 4308 1278

DREAM 53 1315 5197 2103

Packet delivery. Table 1 shows the numbers of packets

that were received and lost. Figures 10 and 11 show graphs

of the results. The DREAM protocol delivered a few more

data packets than OLSR. The DREAM protocol sent more

management packets, and had a slightly higher portion of

lost management packets.

Because DREAM is a reactive protocol, we expected it

to have low overhead and send relatively few management

OLSR DREAM
0

200

400

600

800

1000

1200

1400

1600

Received Lost

Protocol

N
u

m
b

e
r 

o
f p

a
ck

e
ts

Figure 10: A comparison of the number of data pack-

ets received and lost fors the two protocols

OLSR DREAM
0

1000

2000

3000

4000

5000

6000

7000

8000

Received Lost

Protocol

N
u

m
b

e
r 

o
f p

a
ck

e
ts

Figure 11: A comparison of the number of manage-

ment packets received and lost for the two protocols

packets. In these simulations, however, it sent more man-

agement packets than OLSR. The number of management

packets sent is heavily influenced by the amount of time

each aircraft waits between sending management packets.

We chose initial values for these time intervals somewhat

arbitrarily without trying to optimize performance. With

better tuning, we expect that the DREAM protocol would

send fewer management packets.

With both protocols, only a few percent of all data packets

arrived. Because this simulation involves only one ground

station and nineteen flights, the density of aircraft is only

6



0 0.0005 0.001 0.0015 0.002
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

OLSR DREAM

Time of flight (seconds)

C
u

m
u

la
tiv

e
 fr

a
ct

io
n

 o
f p

a
ck

e
ts

Figure 12: CDF of the time of flight for all received

packets

rarely high enough to allow more than two aircraft to con-

nect to each other. A more detailed simulation, with more

aircraft and more ground stations, would allow the network

to perform better.

Packet time of flight. Figure 12 shows the cumulative dis-

tribution function of the time between when each packet was

sent and when it was received.

Because light can travel 300 kilometers in one millisecond,

an empty packet would take about one millisecond to travel

the maximum communication range of 300 kilometers. The

results are consistent with this assumption. Some packets

that are sent over short distances arrive in less than one

millisecond, while some packets containing large amounts of

data take more than one millisecond to send.

Packets sent by the DREAM protocol consistently take

slightly longer to arrive than with OLSR. DREAM manage-

ment packets include the position and sometimes the velocity

of the sender, which take up large amounts of space. OLSR

management packets can sometimes be smaller because they

include addresses instead of position information. The num-

ber of addresses in a DREAM hello or topology control

message depends on the number of neighbors of the sending

node. In these simulations, each aircraft had a small number

of neighbors. OLSR most likely created smaller management

packets overall, allowing them to be received sooner.

8 FUTURE WORK

8.1 Simulation Scalability

Our simulation results so far are based on only 19 of the 557

transatlantic flight records that we have available. When we

tried to run a simulation with more aircraft, the simulation

proceeded very slowly and, after a few minutes, consumed

about ten gigabytes of RAM. The simulation software has

some limitations that make it scale poorly to large numbers

of aircraft.

The most well-understood limitation is caused by the mod-

ule that delivers packets from one aircraft to the other aircraft

in range. For each packet, the simulation iterates over all

other aircraft and calculates the distance from the sender

to check if each aircraft is in range. If each aircraft regu-

larly sends packets, the total time spent delivering packets

is proportional to the number of aircraft squared. With a

more optimized method of delivering packets, the simulation

would be able to handle more aircraft.

We do not fully understand why the simulation uses sev-

eral gigabytes of memory when simulating large numbers of

aircraft. One possible cause is a memory leak. We tested

the simulation with 19 aircraft under valgrind to look for

leaks and found no obvious problems. Another possibility is

that some of the simulation data structures are storing large

amounts of unnecessary information. We have not yet found

any problems, but we are continuing to investigate.

8.2 Ground Stations

Our simulations so far include only one ground station, which

does not reflect reality. With more ground stations, ideally

based on the positions of real-world ADS-B receivers and

antennas used for in-flight Internet access, the simulation

would allow each aircraft to communicate with the nearest

ground station.

8.3 Simulation Accuracy

Physical Layer. The simulation software has a very basic

model of the physical layer. Every packet is sent immediately

and arrives after a delay based on the speed of light, the

length of the packet, and a preset bit rate. The simulation

allows each aircraft to send and receive an unlimited number

of packets at the same time. When a packet is sent, it

always arrives at all aircraft in range, with no possibility of

noise or interference blocking the transmission. In general,

the simulation currently ignores congestion and non-ideal

behavior, which are important factors for producing accurate

results.

7



Table 2: The 19 flights used in the simulations

Airline Flight Departure date

Air France 84 2018-03-16

British Airways 285 2018-03-16

British Airways 287 2018-03-16

Lufthansa 454 2018-03-16

Lufthansa 458 2018-03-15

Lufthansa 458 2018-03-16

Aer Lingus 147 2018-03-16

KLM 281 2018-03-16

Scandinavian (SAS) 935 2018-03-16

Swiss 38 2018-03-16

Turkish 79 2018-03-16

United 59 2018-03-16

United 900 2018-03-16

United 949 2018-03-16

United 955 2018-03-15

United 984 2018-03-16

Virgin Atlantic 19 2018-03-16

Virgin Atlantic 41 2018-03-16

WOW Air 161 2018-03-16

OLSR Routing. By looking at the visualization of the

routes that the OLSR protocol finds (figure 7), we observe

that many aircraft have active routes to other nodes that are

too far away for communication to possibly succeed. These

routes should not last as long as they do in the simulation.

Our implementation of OLSR may have a bug that causes

this behavior.

9 CONCLUSION

In this paper, we have introduced our ideas aircraft mesh

networks. We identified the Optimized Link State Routing

and Distance Routing Effect Algorithm for Mobility protocols

as potentially useful. We simulated both protocols using real-

world flight data and compared their performance. Based

on our simulation results, both OLSR and DREAM may

be effective routing protocols for aircraft mesh networks.

Although we do not have enough information to determine

which protocol works better, our simulation software is a

useful foundation for continuing research in this area.

A FLIGHTS USED IN SIMULATION

The simulations used 19 transatlantic flights departing from

several airports in Europe and arriving at the San Francisco

Airport, California. Table 2 shows the flights.

B SOURCE CODE

Our simulation software and visualization application are

open-source. The code is available at https://github.com/

CSE202A-w2018-AMN .

ACKNOWLEDGMENTS

The ns-3 and World Wind open-source projects provided

libraries that allowed us to create our simulation and visu-

alization software easily and within the available time. We

would also like to thank FlightAware for providing flight

tracking information in a convenient file format.

REFERENCES
[1] Talal Ahmad, Ranveer Chandra, Ashish Kapoor, Michael Daum,

and Eric Horvitz. 2017. Wi-Fly: Widespread Opportunistic

Connectivity via Commercial Air Transport. In Proceedings of

the 16th ACM Workshop on Hot Topics in Networks (HotNets-

XVI). ACM, New York, NY, USA, 43–49. https://doi.org/10.

1145/3152434.3152458

[2] Stefano Basagni, Imrich Chlamtac, Violet R. Syrotiuk, and

Barry A. Woodward. 1998. A Distance Routing Effect Algo-

rithm for Mobility (DREAM). In Proceedings of the 4th Annual

ACM/IEEE International Conference on Mobile Computing

and Networking (MobiCom ’98). ACM, New York, NY, USA,

76–84. https://doi.org/10.1145/288235.288254

[3] Alberto Caprara, Paolo Toth, and Matteo Fischetti. 2000. Algo-

rithms for the Set Covering Problem. Annals of Operations Re-

search 98, 1 (01 Dec 2000), 353–371. https://doi.org/10.1023/A:

1019225027893

[4] P. Jacquet, P. Muhlethaler, T. Clausen, A. Laouiti, A. Qayyum,

and L. Viennot. 2001. Optimized link state routing protocol for ad

hoc networks. In Proceedings. IEEE International Multi Topic

Conference, 2001. IEEE INMIC 2001. Technology for the 21st

Century. 62–68. https://doi.org/10.1109/INMIC.2001.995315

[5] Krishnavedala. 2014. ECEF.svg. (2014). https://commons.

wikimedia.org/wiki/File:ECEF.svg File: ECEF.svg.

[6] Ben Newton, Jay Aikat, and Kevin Jeffay. 2015. Simulating

Large-scale Airborne Networks with Ns-3. In Proceedings of the

2015 Workshop on Ns-3 (WNS3 ’15). ACM, New York, NY,

USA, 32–39. https://doi.org/10.1145/2756509.2756514

8

https://github.com/CSE202A-w2018-AMN
https://github.com/CSE202A-w2018-AMN
https://doi.org/10.1145/3152434.3152458
https://doi.org/10.1145/3152434.3152458
https://doi.org/10.1145/288235.288254
https://doi.org/10.1023/A:1019225027893
https://doi.org/10.1023/A:1019225027893
https://doi.org/10.1109/INMIC.2001.995315
https://commons.wikimedia.org/wiki/File:ECEF.svg
https://commons.wikimedia.org/wiki/File:ECEF.svg
https://doi.org/10.1145/2756509.2756514

	Abstract
	1 Introduction
	2 Related work
	3 Design
	3.1 Addressing
	3.2 Network Layer and Physical Layer

	4 Protocols
	4.1 OLSR - Optimized Link State Routing
	4.2 DREAM - Distance Routing Effect Algorithm for Mobility

	5 Simulation
	5.1 Flight Data
	5.2 Ground Stations
	5.3 Addressing
	5.4 Applications
	5.5 Network Layer
	5.6 Link Layer
	5.7 Output

	6 Visualization
	7 Results
	7.1 OLSR Range Comparison
	7.2 OLSR and DREAM comparison

	8 Future Work
	8.1 Simulation Scalability
	8.2 Ground Stations
	8.3 Simulation Accuracy

	9 Conclusion
	A Flights used in simulation
	B Source Code
	Acknowledgments
	References

