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Abstract
Data Center topologies employ multiple paths among servers
to deliver scalable, cost-effective network capacity. The sim-
plest and the most widely deployed approach for load bal-
ancing among these paths, Equal Cost Multipath (ECMP),
hashes flows among the shortest paths toward a destination.
ECMP leverages uniform hashing of balanced flow sizes to
achieve fairness and good load balancing in data centers.
However, we show that ECMP further assumes a balanced,
regular, and fault-free topology, which are invalid assump-
tions in practice that can lead to substantial performance
degradation and, worse, variation in flow bandwidths even
for same size flows. We present a set of simple algorithms
employing Weighted Cost Multipath (WCMP) to balance
traffic based on the changing network topology. The state
required for WCMP is already disseminated as part of stan-
dard routing protocols and it can be implemented in current
switch silicon without any hardware modifications. We show
how to deploy WCMP in a production OpenFlow network
environment and present experimental and simulation results
to show that variation in flow bandwidths can be reduced by
as much as 25× by employing WCMP relative to ECMP.

1. Introduction
There has been significant recent interest in a range of net-
work topologies for large-scale data centers [2, 15, 20].
These topologies promise scalable, cost-effective bandwidth
to emerging clusters with tens of thousands of servers by
leveraging parallel paths organized across multiple switch
stages. Equal Cost Multipath (ECMP) [14, 17] extension to
OSPF is the most popular technique for spreading traffic
among available paths. Recent efforts [3, 16] propose dy-
namically monitoring global fabric conditions to adjust for-
warding rules, potentially on a per-flow basis. While these
efforts promise improved bandwidth efficiency, their addi-
tional complexity means that most commercial deployments
still use ECMP forwarding given the simplicity of using
strictly local switch state for packet forwarding.

To date, however, the current routing and forwarding pro-
tocols employing ECMP-style forwarding focus on regular,
symmetric, and fault-free instances of tree-based topologies.
At a high-level, these protocols assume that there will be:
(i) large number of equal cost paths to a given destination,
and (ii) equal amount of bandwidth capacity to the destina-

tion downstream among all equal cost paths. The first as-
sumption is violated for non-tree topologies such as Hyper-
Cubes and its descendants [1, 15] that require load balancing
across non-equal cost paths. The second assumption is vio-
lated when a failure downstream reduces capacity through a
particular next hop or, more simply, when a tree-based topol-
ogy inherently demonstrates imbalanced striping (defined in
Section 4) when the number of switches at a particular stage
in the topology is not perfectly divisible by the number of
uplinks on a switch at the previous stage.

Thus, for realistic network deployments, the bandwidth
capacity available among “equal cost” next hops is typically
guaranteed to be unequal even in the baseline case where all
flows are of identical length. That is to say, ECMP forward-
ing leads to imbalanced bandwidth distribution simply from
static topology imbalance rather than from dynamic com-
munication patterns. It is our position that routing protocols
should be able to correct for such imbalance as they typi-
cally already collect all the state necessary to do so. Based
on our experience with large-scale data center deployments,
we have found that substantial variation in per-flow band-
width for flows that otherwise are not subject to prevailing
congestion both reduces application performance and makes
the network more difficult to diagnose and maintain.

This paper presents Weighted Cost Multipathing (WCMP)
to deliver fair per-flow bandwidth allocation based on the
routing protocol’s view of the topology. We present the de-
sign and implementation of WCMP in a Software Defined
Network running commodity switches, which distribute traf-
fic among available next hops in proportion to the available
link capacity (not bandwidth) to the destination according
to the dynamically changing network topology. We fur-
ther present topology connectivity guidelines for improv-
ing network throughput. Inserting the necessary weighted
forwarding entries can consume hundreds of entries for a
single destination, aggressively consuming limited on-chip
SRAM/TCAM table entries. Hence, we present algorithms
that trade a small bandwidth oversubscription for substantial
reduction in consumed forwarding table entries. Our results
indicate that even a 5% increase in oversubscription can
significantly reduce the number of forwarding table entries
required. Our algorithms for weight reduction make WCMP
readily deployable in current commodity switches with lim-
ited forwarding table entries.
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Figure 1: 2-stage Clos network

We present our evaluation of WCMP in an OpenFlow
controlled 10Gb/s data center network testbed for different
kinds of traffic patterns including real data center traffic
traces from [7]. The WCMP weights are meant to deal with
long lived failures (switch/link failures, link flappings etc.)
included in the routing updates, and our ability to scale and
react is only limited by the reactivity of the routing protocol.
Our results show that WCMP reduces the variation in flow
bandwidths by as much as 25× compared to ECMP. WCMP
is complementary to traffic load balancing schemes at higher
layers such as Hedera [3] and MPTCP [28].

2. Background & Motivation
The primary objective of this paper is to propose a deploy-
able solution that addresses the ECMP weakness in han-
dling topology asymmetry, thus improving fairness across
flow bandwidths and load balancing in data center networks.
While our results apply equally well to a range of topolo-
gies, including direct connect topologies [1, 15, 30], for con-
creteness we focus on multi-stage, tree-based topologies that
form the basis for current data center deployments [2, 14].

We abstract the data center network fabric as a two-stage
Clos topology, as depicted in Figure 1. Here, each switch in
Stage 1 (S1) stripes its uplinks across all available Stage 2
(S2) switches. Hosts connected to the S1 switches can then
communicate by leveraging the multiple paths through the
different S2 switches. Typically, ECMP extensions to rout-
ing protocols such as OSPF [25] distribute traffic equally by
hashing individual flows among the set of available paths.
We show how ECMP alone is insufficient to efficiently lever-
age the multipaths in data center networks, particularly in
presence of failures and asymmetry. While we focus on a
logical two stage topology for our analysis, our results are
recursively applicable to a topology of arbitrary depth. For
instance, high-radix S1 switches may internally be made up
of a 2-stage topology using lower-degree physical switches;
our proposed routing and load balancing techniques would
apply equally well at multiple levels of the topology.

2.1 Motivating Example
In a multi-stage network, striping refers to the distribution
of uplinks from lower stage switches to the switches in
the successive stage. We define striping in more detail in
Section 4 but want to point out that a uniformly symmetric
or balanced striping requires the number of uplinks at a
lower stage switch be equal to (or an integer multiple of)

the number of switches in the next stage, to ensure that the
uplinks at a lower stage switch can be striped uniformly
across the switches in the next stage. In large scale data
centers, it is hard to maintain such balanced stripings due to
heterogeneity in switch port counts and frequent switch/link
failures. We discuss the impact of striping asymmetry in
detail in later sections. Here, we motivate how employing
ECMP over topologies with uneven striping results in poor
load balancing and unfair bandwidth distribution.
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Figure 2: Multipath flow hashing in an asymmetric topology

Consider the 2-stage Clos topology depicted in Fig-
ure 2(a). Each link in the topology has the same capacity,
10 Gb/s. Since each S1 switch has four uplinks to connect
to the three S2 switches, it results in asymmetric distribution
of uplinks or imbalanced striping of uplinks across the S2
switches. Assuming ideal ECMP hashing of 12 flows from
the source switch S10 to the destination switch S12, three
flows each are hashed onto each of the four uplinks at S10.
However, the six flows reaching S20 now have to contend
for capacity on the single downlink to S12. As such, the six
flows via S20 receive one-sixth of the link capacity, 1.66
Gb/s each, while the remaining six flows receive one-third
of the link capacity, 3.33 Gb/s each, resulting in unfair band-
width distribution even for identical flows.

Note that the effective bandwidth capacity of the two up-
links to S20 at S10 is only 10 Gb/s, bottlenecked by the sin-
gle downlink from S20 to S12. Taking this into considera-
tion, if S10 weighs its uplinks in the ratio 1:1:2:2 for hashing
(as opposed to 1:1:1:1 with ECMP) all flows would reach the
destination switch with the same throughput, one-fourth of
link capacity or 2.5 Gb/s in this example, as shown in Figure
2(b). This observation for weighing different paths accord-
ing to their effective capacity is the premise for Weighted
Cost Multipathing (WCMP).

2.2 Bandwidth Fairness
Data center applications such as Web search [5], MapRe-
duce [12], and Memcached [24] operate in a bulk syn-
chronous manner where initiators attempt to exchange data
with a large number of remote hosts. The operation can
only proceed once all of the associated flows complete, with
the application running at the speed of the slowest trans-
fer. Similarly, when there are multiple “bins” of possible
performance between server pairs, performance debugging
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becomes even more challenging; for instance, distinguish-
ing between network congestion or incast communication
and poor performance resulting from unlucky hashing be-
comes problematic, motivating fair bandwidth distribution.
Orchestra [8], a system for managing data transfers in large
clusters, demonstrated how fair flow scheduling at the appli-
cation layer resulted in a 20% speedup of the MapReduce
shuffle phase, motivating the need for fairness in bandwidth
distributions.

2.3 Reasons for Topology Asymmetry
While it is desirable to build regular, symmetrical topologies
in the data centers, it is impractical to do so for the following
reasons.

(1) Heterogeneous Network Components: Imbalanced
striping is inherent to any topology where the number of up-
links on S1 switches is not an integer multiple of the total
number of S2 switches. Building the fabric with heteroge-
neous switches with different port counts and numbers inher-
ently creates imbalance in the topology. Depending on the
required number of server ports, such imbalance in striping
is typically guaranteed in practice without substantial net-
work overbuild.

(2) Network Failures: Even in the case where the base-
line topology is balanced, common case network failures
will result in imbalanced striping. Consider a data center
network consisting of 32 S2 switches with 96-ports each,
48 S1 switches with 128-ports each and 3072 hosts. Each
S1 switch uses 64 ports to connect to the S2 switches, with
two uplinks to each S2 switch. For this small data center,
an average monthly link availability of 99.945 will result in
more than 300 link failures each month, creating asymmet-
ric links between S1 and S2 switches and making the topol-
ogy imbalanced. If any one of the two downlinks from an
S2 switch to a destination S1 switch fails, the flows hashed
to that particular S2 switch will suffer a 50% reduction in
bandwidth, since the destination S1 switch is now reachable
by only one downlink. Since ECMP fails to account for ca-
pacity reductions due to failures while hashing flows, it leads
to unfair bandwidth distribution. This is particularly harmful
for the performance of many data center applications with
scatter and gather traffic patterns that are bottlenecked by the
slowest flow. Tables 1 and 2 show availability measurements
of production data center switches and links (collected by
polling SNMP counters) in support of our claim.

Oct Nov Dec Jan
Switch 99.989 99.984 99.993 99.987
Link 99.929 99.932 99.968 99.955

Table 1: Availability of Switches and Links by Month

2.4 Related Work
Load balancing and traffic engineering have been studied
extensively for WAN and Clos networks. Many traffic engi-
neering efforts focus on the wide-area Internet [4, 21, 31, 32]

01/29 02/05 02/12 02/19
Switch 99.996 99.997 99.984 99.993
Link 99.977 99.976 99.978 99.968

Table 2: Availability of Switches and Links by Week

across two main categories: (i) traffic engineering based on
measured traffic demands and (ii) oblivious routing based on
the “hose” model [21]. Our work differs from the previous
work as it addresses unfairness to topology asymmetry and
proposes a readily deployable solution. Further more, effi-
cient WAN load balancing relies on traffic matrices which
change at the scale of several minutes or hours. However,
for data centers highly dynamic traffic matrices, changing at
the scale of few seconds motivate the need for load balancing
solutions with low reaction times.

While ours is not the first work that advocates weighted
traffic distribution, we present a practical, deployable solu-
tion for implementing weighted traffic distribution in cur-
rent hardware. There has been prior work that proposed set-
ting up parallel MPLS-TE tunnels and splitting traffic across
them unequally based on tunnel bandwidths [26]. The load
balancing ratio between the tunnels is approximated by the
number of entries for each tunnel in the hash table. However,
the proposal does not address the concern that replicating
entries can exhaust a large number of forwarding entries. In
this work, we present algorithms that address this challenge
explicitly.

Villamizar [29] proposed unequal splitting of traffic
across the available paths by associating a hash boundary
with each path. An incoming packet is sent out on the path
whose hash boundary is less than the hash of the packet
header. These hash boundaries serve as weights for each
path and are adjusted based on the current demand and up-
dated repeatedly. Implementing hash boundaries requires
switch hardware modification, raising the bar for immediate
deployment. Our contributions include proposing a com-
plete, deployable solution that improves load balancing in
data centers without hardware modification.

In the data center context, there have been many pro-
posals which advocate multipath based topologies [2, 14,
15, 23, 30] to provide higher bandwidth and fault tolerance.
F10, a proposal for building fault resilient data center fab-
ric [23] advocates the use of weighted ECMP for efficient
load balancing in presence of failures. Such network fabrics
can leverage WCMP as a readily deployable solution for im-
proving fairness. These topologies with high degree of mul-
tipaths have triggered other efforts [3, 10, 11] that evenly
spread flows over the data center fabric for higher utilization.
Hedera focuses on dynamically allocating elephant flows
to paths via a centralized scheduler by repeatedly polling
the switches for network utilization and/or flow sizes. Mice
flows, however, would still be routed in a static manner us-
ing ECMP. Hedera’s centralized measurement and software
control loop limit its responsiveness to mice flows.Hence,
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our WCMP algorithms provide baseline short-flow bene-
fits for systems like Hedera, and scale better for large net-
works with balanced flow sizes (for applications e.g Triton-
Sort/MapReduce).

MPTCP [28], a transport layer solution, proposes creat-
ing several sub-flows for each TCP flow. It relies on ECMP
to hash the sub-flows on to different paths and thus provide
better load balancing. In comparison, WCMP hashes flows
across paths according to available capacity based on topol-
ogy rather than available bandwidth based on communica-
tion patterns. We find that for uniform communication pat-
terns, WCMP outperforms MPTCP whereas MPTCP outper-
forms WCMP in the presence of localized congestion. The
two together perform better than either in isolation as they
work in a complementary fashion: WCMP makes available
additional capacity based on the topology while MPTCP bet-
ter utilizes the capacity based on dynamic communication
patterns as we show in our evaluation section.

3. Weighted Cost Multi Pathing
The need for WCMP is motivated by the asymmetric strip-
ing in data center topologies. The right striping is indeed
crucial in building a data center that ensures fairness and ef-
ficient load balancing. We present our proposals for striping
alternatives in Section 4. In this section, we discuss the cur-
rent practices, challenges and our approach in designing a
deployable solution for weighted traffic hashing.

3.1 Multipath Forwarding in Switches
Switches implement ECMP based multipath forwarding by
creating multipath groups which represent an array of “equal
cost” egress ports for a destination prefix. Each egress port
corresponds to one of the multiple paths available to reach
the destination. The switch hashes arriving packet headers
to determine the egress port for each packet in a multipath
group. Hashing on specific fields in the packet header en-
sures that all packets in the same flow follow the same net-
work path, avoiding packet re-ordering.

To implement weighted hashing, we assign weights to
each egress port in a multipath group. We refer to the array
of egress ports with weights as the WCMP group. Each
WCMP group distributes flows among a set of egress ports in
proportion to the weights of each port. The weight assigned
to an egress port is in turn proportional to the capacity
of the path(s) associated with that egress port. Currently,
many commodity switches offer an OpenFlow compatible
interface with their software development kit (SDK) [6, 18].
This allows us to realize weight assignment by replicating a
port entry in the multipath table in proportion to its weight.

Figure 3 shows the packet processing pipeline for multi-
path forwarding in a commodity switch. The switch’s mul-
tipath table contains two groups. The first four entries in
the table store an ECMP group for traffic destined to prefix
1.1.2.0/24. The next 12 entries in the table store a WCMP

group for weighted distribution of traffic destined to pre-
fix 1.1.1.0/24. Traffic ingressing the switch is first matched
against the Longest Prefix Match (LPM) entries. Upon find-
ing a match, the switch consults the multipath group entry to
determine the egress port. For example, a packet with desti-
nation 1.1.1.1 matches the LPM table entry pointing to the
WCMP group with base index of 4 in the multipath table.
The switch determines the offset into the multipath table for
a particular packet by hashing over header fields e.g., IP ad-
dresses, UDP/TCP ports, as inputs. The hash modulo the
number of entries for the group added to the group’s base
index determines the table entry with the egress port for the
incoming packet ((15 mod 12) + 4 = 7).

IP Prefix Multipath 
Table Index # Entries 

1.1.2.0/24 0 4 

1.1.1.0/24 4 12 

Index Port 
0 1 
1 2 
2 3 
3 4 
4 1 
5 1 
6 2 
7 2 
8 3 
9 3 
10 3 
11 4 
12 4 
13 4 
14 4 
15 4 

LPM Table 

Multipath Table 

WCMP 
Group 

Packet 
Header 

Hash Mod 

src_ip 
dst_ip  
src_port  
dst_port 

+ 

15 

12 

3 

4 

7 

dst_ip=1.1.1.1 

Figure 3: Flow hashing in hardware among the set of available
egress ports

Replicating entries for assigning weights can easily ex-
ceed the number of table entries in commodity silicon, typ-
ically numbering in the small thousands. To overcome this
hardware limitation on table entries, we map the “ideal”
WCMP port weights onto a smaller set of integer weights,
with the optimization goal of balancing consumed multipath
table resources against the impact on flow fairness. In our
switch pipeline example, the egress port numbers 1, 2, 3,
4 in the WCMP group have weights 2, 2, 3, 5 respectively
(weight ratio 1:1:1.5:2.5) and use 12 entries in the multipath
table to provide ideal fairness. If we change these weights to
1, 1, 2, 3 respectively, we reduce the number of table entries
required from 12 to 7 with small changes to the relative ra-
tios between the weights. This reduction is extremely useful
in implementing weighted hashing as this helps in signif-
icantly lowering down the requirement for TCAM entries.
This is important because hardware TCAM entries are used
for managing access control rules, maintaining flow counters
for different kinds of traffic and are always a scarce resource
in commodity switches. In the next section, we present algo-
rithms that aim at reducing the WCMP weights with limited
impact on fairness.

3.2 Weight Reduction Algorithms
We begin by formalizing how WCMP egress port weights
affect network performance. Consider a WCMP group G
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with P member egress ports.We denote the weights for each
member port in G by the tuple (X1, X2, ..XP ), and use the
following definitions:

λG: maximum traffic demand served by WCMP group G
Bi(G): maximum traffic demand served by the ith member

port in G
G[i].weight: weight of ith member port in G (also denoted

by Xi)
G.size: number of table entries used by G (sum of all Xi)

Bi(G) = λG ·
G[i].weight∑P

k=1G[k].weight
= λG ·

Xi∑P
k=1Xk

(1)

LetG′ denote a new WCMP group reduced fromG. It has
the same set of member egress ports as G but with smaller
weights denoted by (Y1, Y2, ..YP ). Given a traffic demand
of λG, the fraction of traffic demand to the ith member port,
we compute Bi(G′) by replacing G with G′ in eq. 1. When
Bi(G′) > Bi(G), the ith port ofG receives more traffic than
it can serve, becoming oversubscribed. We seek to reduce
the weights in G to obtain G′ while observing a maximum
oversubscription of its member ports, denoted as ∆(G,G′):

∆(G,G′) = maxi(Bi(G′)/Bi(G))

= maxi(
G′[i].weight ·

∑P
k=1G[k].weight

G[i].weight ·
∑P

k=1G′[k].weight
)

= maxi(
Yi ·

∑P
k=1Xk

Xi ·
∑P

k=1 Yk
)

(2)

While reducing the weights for a WCMP group, we can
optimize for one of two different objectives: (i) maximum
possible reduction in the group size, given a maximum over-
subscription limit as the constraint, or (ii) minimizing the
maximum oversubscription with a constraint on the total size
of the group.

3.2.1 Weight Reduction with an Oversubscription
Limit

Given a WCMP group G with P member ports and a maxi-
mum oversubscription limit, denoted by parameter θmax, we
want to find a WCMP group G′ with P member ports where
the member weights (Y1, Y2, ..YP ) for G′ are obtained by
solving the following optimization problem.

minimize
P∑
i=1

Yi

subject to ∆(G,G′) ≤ θmax

Xi, Yi are +ve integers (1 ≤ i ≤ P )

(3)

Algorithm 1 ReduceWcmpGroup(G, θmax). Returns a
smaller group G′ such that ∆(G,G′) ≤ θmax

1: for i = 1 to P do
2: G′[i].weight = 1
3: end for
4: while ∆(G,G′) > θmax do
5: index = ChoosePortToUpdate(G,G′)
6: G′[index].weight = G′[index].weight + 1
7: if G′.size ≥ G.size then
8: return G
9: end if

10: end while
11: return G′

Algorithm 2 ChoosePortToUpdate(G, G′). Returns the in-
dex of member port whose weight should be incremented to
result in least maximum oversubscription.

1: min oversub = INF
2: index = −1
3: for i = 1 to P do
4: oversub = (G′[i].weight+1)·G.size

(G′.size+1)·G[i].weight

5: if min oversub > oversub then
6: min oversub = oversub
7: index = i
8: end if
9: end for

10: return index

This is an Integer Linear Programming (ILP) problem in
variables Yis, known to be NP-complete [9]. Though the op-
timal solution can be obtained by using well known linear
programming solutions, finding that optimal solution can be
time-intensive, particularly for large topologies. Hence, we
propose an efficient greedy algorithm that gives an approxi-
mate solution to the optimization problem in Algorithm 1.

We start by initializing each Yi in G′ to 1. G′ is the
smallest possible WCMP group with the same member ports
as G (Lines 1-3). We then increase the weight of one of
the member ports by 1 by invoking Algorithm 2 and repeat
this process until either: (i) we find weights with maximum
oversubscription less than θmax or, (ii) the size ofG′ is equal
to the size of the original group G. In the latter case, we
return the original group G, indicating the algorithm failed
to find a G′ with the specified θmax.

Starting from the WCMP group with the smallest size,
this algorithm greedily searches for the next smaller WCMP
group with the least oversubscription ratio. For a WCMP
group G with P ports and original size W , runtime com-
plexity of the greedy algorithm is O(P · (W − P )). To
compare the results of the greedy algorithm with the opti-
mal solution , we ran Algorithm 1 on more than 30,000 ran-
domly generated WCMP groups and compared the results
with the optimal solution obtained by running the GLPK LP
solver [13]. The greedy solution was sub-optimal for only 34
cases ( 0.1%) and within 1% of optimal in all cases.
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3.2.2 Weight Reduction with a Group Size Limit
Forwarding table entries are a scarce resource and we want
to create a WCMP group that meets the constraint on the
table size. Formally, given a WCMP group G with P mem-
ber ports and multipath group size T , the weights for WCMP
groupG′ can be obtained by solving the following optimiza-
tion problem:

minimize ∆(G,G′)

subject to
P∑
i=1

Yi ≤ T

Xi, Yi are +ve integers (1 ≤ i ≤ P )

(4)

Programming forwarding table entries is a bottleneck for
route updates [11]. Reducing the number of forwarding table
entries has the added benefit of improving routing conver-
gence as it reduces the number of entries to be programmed.
We refer to the above optimization problem as Table Fitting.
This is a Non-linear Integer Optimization problem because
the objective function ∆(G,G′) is a non-linear function of
the variables Yis, which makes it harder to find an optimal
solution to this problem.We present a greedy algorithm for
the Table Fitting optimization in Algorithm 3.

We begin by initializing G′ to G. Since the final weights
in G′ must be positive integers, ports with unit weight are
counted towards the non reducible size as their weight
cannot be reduced further. If fractional weights were al-
lowed, reducing weights in the same ratio as that between
the size limit T and original size will not result in any over-
subscription. However, since weights can only be positive
integers, we round the weights as shown in Lines 14-16 of
Algorithm 3. It is possible that after rounding, the size of the
group exceeds T , since some weights by may be rounded up
to 1. Hence, we repeatedly reduce weights until the size of
the group is less than T . We do not allow zero weights for
egress ports because that may lower the maximum through-
put capacity of the original WCMP group. In some cases it
is possible that the size of the reduced group is strictly less
than T , because of rounding down (Line 14). In that case,
we increase the weights of the WCMP group up to the limit
T , in the same manner as in Algorithm 1 to find the set of
weights that offer the minimum ∆(G,G′) (Lines 20-30).

For a WCMP group with size W and P member ports,
the runtime complexity of Algorithm 3 is O(P · (W − T ) +
P 2). If high total bandwidth is not a requirement and zero
weights are allowed, we can further optimize this algorithm
by rounding fractional weights to zero and eliminate the
outer while loop, with final runtime complexity as O(P 2).

3.2.3 Weight Reduction for Multiple WCMP Groups
For reducing weights given a maximum oversubscription
limit for a group for WCMP groups H , we can simply run
Algorithm 1 independently for each WCMP group in H .

Algorithm 3 TableFitting(G, T ). WCMP Weight Reduction
for Table Fitting a single WCMP group G into size T .

1: G′ = G
2: while G′.size > T do
3: non reducible size = 0
4: for i = 1 to P do
5: if G′[i].weight = 1 then
6: non reducible size+ = G′[i].weight
7: end if
8: end for
9: if non reducible size = P then

10: break
11: end if
12: reduction ratio = (T−non reducible size)

G.size
13: for i = 1 to P do
14: G′[i].weight = b(G[i].weight · reduction ratio)c
15: if G′[i].weight = 0 then
16: G′[i].weight = 1
17: end if
18: end for
19: end while
20: remaining size = T −G′.size
21: min oversub = ∆(G,G′)
22: G′′ = G′
23: for k = 1 to remaining size do
24: index = ChoosePortToUpdate(G,G′)
25: G′[index].weight = G′[index].weight + 1
26: if min oversub > ∆(G,G′) then
27: G′′ = G′
28: min oversub = ∆(G,G′)
29: end if
30: end for
31: return G′′
However, for reducing weights given a limit on the total
table size for H , the exact size limit for individual WCMP
groups is not known. One alternative is to set the size limit
for each group in H in proportion to the ratio between the
total size limit for H and the original size of H and then
run Algorithm 3 independently on each group in H . While
this approach ensures that groups in H fit the table size S,
it does not strive to find the minimum ∆(G,G′) of member
groups that could be achieved by changing the individual
size constraints on each WCMP group in H . For that, we
present Algorithm 4 that achieves weight reduction for a
set of WCMP groups by linearly searching for the lowest
maximum oversubscription limit.

Algorithm 4 shows the pseudo code for weight reduc-
tion across groups in H . We begin with a small threshold
for the maximum oversubscription θc, and use it with Al-
gorithm 1 to find smaller WCMP groups for each of the
member groups in H . We sort the groups in H in descend-
ing order of their size and begin by reducing weights for
the largest group in H . We repeatedly increase the oversub-
scription threshold (by a step size ν) for further reduction
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of WCMP groups until their aggregate size in the multipath
table drops below S. Since the algorithm progresses in step
size of ν, there is a trade-off between the accuracy of the
oversubscription limit and the efficiency of the algorithm,
which can be adjusted as desired by changing the value of ν.

Algorithm 4 TableFitting(H , S). WCMP Weight Reduction
for Table Fitting a set of WCMP groups H into size S.

1: θc = 1.002 // θc: enforced oversubscription
2: ν = 0.001 // ν: step size for increasing the θc
3: // Sort the groups in H in descending order of size.
4: H′ = H
5: while TotalSize({H′}) > S do
6: for i = 1 ... NumGroups({H}) do
7: H′[i] = ReduceWcmpGroup(H[i], θc)
8: if TotalSize({H′}) ≤ S then
9: return

10: end if
11: end for
12: θc+ = ν
13: end while
14: return H′

4. Striping
Striping refers to the distribution of uplinks from lower stage
switches to the switches in the successive stage in a multi-
stage topology. The striping is crucial in determining the
effective capacity for different paths and hence the relative
weights for the different ports in a WCMP group. While
weight reduction algorithms reduce weights for a WCMP
group, the striping determines the original weights in a
WCMP group. Balanced stripings are desirable in data cen-
ter networks so as to deliver uniform and maximum possible
throughput among all communicating switch pairs. How-
ever, maintaining balanced striping is impractical due to its
strict requirement that the number of upper links in a switch
must be an integer multiple of the number of upper layer
switches. It is practically unsustainable due to frequent node
and link failures. In this section, we attempt to identify the
design goals for topology striping and propose striping al-
ternatives that illustrate trade-offs between different goals.

4.1 Striping Alternatives
We use the 2-stage network topology depicted in Figure
1 in describing striping alternatives. The class of 2-stage
Clos networks is characterized by the following parameters,
assuming all physical links have unit capacity:

K: Number of stage-2 (S2) switches.
D: Number of downlinks per S2 switch.
L: Number of stage-1 (S1) switches.
N : Number of uplinks per S1 switch.

The striping is imbalanced when N cannot be divided
by K. In particular, one S1 switch may be connected to an
S2 switch with more uplinks than another S1 switch.While
a naı̈ve approach to build fully balanced topologies is to
remove the additional uplinks at a switch, this will lower
the maximum throughput between pairs of switches that can
be connected symmetrically to the upper stage switches.
For example in Figure 4(b), even though S10 and S12 are
asymmetrically connected to the S2 switches, switches S10

and S11 are connected symmetrically and can achieve higher
throughput as compared to the case where the extra links
were removed to build a fully symmetrical topology.

host host host host host host

(a) Rotation Striping

host host host host host host

(b) Group Striping

Figure 4: Striping Alternatives

In order to be as close to balanced striping, we distribute
the set of N uplinks from an S1 switch among S2 switches
as evenly as possible. We first assign bNK c uplinks to each of
theK S2 switches and the remaining N - K.(bNK c) uplinks at
the S1 switch are distributed across a set of N - K.(bNK c) S2
switches. This strategy ensures that each S1 switch is con-
nected to an S2 switch with at most 1 extra uplink as com-
pared to other S1 switches connected to the same S2 switch.
Formally we can represent this striping strategy using a con-
nectivity matrix R, where each element Rjk is the number
of uplinks connecting S1j to S2k. Let p = bNK c, then

Rjk = p or p+ 1, (5)

The maximum achievable throughput may vary among
different pairs of S1 switches based on the striping. The
highest throughput between a pair of switches is achieved
when each S1 switch has an equal number of uplinks to all
S2 switches. The maximum achievable throughput between
a pair of switches is lower when the pair have asymmetric
striping to the S2 switches. Based on this observation, we
derived two alternative striping options: (i) Rotation Strip-
ing and (ii) Group Striping, which illustrate the trade-off
between improving the mean throughput versus improving
the maximum achievable throughput across the different S1
switch pairs.
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Figure 4(a) depicts a 2-stage Clos topology with 6 S1
switches and 6 S2 switches using rotation striping. For any
pair of S1 switches, there is at least one oversubscribed S2
switch connected asymmetrically to the two S1 switches.
Thus the maximum possible throughput for traffic between
these switches is less than their total uplink bandwidth, even
without competing traffic. The rotation striping can be gen-
erated by connecting a switch S1i with a contiguous set of
πp S2 switches with p uplinks each starting from S2i(mod)K ,
and the remaining πp+1 S2 switches with p+ 1 uplinks.The
derivations of πp and πp+1 are shown below.

Algorithm 5 Generating group striping - Phase I

1: Ωp+1 = D − L · p
2: Ωp = L− Ωp+1

3: Ω = min(Ωp+1,Ωp)
4: π = min(πp, πp+1)
5: if Ω = 0 then
6: Q = 1
7: else
8: Q = bLΩc − d

L%Ω
Ω e

9: end if
10: if Ω = Ωp+1 then
11: Rlk = p for ∀ l < L, k < K
12: else
13: Rlk = p+ 1 for ∀ l < L, k < K
14: end if
15: for i = 0 to Q− 1 do
16: for l = i · Ω to i · Ω + Ω− 1 do
17: for k = i · π to i · π + π − 1 do
18: if Ω = Ωp+1 then
19: Rlk = p+ 1
20: else
21: Rlk = p
22: end if
23: end for
24: end for
25: end for

Algorithm 6 Generating group striping - Phase II

1: shift = 0
2: for l = Q · Ω to L− 1 do
3: for offset = 0 to π − 1 do
4: k = π ·Q+ ((offset+ shift)%(K −Q · π));
5: if Ω = Ωp+1 then
6: Rlk = p+ 1
7: else
8: Rlk = p
9: end if

10: end for
11: shift+ = N/D;
12: end for

πp: the number of S2 switches connected to an S1 switch
with p downlinks.

πp+1: the number of S2 switches connected to an S1 switch
with p+ 1 downlinks.

πp+1 = N −K · p
πp = K − πp+1 = K · (p+ 1)−N (6)

Figure 4(b) depicts the group striping for the same topol-
ogy. Three pairs of S1 switches have identical uplink distri-
butions and can achieve maximum possible throughput, 80
Gb/s. However, compared to the rotation striping, there are
also more S1 switch pairs with reduced maximum achiev-
able throughput, 60 Gb/s. Rotation striping reduces the vari-
ance of network capacity while group striping improves the
probability of achieving ideal capacity among S1 switches.

The algorithm for generating the group striping runs in
two phases as shown in Algorithm 5 and 6. We first create
Q (Q = 3 in Figure 4(b)) sets of S1 switches such that S1
switches within each set can achieve maximum throughput
for a destination S1 switch in the same set. In the second
phase, the algorithm generates the striping for the remainder
of S1 switches. Each of these S1 switches have a unique
connection pattern to the S2 switches.

4.2 Link Weight Assignment
WCMP is a generic solution that makes no assumption about
the underlying topology for assigning and reducing weights
for links. For arbitrary topologies, the link weights can be
computed by running max-flow min-cut algorithms of poly-
nomial complexity and creating WCMP groups per source-
destination pair. The weight reduction algorithm proposed in
the section 3 would similarly reduce the number of table en-
tries in such settings. With its efficient algorithms for weight
assignment and weight reduction, WCMP can react quickly
to changes in the topology due to inherent heterogeneity or
failures and reprogram updated WCMP groups in just a few
milliseconds.

In the topology shown in Figure 1, for any switch S1s,
its traffic flows destined to a remote switch S1d can be dis-
tributed among its N uplinks. Given: i) the varying effec-
tive capacities and ii) delivering uniform throughput among
flows as the driving objective, more flows should be sched-
uled to uplinks with higher capacity than those with lower
capacities. Therefore, when installing a WCMP group on
S1s to balance its traffic to S1d among its N uplinks, we
set the weight of each uplink proportional to its effective ca-
pacity which is either 1 or p

p+1 .

5. System Architecture
We base our architecture and implementation for supporting
WCMP around the Onix OpenFlow Controller[22] as shown
in Figure 5. The Network Controller is the central entity
that computes the routes between switches (hosts) and the

8



Figure 5: WCMP Software Architecture

weights for distributing the traffic among these routes based
on the latest view of network topology. It also manages the
forwarding table entries in the switches. We assume a re-
liable control channel between the network controller and
the switches, e.g., a dedicated physical or logical control
network. We implement the Network Controller function-
ality through three components: Network Information Base
(NIB), Path Calculator and Forwarding Manager.

NIB: This component discovers the network topology by
subscribing to adjacency updates from switches. Switch up-
dates include discovered neighbors and the list of healthy
links connected to each neighbor. The NIB component in-
teracts with the switches to determine the current network
topology graph and provides this information to the path
calculator. The NIB component also caches switch’s flows
and WCMP group tables and is responsible for propagat-
ing changes to these tables to switches in case of topology
changes due to failures or planned changes. In our imple-
mentation, all communication between NIB and switches is
done using the OpenFlow protocol[27]. An OpenFlow agent
running on each switch receives forwarding updates and ac-
cordingly programs the hardware forwarding tables.

Path Calculator: This component uses the network
topology graph provided by the NIB and computes the avail-
able paths and their corresponding weights for traffic distri-
bution between any pair of S1 switches. The component is
also responsible for all other routes, e.g., direct routes to
hosts connected to an S1 switch.

Forwarding Manager: This component manages the
flow and WCMP tables. It converts the routes computed
by the path calculator into flow rules, and next hops into
WCMP groups to be installed at the switches. Since there
are only limited hardware entries at each switch, this com-
ponent also computes reduced weights for links such that
WCMP performance with reduced weights is within tolera-
ble bounds of the performance for the weights computed by
the path calculator component. This optimization could also
be implemented on the switch side.

Upon start-up, the Path Calculator queries the NIB for
the initial topology and computes the routes and next hops.
The Forwarding Manager converts the computed routes and
next hops to flow rules and WCMP groups. Once the weights
are computed, it invokes weight reduction algorithm for dif-
ferent switches in parallel and installs the weights into the
switches. As illustrated in Figure 5, the Path Calculator fur-
ther receives topology change events from the NIB (link up
/down events), and recomputes next hops upon such events
as link/switch failure or topology expansion. The updated
next hops are then converted to updated WCMP groups to
be installed on individual switches. The Path Calculator and
the Forwarding Manager components together consist of 3K
lines of C++. We use previously developed Onix and Open-
Flow extensions for multipath support (OpenFlow 1.1 spec-
ification supports multipath groups).

6. Failure Handling
WCMP relies on the underlying routing protocol to be no-
tified of switch/link failures and change the weights based
on the updates. As such, WCMP is limited by the reaction
time of the underlying protocol to react to changes in the
topology.When a link failure is reported, the only additional
overhead for WCMP is in recomputing the weights and pro-
gramming the TCAM entries with the updated weights in
the forwarding table. Since our weight reduction algorithms
scale quadratically with number of ports in a group and are
very fast for switches with port counts upto 96 ports, this
overhead is extremely small.

Our simulations indicate that the weight computation and
reduction algorithms can recompute weights in under 10
milliseconds for topologies with 100,000 servers when no-
tified of a topology update. However, failures like link flap-
ping may indeed result in unnecessary computations. In that
case, WCMP will disable the port from the multipath group
in order to avoid unnecessary weight computations. We also
note that while a series of failures may result in recomputing
(and reducing) weights for WCMP groups at a large number
of switches, in general most failures will only require updat-
ing weights for only a small number of WCMP groups at
few switches. The cost of updating weights is incurred only
rarely but once the right weights are installed it results in
significantly improving the fairness for both short and large
flows in the network.

7. Evaluation
We evaluate WCMP using a prototype implementation and
simulations. The prototype cluster network consists of six
non-blocking 10Gb/s S1 switches interconnected by six non-
blocking 10Gb/s S2 switches and 30 hosts with 10G NICs.
Each host is running Linux kernel version 2.6.34 with ECN
enabled in the TCP/IP stack. Our switches support Open-
Flow and ECN, marking packets at 160KB for port buffer
occupancy.
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Figure 6: Testbed topologies (with Group striping) with increasing imbalance for one-to-one traffic pattern
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Figure 7: Comparing ECMP, WCMP performance on Clos topologies with different imbalance, different traffic patterns

We evaluate TCP performance with ECMP and WCMP
hashing for topologies with different degrees of imbalance
and for different traffic patterns including real data cen-
ter traffic patterns from [7]. We extended the htsim simu-
lator [19] for MPTCP to support WCMP hashing and evalu-
ate WCMP benefits relative to MPTCP. We also measure the
effectiveness of our weight reduction algorithms and the im-
pact of weight reduction on flow bandwidth fairness. Over-
all, our results show:

• WCMP always outperforms ECMP, reducing the varia-
tion in the flow bandwidths by as much as 25×.

• WCMP complements MPTCP performance and reduces
variation in flow bandwidth by 3× relative to the baseline
case of TCP with ECMP.

• The weight reduction algorithm can reduce the required
WCMP table size by more than half with negligible over-
subscription overhead.

7.1 TCP Performance
We begin by evaluating TCP performance with ECMP and
WCMP for different topologies and for different traffic pat-
terns: one-to-one, all-to-all and real data center traffic.

One-to-one Traffic: We first compare the impact of
striping imbalance on TCP flow bandwidth distribution for
ECMP and WCMP hashing. To vary the striping imbalance,
we increase the number of oversubscribed S2 switches, to
which a pair of S1 switches is asymmetrically connected.

We manually rewire the topology using our group striping
algorithm into the three topologies shown in Figure 6 and
generate traffic between asymmetrically connected switches
S10 and S15. Each of the nine hosts connected to source
switch S10 transmit data over four parallel TCP connections
to a unique host on destination switch S15 over long flows.
We plot the CDF for the flow bandwidths in Figure 7.

Figure 7(b) shows that WCMP effectively load balances
the traffic such that all flows receive almost the same band-
width despite the striping imbalance. Bandwidth variance for
ECMP on the other hand increases with the striping imbal-
ance as shown in Figure 7(a). We make the following ob-
servations from these CDFs: (1) For ECMP, the number of
slower flows in the network increases with the striping im-
balance in the topology. More importantly, for imbalanced
topologies, the minimum ECMP throughput is significantly
smaller than the minimum WCMP throughput, which can
lead to poor performance for applications bottlenecked by
the slowest flow. (2) the variation in the flow bandwidth in-
creases with the imbalance in the topology. WCMP reduces
the variation in flow bandwidth by 25× for the topology
where K=6, N=9. High variations in flow bandwidth make
it harder to identify the right bottlenecks and also limit ap-
plication performance by introducing unnecessary skew.

All-to-all Traffic: We next compare ECMP and WCMP
hashing for all-to-all communication for the topology shown
in Figure 8(a) and present the results in Figure 7(c). Each
host communicates with hosts on all the remote switches
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K=4, N=7

(a) Testbed topology for all-to-all and real data center
traffic from [7]

K = 8, L = 8, N = 12, D = 12

(b) Simulated topology using htsim

Figure 8: Evaluation topologies

over long flows. Again, the load balancing is more effective
for WCMP than for ECMP. This graph provides empirical
evidence that the weighted hashing of flows provides fairer
bandwidth distribution relative to ECMP even when the traf-
fic is spread across the entire topology. In this case, WCMP
lowered variation in flow bandwidth by 4× and improved
minimum bandwidth by 2×.

Real Data Center Traffic: We also compare ECMP and
WCMP hashing for mapreduce style real data center traf-
fic as measured by Benson et. al. [7]. We generate traffic
between randomly selected inter-switch source-destination
pairs for topology shown in Figure 8(a). The flow sizes and
flow inter-arrival times have a lognormal distribution as de-
scribed in [7].

Figure 9 shows the standard deviation (std. dev.) in the
completion time of flows as a function of the flow size.
Though both ECMP and WCMP are quite effective for small
flows, for flow sizes greater than 1MB, the variation in the
flow completion times is much more for ECMP compared
to WCMP, even for flows of the same size. Moreover, this
variation increases as the flow size increases.In summary,
for real data center traffic, WCMP reduced the std. dev.
in bandwidth by 5× on average and, more importantly,
13× at 95%-ile relative to ECMP while average bandwidth
improved by 20%.

7.2 MPTCP Performance
We extended the packet level MPTCP simulator, htsim to
support WCMP hashing and evaluate its impact on MPTCP
performance. The simulated topology consists of eight 24-
port S1 switches (12 uplinks and 12 downlinks) and eight
12-port S2 switches (K=8, L=8, N=12, D=12) as shown in
Figure 8(b). Each S1 switch is also connected to 12 hosts.
We use 1000 byte packets, 1 Gb/s links, 100KB buffers and
100µs as per-hop delay. We use a permutation traffic matrix,
where each host sends data to a randomly chosen host on
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Figure 9: Comparing ECMP and WCMP performance for data
center traffic measured by Benson et. al. [7]

a remote switch. We consider two scenarios (i) all flows
start/stop at the same time, (on-off data center traffic pattern
Figure 10(a)), (ii) flows start at different times, subjected to
varying level of congestion in the network (Figure 10(b)).
We evaluate all 4 possible combinations of TCP, MPTCP
(with 8-subflows per TCP flow) with ECMP and WCMP.

The results in Figure 10(a) and 10(b) show that MPTCP
with WCMP clearly outperforms all other combinations. It
improves the minimum flow bandwidth by more than 25%
and reduces the variance in flow bandwidth by up to 3× over
MPTCP with ECMP. While WCMP with TCP outperforms
ECMP with TCP for the on-off communication pattern, it
has to leverage MPTCP for significant improvement for the
skewed traffic patterns. This is because MPTCP can dynam-
ically adjusts the traffic rates of subflows to avoid hot spots
while WCMP is useful for addressing the bandwidth varia-
tion due to structural imbalance in the topology.

7.3 Weight Reduction Effectiveness
Next, we evaluate the effectiveness of our weight reduction
algorithms. We analyze two topologies, with the number of
S1 uplinks (N) equal to 96 and number of S2 downlinks
(D) as 32 and other where N = 192 and D = 64. We vary
the number of S1 switches from 5 to 19 and compute the
maximum number of table entries required at an S1 switch.

We run Algorithm 1 to reduce this number with different
oversubscription limits (1.05 and 1.1) and show the results
in Figure 11. Without any weight reduction, the maximum
number of multipath table entries at the switch is >10k for
the case where S1 switches have 192 uplinks, while the size
of TCAM/SRAM on commodity switches is usually only
4K. The reduction algorithm reduces the required multipath
table entries by more than 25% while incurring only 1.05
oversubscription (Figure 11(b)). It can further fit the entire
set of WCMP groups to the table of size 4K at the maximum
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Figure 10: Evaluating MPTCP performance with WCMP

oversubscription of only 1.1. We also ran the LP solver for
reducing the size of the WCMP groups at the S1 switch re-
quiring maximum table entries. In all cases, the results from
our weight reduction algorithm were same as the optimal re-
sult. Figure 11 further shows that without the reduction algo-
rithm, the maximum number of table entries grows by almost
3× when the switch port counts were doubled. The reduc-
tion algorithm significantly slows such growth with limited
impact on the fairness.

7.4 Weight Reduction Impact on Fairness
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Figure 12: Impact of weight reduction on fairness

Our weight reduction algorithms trade-off achieving ideal
fairness in order to create WCMP groups of smaller size.
Since our evaluation testbed was small and did not require
weight reduction, we simulate a large topology for evalu-
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Figure 11: Table entries before and after running Algorithm 1 for
reducing WCMP groups at the switch requiring maxi-
mum table entries

ating weight reduction impact on fairness. We instantiate a
topology with 19 S1 switches with 96 uplinks each, 57 S2
switches with 32 downlinks each and 1824 hosts using ht-
sim (K=57, L=19, N=96, D=32). With group striping for this
topology, we have two groups of six S1 switches, and each
S1 switch in a group has identical striping to the S2 switches.
The remaining seven S1 switches are asymmetrically con-
nected to all the other S1 switches. We run Algorithm 1 with
different oversubscription limits to create WCMP groups
with reduced weights. We generate traffic using a random
permutation traffic matrix, where each host sends data to an-
other host on a remote switch with long flows. Figure 12
shows the results of this experiment. With a oversubscription
limit of 1.05, we achieve a 70% reduction in the maximum
number of multipath table entries required (Figure 11(a))
with very little impact on the fairness. As we increase the
oversubscription limit to 1.1, the fairness reduces further, but
WCMP still outperforms ECMP.

8. Conclusion
Existing techniques for statically distributing traffic across
data center networks evenly hash flows across all paths to a
particular destination. We show how this approach can lead
to significant bandwidth unfairness when the topology is in-
herently imbalanced or when intermittent failures exacerbate
imbalance. We present WCMP for weighted flow hashing
across the available next-hops to the destination and show
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how to deploy our techniques on existing commodity silicon.
Our performance evaluation on an OpenFlow-controlled net-
work testbed shows that WCMP can substantially reduce the
performance difference among flows compared to ECMP,
with the potential to improve application performance and
network diagnosis; and complements dynamic solutions like
MPTCP for better load balancing.
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