
Schrödinger’s RAT: Profiling the Stakeholders in the
Remote Access Trojan Ecosystem

Mohammad Rezaeirad,
†

Brown Farinholt,
�

Hitesh Dharmdasani,
‡

Paul Pearce
††

Kirill Levchenko,
�

Damon McCoy
?

†
GMU,

�
UC San Diego,

‡
Informant Networks,

††
UC Berkeley,

?
NYU

Abstract
Remote Access Trojans (RATs) are a class of malware
that give an attacker direct, interactive access to a vic-
tim’s personal computer, allowing the attacker to steal
private data from the computer, spy on the victim in real-
time using the camera and microphone, and interact di-
rectly with the victim via a dialog box. RATs are used for
surveillance, information theft, and extortion of victims.

In this work, we report on the attackers and victims
for two popular RATs, njRAT and DarkComet. Using
the malware repository VirusTotal, we find all instances
of these RATs and identify the domain names of their
controllers. We then register those domains that have ex-
pired and direct them to our measurement infrastructure,
allowing us to determine the victims of these campaigns.
We investigate several techniques for excluding network
scanners and sandbox executions of malware samples in
order to filter apparent infections that are not real victims
of the campaign. Our results show that over 99% of the
828,137 IP addresses that connected to our sinkhole are
likely not real victims. We report on the number of vic-
tims, how long RAT campaigns remain active, and the
geographic relationship between victims and attackers.

1 Introduction
Remote Access Trojans (RATs) are an emerging class of
manually operated malware designed to give human op-
erators direct interactive access to a victim’s computer.
Unlike automated malware (bots), RATs are predicated
on the unique value of each infection, allowing an at-
tacker to extort a human victim or otherwise benefit
from access to a victim’s private data. RAT software are
sold and traded in underground communities as tools for
voyeurism and blackmailing [11, 18].1

The unique danger posed by this new class of mal-
ware has received considerable attention in the security

1While unskilled attackers appear to be their primary users, RATs
have also been implicated in state-sponsored espionage and surveil-
lance of journalists [46], dissidents [30], and corporations [27].

community and in popular media. Nevertheless, the re-
lationship between the RAT operator and victim remains
poorly understood. In this work, we bring to light the be-
havior of operators and victims of two popular RAT fam-
ilies, njRAT and DarkComet. Our primary aim is to de-
termine who is attacking whom, the size of the victim and
attacker population, and how long victims remain vulner-
able after a campaign ends.

RAT
Stub

RAT
Controller

Sandbox

Scanner

Victim

Attacker

Sinkhole

99.9%

?
?

Sandbox

?0.1%

0.1%<

Figure 1: Intelligence pollution obfuscates the stakeholders in
the RAT ecosystem.

One of the challenges of studying both victims and
attackers remains the difficulty of accurately determin-
ing their population. Network hosts behaving as vic-
tims may be security researchers scanning for command-
and-control servers [15, 17], and potential command-
and-control servers may be vigilantes operating sink-
holes [12, 39, 49]. The challenge of conducting a study
of the RAT ecosystem is determining who is really a vic-
tim or operator, and who is pretending to be one.

In this paper, we design, implement, and deploy im-
proved methods for measuring victims that connect to
our sinkhole, called RAT-Hole, and for identifying RAT
controllers using our scanner, called RAT-Scan. The task
of identifying victims at scale is made difficult by the vol-
ume of traffic sinkholes receive from high-fidelity scan-
ners and sandboxes. Similarly, differentiating between
real controllers and sinkholes is complicated by high-
fidelity sinkholes that look like real controllers. The in-

creasing fidelity in RAT scanners that emulate a real vic-
tim’s behavior and sinkholes that emulate a real RAT
controller’s protocol has created an arms-race between
completing threat intelligence operations, leading to in-
accurate measurements and wasted notification efforts.
We call this phenomenon intelligence pollution, illus-
trated in Figure 1.

Many operators of commodity-grade RATs rely on
free dynamic DNS (DDNS) services for their command-
and-control hostname [17]. While DDNS services give
operators a free third-level domain name that they can
associate with any IP address at any time, DDNS do-
mains are not owned by the operator, and many DDNS
services return the third-level name to the pool of avail-
able names after 30 days. We exploit this fact to carry
out a study of victims, claiming the names of command-
and-control servers as soon as they expire. This tech-
nique, called sinkholing, has been widely used to cap-
ture registrar-registered command-and-control domain
names. Our work is the first to apply this technique to
short-lived RAT command-and-control domain names.

Our high-fidelity sinkhole, RAT-Hole, implements the
handshake protocol and error triggering tests for two
common RATs, DarkComet and njRAT. Based on ex-
tensive empirical testing, we designed a set of heuris-
tics to accurately differentiate sandboxes, scanners, and
victims. We found that only 6,710 (0.8%) of the over
800,000 IP addresses that connected to RAT-Hole were
likely victims. Further, only 3,231 (69%) of the unique
hosts that completed a full RAT handshake with RAT-
Hole were likely victims.

Our targeted RAT controller scanner, RAT-Scan can
differentiate some sinkholes (including RAT-Hole) from
actual RAT controllers by emulating DarkComet and
njRAT victims. We deployed RAT-Scan to scan the en-
tire IPv4 address space and found 6,401 IP addresses
hosting suspected RAT controllers. Differentiating sink-
holes from real RAT controllers is complicated by VPN
proxy services that host both sinkholes and real RAT
controllers. One such service, IPJetable, hosted over 40%
of the suspected RAT controllers that we found.

In summary, in this work, we:
v Propose and evaluate methods for classifying RAT

sandboxes, scanners, and likely victims based on
connection to a sinkhole.

v Conduct a large-scale measurement study based on
sinkholing 6,897 RAT controller domains. We find
that only 6,710 (0.8%) of the over 800K IP addresses
that connect to our sinkhole are likely victims.

v Propose and deploy a RAT controller scanner that is
able to differentiate some sinkholes from real RAT
controllers. Based on our analysis, we find that IP-
Jetable, a free VPN service, hosts over 40% of the
suspected RAT controllers that we contact.

v Identify potentially improved interventions that can
mitigate the threat of RATs.

2 Background
The subject of this work is the relationship between vic-
tims and operators of two commodity RATs, njRAT and
DarkComet. In this section, we provide the necessary
background on RATs for the rest of the paper.

2.1 RAT Components
A typical RAT software package consists of two compo-
nents: a builder program and a controller program. At
the start of a malware campaign, the attacker uses the
builder program to create a stub for installation on a vic-
tim’s computer. The stub contains the code that will run
on the victim’s computer with parameters such as the
host name of the command-and-control server to con-
tact upon infection. During the campaign, the attacker
runs the controller software on the command-and-control
server to interact with the victims. In most cases (e.g., for
njRAT and DarkComet), the controller provides a graphi-
cal user interface and runs directly on the attacker’s com-
puter. The attacker, also called the RAT operator, inter-
acts with the victim via the controller interface.

2.2 RAT Command and Control Protocol
For most RATs, including the ones we study in this paper,
communication between stub and controller begins with
the stub opening a TCP connection to the controller host
name hard-coded in the stub. The attacker provides this
host name to the builder program, which produces the
stub. Once the stub establishes a connection to the con-
troller, RATs can be divided into two classes. In RATs
such as DarkComet, the application-layer handshake is
controller-initiated: the controller speaks first by send-
ing a banner to the stub immediately after accepting the
stub’s TCP connection. In RATs such as njRAT, where
the handshake is victim-initiated, the stub sends the first
handshake message immediately upon connecting (re-
ceiving the SYN-ACK from the controller). Whether
a protocol handshake is victim-initiated or controller-
initiated determines how we scan for controllers and
sinkhole stubs, as described below.

The initial message sent by a stub contains both infor-
mation configured by the builder (e.g., password, cam-
paign ID) as well as information unique to the victim
machine (e.g., username, hostname, operating system,
active window). This information allows the operator to
manage multiple campaigns and also to obtain a sum-
mary of the victim. Some of the information sent by
the stub is potentially Personally Identifiable Information
(PII), introducing ethical challenges to RAT sinkholing,
as we discuss in Section 2.5.

In addition, many RAT protocols use symmetric en-
cryption to obfuscate the command stream and as a form

of access control to the stub. The encryption key is often
embedded in the stub’s configuration, requiring a modest
reverse-engineering effort to extract the key.

2.3 Sinkholing

Sinkholing is a term used to indicate the redirec-
tion of infected machines’ connections from their
intended destinations (e.g., attackers’ command-and-
control servers [36]) to the sinkhole owner. Local
sinkholing efforts, implemented by organizations or in-
dividual ISPs, often involve reconfiguring DNS servers
and routers to block communication with malicious do-
mains or IP addresses. Larger, coordinated sinkhole op-
erations are often part of broader takedown efforts, re-
quiring cooperation between domain registrars and inter-
national authorities. [29, 49]

A prior study found that RAT operators often utilize
Dynamic DNS (DDNS) services [17], which allow their
controllers to migrate between IP addresses without dis-
ruption of operation. Services such as No-IP [35] offer
free DDNS hostname registrations that expire after 30
days. As we will show, operators often allow their host-
names to expire and this provides a large pool of RAT
domain names that can be claimed and sinkholed.

Ideally, a DNS sinkhole operation would be able to
identify all victims associated with its acquired domains
and to accurately measure victims. Unfortunately, scan-
ners and sandboxes introduce a significant amount of in-
telligence pollution, as we will show in our study.

2.4 Scanning

Internet-wide scanning is a popular technique for Inter-
net measurement, particularly in the security community.
It was recently used to measure the Mirai botnet [3], and
is used by academic groups and security vendors alike.
Open-source tools such as ZMap [14] make rapid scan-
ning of IPv4 space accessible to researchers. Services
such as Censys [13] (based on ZMap) and Shodan [32]
also provide access to the results of such scans.

Scanning for RAT controllers presents a similar set
of challenges to sinkholing. RATs often use victim-
initiated handshake protocols to communicate, so sim-
ple port scanning or banner grabbing is often not suffi-
cient to confirm the existence of a RAT controller. One
must also implement the RAT’s handshake, which can
be complicated by the inclusion of encryption and cus-
tom passwords. Proxies may also conceal multiple con-
trollers behind the same address, while a single controller
may reside behind changing addresses (using DDNS, for
example). Finally, many academic groups and security
vendors operate sinkholes, which makes identifying real
RAT controllers more challenging.

2.5 Ethical Framework
Our methodology was approved by our institution’s In-
stitutional Review Boards (IRB) and general legal coun-
sel. The ethical framework that we operated under is that
we only completed the protocol handshake with peers
that contacted us and controllers that are publicly reach-
able. We did not attempt to execute any commands on
infected peers. During the handshake there is some po-
tentially Personal Identifiable Information (PII) that the
peer sends to us, such as the PC name (often the name
of the victim) or full website URLs a person is visiting if
the active window is a browser. In order to mitigate the
potential harm caused by our study, we immediately en-
crypted any fields that might contain PII and did not ever
store an unencrypted version of these fields (PII listed at
Table 3). Our IRB takes the position that IP addresses are
not personally identifiable. In no cases did we attempt to
tie our measurements to an actual identity.

3 RAT-Hole Methodology and Dataset
Our system consists of two primary components: a high-
fidelity sinkhole (RAT-Hole) that imitates RAT con-
trollers, and a high-fidelity scanner (RAT-Scan) that im-
itates RAT victims. We present the details of our RAT-
Scan system in Section 5. Figure 3 shows a timeline of
when each part of our methodology was deployed.

1 2 3 4

Figure 2: The major components of our operation and their in-
teractions with the subjects of our study.

2017

Q1 Q2 Q3

DOMAIN CLAIM

BINARY COLLECTION SINK

2016

Q4

CONTROLLER ACTIVE PROBING

CONTROLLER DOMAIN RESOLUTION

Figure 3: Timeline of data collection phases of our study; Bi-
nary Acquisition (3.1), Controller Domain Resolution (3.2),
Scanning for Controllers (5.4), Domain Claiming (3.2), and
Sinkholing (3.4).

Figure 2 depicts the system’s operation. An attacker
first registers a hostname with a DDNS provider such
as No-IP, creates malware binaries configured with this
hostname, and spreads the binaries to victims in the
wild (¶). Some of the malware is detected and uploaded

to VirusTotal [52] (·). Our VirusTotal-deployed YARA
rules [54] find these malware samples, from which we
extract configurations, including controller IP addresses,
hostnames, and passwords (¸). Many hostnames belong
to No-IP. Our DDNS Claimer registers any expired, No-
IP-owned hostnames and configures them to resolve to
RAT-Hole’s IP range. RAT-Hole then receives all con-
nection attempts to these hostnames. Simultaneously,
RAT-Scan continuously probes all extracted IP addresses
and hostnames for controller activity in the wild (¹).

We limit the scope of our study to two RAT families,
DarkComet and njRAT, since reverse engineering and
implementing parts of their protocols in RAT-Hole and
RAT-Scan is a time-consuming manual effort. These two
were chosen because they are the most popular RAT fam-
ilies for which we were able to obtain source code for
multiple versions, and there is existing documentation
of their protocols to assist with the reverse engineering
process [6,10,20]. As an approximate measure of preva-
lence, we count the number of unique binaries associated
with RAT families uploaded to VirusTotal by using up-
to-date YARA rules for sample hunting. We found that
njRAT and DarkComet were the third and fifth most pop-
ular RATs on VirusTotal when we began our study.

3.1 RAT Binary Acquisition
Using YARA signatures for all known versions of Dark-
Comet and njRAT, we monitored VirusTotal for 9 months
(2016-12-01 to 2017-08-17), obtaining 33,560 samples
in all. Each sample has a configuration, including the ad-
dress of its controller (domain:port or IP:port), its cam-
paign ID, its password, and its version. We attempted to
extract configurations from each sample using an exist-
ing Python tool [5]. Table 1 shows that we were able to
obtain configurations for 22,124 unique samples of Dark-
Comet and 4,535 unique samples of njRAT. Our njRAT
YARA rule can detect subfamilies of DarkComet and
njRAT that our decoder does not support. This is one of
the primary reasons why we fail to decode RAT samples.

Family # Sample % Sample # Unique

DarkComet 22,362 66.6 22,124
njRAT 5,049 15.0 4,535
Other 5 <0.1 -
Failed Decoding 6,144 18.3 -

Total 33,560 100.0 26,659

Table 1: Counts of RAT samples downloaded, both total and
unique, by family. Other are RAT samples that matched our
YARA signatures incorrectly. Failed Decoding are samples
from which configurations could not be extracted.

3.2 Domain Claiming
Domain dataset. We performed an analysis of the do-
main names found in the RAT configurations. Table 2
shows that most of the domains we found that were used
by DarkComet and njRAT are associated with free Dy-
namic DNS (DDNS) providers, and that No-IP managed
60% of all discovered domains (77% of DDNS).

Controller Type # Domain % Domain

No-IP 8,564 60.0
DuckDNS 2,459 17.2
FreeDNS 92 <0.1
DynDNS 38 <0.1

Total Dynamic DNS 11,153 78.1
Unknown 3,120 21.9

Total 14,273 100.0

Table 2: Breakdown of C&C domains in our RAT sample pop-
ulation by Dynamic DNS provider. Unknown encompasses all
domains unrelated to a known DDNS provider.

DDNS Claimer. We developed a web automation toolkit
to automate the process of identifying expired Dark-
Comet and njRAT domains controlled by No-IP and
claiming them. We only claimed domains from No-IP,
since there is manual effort involved in building the web
automation toolkit and No-IP was by far the most popular
free DDNS provider used by DarkComet and njRAT. We
limit our study to only expired domains that we can claim
freely; we do not attempt to seize owned domains, in or-
der to avoid additional disruption to the ecosystem that
we were measuring. As future work we plan to expand
our claiming infrastructure to other DDNS providers and
actual registered domains to understand if this affects the
results of our analysis.

Our DDNS domain claiming operation, which started
on 2017-07-15 and ended on 2017-11-17, claimed 6,897,
or 81%, of the 8,564 DDNS domains managed by No-IP.

3.3 RAT-Hole Operation
Architecture. A RAT-Hole node has three sets of inter-
faces. (1) Management: All management traffic, such as
data backup and database iterations, are performed us-
ing this interface. (2) Sinkholing: This set of virtual in-
terfaces (206 IP addresses) are assigned to the sinkholed
domains by our domain claiming system. We randomly
claimed 2002 expired DarkComet and njRAT from the
set of No-IP domains that we discovered. These domains
were monitored for one hour. After that one hour we re-
leased these domains, waited for 5 minutes for the old
domain names to expire from DNS caches, and then
claimed a new set of 200 randomly selected domains.

2Our paid account with No-IP allowed us to hold 500 domains at
once, but we only claimed 200 at a time due to our limited number of
sinkhole IP addresses.

(3) Decoy: We intentionally did not use 11 of the IP ad-
dresses in our subset as sinkholing interfaces so that we
could identify connection attempts to them that indicate
scanning behavior. We randomly selected IP addresses to
be decoy interfaces.

RAT-Hole includes a Deep Packet Inspection (DPI)
pattern-matching based state machine that maintains the
state of each active TCP connection from the sink-hole
and decoy interfaces. These states are:
• Incoming. RAT-Hole allocates a data structure indexed
by connection ID for any TCP connection that completes
a TCP three-way handshake with the RAT-Hole. Here,
connection ID is a tuple of source IP address, destination
IP address and TCP port. This ID is used as an index by
RAT-Hole to locate the previous states of the connection
and to update the connection’s state.
• Protocol detection. Once a TCP connection is estab-
lished RAT-Hole waits three seconds to receive data. Af-
ter three seconds it will probe the peer by sending a Dark-
Comet command-and-control banner to determine if it is
an njRAT stub and update the state of the connection.
• Victim-initiated RAT protocol detection. When
RAT-Hole receives an initial message from a completed
TCP connection before the three second timer expires,
it will examine all of our regular expression-based RAT
family detection signatures over the payload to identify
the incoming peer’s protocol. We have created 16 signa-
tures that are able to detect the initial message sent by
common versions of njRAT, XtreamRAT, ShadowTech,
NetWire, H-Worm, LuminosityLink, Black WorM, and
KJ w0rm. However, we implement the complete njRAT
handshake to determine if it is an actual njRAT stub or
intelligence gathering operation. Although we did not
claim any domains used by these variants, we did see
initial messages for these other RAT families.
• Controller-initiated RAT protocol detection. If the
three second timer expires, then RAT-Hole will probe the
peer by sending a DarkComet banner. For DarkComet
(refer to Appendix D for more details on DarkComet pro-
tocol behavior), we send a series of 125 banners. After
each banner is sent the connection is terminated and the
stub will attempt to connect again if the stub conforms
to the DarkComet protocol. This ordered set of banners
is comprised of: (1) a randomly generated banner (this
is to test if the stub deviates from the protocol by ac-
cepting any banner), (2) a set of 20 default DarkComet
banners (this is to see if the stub will incorrectly accept
the default banner), (3) a complete set of valid banners
for the current set of domain(s) being sinkholed by that
interface (this is to see if the stub responds correctly to a
valid banner), and (4) the remainder of the 125 banners
are randomly generated (based on our reverse engineer-
ing we found that after 124 banners are received by a

stub it will lock up and stop attempting further connec-
tions until the RAT process is restarted).
•Handshake test. We implemented a handshake test for
both DarkComet and njRAT which implements each full
RAT handshake protocol. In addition, it includes specif-
ically malformed messages in order to trigger error han-
dling and identify likely RAT stub execution as opposed
to a scanner that has reimplemented the protocol. This
methodology is similar to that of Marczak et. al. to fin-
gerprint malware command-and-control servers [30]. We
send a malformed command at the end of the njRAT
handshake (see Appendix C) and if the expected error
handling response is received, we mark the connecting
peer as conforming to the standard implementation of
the protocol. In the same vein, for DarkComet (see Ap-
pendix D) we observe and enumerate the execution pat-
tern. For instance, we expect a true DarkComet infec-
tion to stop operating after connecting to RAT-Hole as
a result of 124 attempts or more. Note that our hand-
shake test does not distinguish between stub execution
in sandbox and victim machine. However, it does per-
form well at identifying RAT scanners specifically those
that do not implement the complete RAT protocol hand-
shake and true execution behavior of the RAT protocol
as standardly implemented.
•Clean up. After handshake probing is completed, RAT-
Hole closes the connection and removes the state for that
connection ID. RAT-Hole logs the final state of the con-
nection, which can be one of three states: (1) no valid
banner was received; (2) a valid initial banner was re-
ceived, but the handshake was not completed; (3) the
handshake was completed successfully.

Handshake metadata. During the RAT handshake,
the stub includes a number of fields in the handshake that
we parse and store in the database. A list of the fields that
we parse and store is shown in Table 3. Using AES we
encrypt any fields that might contain potential PII before
storing them in our database. From these fields, we create
a fingerprint that is largely unique for each infection by
combining the PC-NAME, USERNAME, and HWID. VSN and
UUID define the HWID for njRAT and DarkComet, respec-
tively. (See Appendix C, D.) This fingerprint enables us
to persistently identify and thus enumerate unique RAT
peers despite victim IP address churn.

RAT-Hole classification. Based on this, we classify
peers that connected to RAT-Hole into five categories:
1. Unknown: These peers send a payload that is not
known to RAT-Hole. Internet wide scanners (e.g., ZMap)
and other custom IP intelligence operations are exam-
ples of these peers. We have also found that these un-
known payloads could be from RAT families that RAT-
Hole does not support, since some of the sinkholed do-
mains are used by multiple RAT infection campaigns.

2. Low Fidelity (LF) Scanner: These peers do not com-
plete the RAT handshake. Based on our analysis they of-
ten send many fingerprints, connect from many Src-IP
addresses, connect to our decoy interfaces, and their Src-
IP address might be included in known scanner list(s).
3. High Fidelity (HF) Scanner: These peers complete
the RAT handshake and present one or more highly
anomalous characteristics described in Table 4.
4. Sandbox Execution: These peers complete the RAT
handshake, but exhibit one or more of the characteristics
commonly associated with a sandbox execution, such as
a short execution duration which we defined as slightly
more than the longest default execution duration value
(600 seconds) of the major sandboxes we analyzed. Ta-
ble 4 includes a compete list of these heuristics.
5. Victim: These are likely real infections.

3.4 Operation Summary

Field Description PII

ACTIVE WINDOW Title and content of currently open window X
CAMPAIGN ID Stub’s identity which operator defines X
COUNTRY Geo-Location of victim’s machine X
HWID Hardware identity of victim’s machine X
INSTALL DATE First day on which stub was executed -
LAN IPDC Private IP address of victim’s machine -
LANGUAGEDC Language setting of victim’s machine -
OS Operating system name of victim’s machine -
PC NAME PC name of victim’s machine X
USERNAME Username of victim’s machine X
PORTDC Port number of stub -
VERSION Version of RAT -
WAN IPDC Public IP address of victim’s machine -
WEBCAM FLAG Webcam capture is supported -

Table 3: Fields extracted from handshakes for DarkComet and
njRAT families. PII indicates whether we consider the field to
be potential PII of the victim, and determines whether we AES
encrypt the value. (DC) identifies DarkComet specific fields.

Over 31 days (from 2017-08-15 to 2017-09-16), we
sinkholed 6,897, or 81%, of the 8,564 No-IP domains.
4,493 of these domains came from DarkComet samples,
2,381 from njRAT samples, and 23 were found in sam-
ples of both families. Over the 31 days it was deployed,
RAT-Hole was in possession of domains for 23.1 total
days - an average of 17.7 hours per domain, distributed
randomly. During this time, it received 153,100,000 TCP
connections. Table 5 provides a high-level view of these
connections, broken down by determined peer type.

We performed an analysis of the “Unknown” peer type
from Table 5 which composed 815,455 (98.5%) of all
IP addresses that completed a three-way TCP handshake
connection to RAT-Hole, but were not classified by RAT-
Hole as peers related to either njRAT or DarkComet. We
suspected that some of these connections might be other
RAT families when an operator reuses the same DDNS
domain for other RAT campaigns. In order to provide

some measurements of this phenomenon, RAT-Hole im-
plements a simple payload parser for the first message
of the handshake for 19 other popular RAT families in
addition to the complete RAT handshake protocol for
njRAT and DarkComet RAT families. Of these peers,
73.6% sent no additional TCP messages after the hand-
shake, 31.9% sent unknown payloads, and 1,463 (<1%)
were detected as other types of RAT families. The small
degree of overlap indicates that some IP addresses pre-
sented multiple behaviors; see Table 17 in Appendix E.

We also wanted to understand if this pollution from
likely sandboxes and scanners could be filtered using
data from IP telescopes (unused IP address subnets that
act as large sinkholes). To evaluate this possibility, we
looked for overlap in IP addresses during our deployment
period from a /24 sized (256 IP addresses) IP telescope
located in India. We find that there is not much over-
lap. Only 31,014 (3.8%) of the IP addresses we classified
as Unknown appear in our telescope data, and less than
0.01% overlap with any other category of IP addresses.
This suggests that most of RAT-Hole’s pollution is tar-
geted and thus not filterable. See Appendix B for details.

4 RAT-Hole Validation
This section details our efforts to validate our method-
ology for differentiating RAT scanners, sandboxes, and
victims. Validating our methodology is challenging since
we have limited ground truth, except in some instances
where we could create it (e.g. Section 4.3). In this
section, we describe our methods for building a high-
confidence set of RAT scanners, sandboxes, and victims
based on heuristics specific to DarkComet and njRAT.

4.1 Low Fidelity (LF) Scanners
Recall that low fidelity scanners are peers3 that sent valid
initial handshake messages, but did not complete the
handshake process. In Table 6, we separate 1,421 IP ad-
dresses that are all njRAT into five clusters based on their
behavior. The first cluster are source IP addresses that at-
tempted to connect to one of our decoy IP addresses. This
is a fairly strong indication of broader IP address scan-
ning being performed by this source IP address and we
are confident that these are scanners. As a point of ref-
erence no high fidelity scanner, sandbox, or victim con-
nected to one of our decoy IP addresses.

For cluster , 7,607 (99.7%) of the fingerprints only
attempted to establish one connection. This is a strong
indication of a scanner that is randomizing its fin-
gerprint. Another two fingerprints had multiple unique
INSTALL DATE fields, indicating the possibility that they
are sandboxes. For 19 of the fingerprints, we did not de-
tect any anomalies. These 19 peers could be real victims

3In the context of connections to RAT-Hole, a peer is identified by
its unique fingerprint. See Section 3.3 for details.

Peer Type Anomaly Anomaly Type Description

HF Scanner Empty Install Date Field Format Peer(1) sent RAT payload with an empty installed date
VSN FormatNJ Field Format Peer sent RAT payload with malformed VSN
HWID FormatDC Field Format Peer sent RAT payload with malformed UUID
Empty GeoLoc Field Format Peer sent RAT payload with an empty Geo-location data
GeoLoc Format Field Format Peer sent RAT payload with malformed Geo-location data
Mismatch SRC-IPDC Protocol Behavior Peer sent RAT payload with Src-IP address other than peer Src-IP address
Mismatch DST-PORTDC Protocol Behavior Peer sent RAT payload with Dst-Port number other than peer Dst-Port number
124+ Banners: SessionDC Protocol Behavior Peer tried to connect to RAT-Hole more than 124 times during a session
Multiple OS Name: Session(2) Protocol Behavior Peer sent RAT payload with different OS names across different connections
Multiple Passwords: SessionDC Protocol Behavior Peer tried to connect to RAT-Hole using multiple passwords during a session
Solo Connection Attempt: Global Peer Behavior Peer tried to connect (probe) to RAT-Hole only once
Unexpected Dst IP: Decoy Peer Behavior Peer contacted one of the Decoy interfaces

Sandbox Multiple Install Date: Session Protocol Behavior Peer sent RAT payload with multiple install date during a session
Multiple Campaign ID: Session Protocol Behavior Peer sent RAT payload with multiple Campaign ID during a session
Multiple Passwords: Global(3)DC Peer Behavior Peer tried to connect to RAT-Hole using multiple passwords across multiple sessions
Small Activity Duration: Global Peer Behavior Peer were active for small durations (less than 600 seconds) for all sessions
Low Active Windows: Global Peer Behavior Peer sent RAT payload with small number of active windows(4) during all sessions
Multiple Dsts: Session Peer Behavior Peer contacted multiple(5) Dsts (Dst-IP and Port) during a session

Table 4: Anomaly, Anomaly type and their descriptions used by RAT-Hole peer classifier.
(1) Peers are identified by Fingerprint. (2) Session = FP + Src-IP + Dst-IP + Dst-Port. (3) Global: All the sessions belonging to a
fingerprint. (4) Condition in Row 2 is checked first and Row 3 is followed. (5) We account for domain rotation where a domain is
registered under the different RAT-Hole interfaces. (DC) DarkComet specific rule. (NJ) njRAT specific rule

Connection Src-IP Fingerprint (FP) ASN† Country†

Peer Type Count Pct. Count Pct. Count Pct. Count Pct. Count Pct.

Victim 5,320,297 3.5 6,710 0.8 3,231 0.1 1,079 10.1 108 50.0
Sandbox 372,883 0.2 1,181 0.1 877 <0.1 418 3.9 85 39.4
HF Scanner 563,019 0.4 1,349 0.2 589 <0.1 347 3.2 73 33.8
LF Scanner 17,746,010 11.6 1,421 0.2 4,114,064 99.9 390 3.6 80 37.0

Unknown 129,097,791 84.3 815,455 98.5 N/A N/A 10,418 97.2 216 100.0
Total 153,100,000 100.0 828,137 100.0 4,118,761 100.0 10,722 100.0 216 100.0

Table 5: Summary of connections received by RAT-Hole, grouped by peer type, fingerprint, Src-IP, ASN, and country. The first
three rows (Victims, Sandboxes, and HF Scanners) are detailed in Table 8, while LF Scanners are described in Table 6. †Note that
ASN and country show a significant amount of overlap across peer types.

FP Src-IP

Cluster Name Count Pct. Count Pct.

¬ Decoy Interface 4,105,659 99.8 28 2.0
 Many FPs Per Src-IP 7,628 0.2 39 2.7
® Many Src-IPs Per FP 261 <0.1 827 58.2
¯ Many FPs, Many Src-IPs 6 <0.1 17 1.2
° Single FP, Single Src-IP 510 <0.1 510 35.9

Total 4,114,064 100.0 1,421 100.0

Table 6: Breakdown of LF (Low Fidelity) Scanners

that speak a version of the protocol that is incompatible
with RAT-Hole, or that have persistent connectivity is-
sues that prevented them from completing a handshake.
We conservatively label these peers low fidelity scanners.

Our anomaly analysis for fingerprints in cluster ®
shows that 140 (53.6%) of the fingerprints have mul-
tiple unique INSTALL DATE fields, likely indicative of
scanners that update INSTALL DATE based on the cur-
rent time. Another 24 (9.2%) had an incorrectly format-

ted HWID, indicating scanners with protocol formatting
errors. The remaining 97 (37.2%) had no anomalies, but
again we conservatively label them low fidelity scanners.

Three of the six fingerprints in cluster ¯ had multi-
ple unique INSTALL DATE fields, again indicating likely
scanners that update INSTALL DATE based on the current
time. The remaining three did not have anomalies, but we
conservatively label these peers as low fidelity scanners.

Anomaly Type FP

Field Format Peer Behavior Protocol Behavior Count Pct.

X 60 11.8
X 47 9.2
X X 9 1.8

X X 6 1.2
X X 1 0.2

Remainder 387 75.9
Total 510 100.0

Table 7: Breakdown of °: Single FP Single Src-IP

We did not observe any RAT protocol violations from
387 out of 510 fingerprints (remainders at Table 7) be-
longing to the peers that had one fingerprint and one IP
address (°). On the average peers in this cluster failed
3,000 (90%) attempted connections and a minimum of
100 (2%) attempted connections. Thus it is unlikely that
intermittent connectivity issues prevented the completion
of the handshake at least once. It is unclear if these are
victims that implemented a version of the protocol that is
incompatible with our RAT-Hole, persistent connectivity
issues, or if they are low fidelity scanners that did not
implement the entire protocol. We conservatively label
these peers as low fidelity scanners.

4.2 Victims, Sandboxes, & High Fidelity
(HF) Scanners

We classify a peer as a high fidelity scanner if it is able
to complete the handshake, but it violates the field for-
matting, exhibits peer behavior, or protocol behavior that
indicates it is likely a scanner that is reimplementing the
njRAT or DarkComet stub instead of an actual stub ex-
ecution. A peer is conservatively classified as a sandbox
if it exhibits peer or protocol behavior that indicates it is
likely a sandbox. Finally, if a peer does not violate the
protocol or exhibit any anomalous behavior we classify
it as a likely victim. Table 8 shows that 69% (3,231) of
all peers that complete the handshake with our RAT-Hole
are classified as victims. This indicates the significant de-
gree to which high-fidelity scanners and sandboxes will
pollute sinkhole results if the sinkhole eschews a deeper
analysis of the peers similar to RAT-Hole.

Table 8 also shows the breakdown of types of anoma-
lous behavior and protocols violations observed by likely
high fidelity scanners and sandboxes. For high fidelity
scanners they had an incorrectly formatted field or an
empty INSTALL DATE for 238 (40.4%) and 174 (29.5%)
of the fingerprints accordingly. Sandboxes exhibit short
execution durations 634 (72.2%) and multiple unique
INSTALL DATE fields in 259 (29.5%) of the fingerprints.
While we cannot compute error rates for our classifica-
tions due to the lack of ground truth, we are fairy confi-
dent that our methodology, while not perfect, is reason-
ably accurate. In the next section we present the results
of seeding malware analysis portals to further validate
our classification methodology. Finally, what we clas-
sify as victims are the fingerprints that do not exhibit any
anomalous behavior and are likely to be actual victims.

4.3 Honey Sample Seeding
In order to evaluate our classification in a setting where
we have ground truth, we conducted an experiment
where we uploaded DarkComet and njRAT samples to
malware analysis services. Our expectation for this ex-
periment is that all of the connections will be from scan-

Anomaly Type FP

Field Peer Protocol
Peer Type RAT Family Format Behavior Behavior Count Pct.

HF Scanner DarkComet X 130 46.1
HF Scanner DarkComet X X 35 12.4
HF Scanner DarkComet X X 11 3.9
HF Scanner DarkComet X 16 5.7
HF Scanner DarkComet X X 5 1.8
HF Scanner DarkComet X 85 30.1

Subtotal 282 100.0

HF Scanner njRAT X 200 65.2
HF Scanner njRAT X X 31 10.1
HF Scanner njRAT X X X 1 0.3
HF Scanner njRAT X X 6 2.0
HF Scanner njRAT X 6 2.0
HF Scanner njRAT X X 7 2.3
HF Scanner njRAT X 56 18.2

Subtotal 307 100.0

Sandbox DarkComet X 318 63.0
Sandbox DarkComet X X 26 5.2
Sandbox DarkComet X 161 31.9

Subtotal 505 100.0

Sandbox njRAT X 294 79.0
Sandbox njRAT X X 6 1.6
Sandbox njRAT X 72 19.4

Subtotal 372 100.0

Victim DarkComet 841 26.0
Victim njRAT 2,390 74.0

Subtotal 3,231 100.0

Total 9,191

Table 8: Breakdown of Anomalies for Different Peer Types

ners or sandboxes, which will enable us to validate our
classification methodology.

Anomaly Type FP

Field Peer Protocol
Peer Type RAT Family Format Behavior Behavior Count Pct.

HF Scanner njRAT X X 4 66.7
HF Scanner njRAT X X X 2 33.3

Subtotal 6 100.0

Sandbox DarkComet X 58 98.3
Sandbox DarkComet X X 1 1.7

Subtotal 59 100.0

Sandbox njRAT X 48 96.0
Sandbox njRAT X X 2 4.0

Subtotal 50 100.0

Victim njRAT 2 100.0

Subtotal 2 100.0

Total 117

Table 9: Breakdown of Anomalies for Different Peer Types for
Honey Sample Seeding Experiment

Using our automated RAT Seeder, we generated 84
DarkComet and 84 njRATsamples. Each of these sam-
ples has a unique campaign ID, IP address, and TCP
port configuration that directed the sample to connect
to one of our RAT-Hole IP addresses on a different net-
work segment, which we only used for this experiment.
We uploaded 4 DarkComet and 4 njRAT samples to 21
different malware analysis services, of which only 9 of

the services initiated a connection for at least one of our
samples. A full list of these services and the ones that
initiated a connection can be found in Table 18.

We chose these services based on their popularity
among malware researchers and threat hunters, ease of
utilization and being relativity cheap or free. Only 9 of
these services executed one or more of our honey sam-
ples during the course of our experiment. The configu-
ration uniqueness of these samples allowed us to asso-
ciate received connections to RAT-Hole with a sample
and portal. Table 9 shows the breakdown of fingerprints
and associated categorization of peers by our classifica-
tion engine. Note that we used the same classification
methodology as for our in the wild sinkholing experi-
ments and only incorrectly classified 2 out of 117 (1.7%)
fingerprints as victims. We inspected the active windows
for these two fingerprints and found that both appear to
be manually reverse engineering the samples using exe-
cutable debugging and network protocol analysis tools.
Recall that for this experiment, we did not encrypt the
active windows since we did not expect any real victims.
We also classified some njRAT peers as high fidelity
scanners. We can confirm that when we tested these sam-
ples before submitting them they did not have any proto-
col violations. This gives us further confidence that our
classification methodology is fairly accurate.

5 RAT-Scan Operation
5.1 Controller Tracking
In order to maintain an updated list of potential
command-and-control addresses, we resolved each of the
14,273 domains we extracted from our malware samples
hourly, beginning on 2017-04-21 and ending on 2017-
11-26. Over this period, we recorded 67,023 resolutions
to unique IP addresses. We augmented these with pas-
sive DNS records dating back to 2010 from Farsight [19],
VirusTotal, and PassiveTotal [43].

5.2 Active Scanning
We continuously probed each of these 67,023 IP ad-
dresses hourly for evidence of RAT controller software.
We checked for services running on any port configured
in any sample related to the IP address or related to a
domain that resolved to said IP address at any time.

RAT-Scan probes for controllers of both DarkComet
and njRAT, emulating a newly-infected victim contact-
ing the controller for the first time. RAT-Scan first ap-
proaches every connection passively, waiting to receive
an initial DarkComet handshake banner. If it does not re-
ceive a banner before a three second timeout, it restarts
the connection and treats it actively, sending the initial
njRAT handshake banner. Regardless of which hand-
shake proceeds, the scanner completes the entire hand-
shake with the controller if possible.

Sinkhole identification. RAT-Scan can distinguish
between legitimate controllers and some sinkhole oper-
ations, including our own RAT-Hole. If a controller be-
gins a handshake but does not complete it, it is labeled
as a sinkhole. Additionally, after successfully complet-
ing a handshake with a controller, our scanner attempts to
elicit an improper response to a second handshake with
a different configuration (e.g. different password). Any
response is cause for sinkhole classification.

5.3 Detected Service Classification
The actors that our scanner probed during its operation
fall under one of the following classes: (1) a controller
completes an njRAT or DarkComet handshake flawlessly
and does not respond to solicitation for improper behav-
ior; (2) a sinkhole either makes an error during a RAT
handshake, or accepts an improper second handshake af-
ter the first (like RAT-Hole).

Important caveats. RAT-Hole and RAT-Scan have a
significant disparity in the confidence of their classifica-
tions. RAT-Hole makes use of several protocol artifacts
in the DarkComet and njRAT handshakes to detect im-
poster victims. Because RAT victims are intentionally lo-
quacious during the handshake, this is possible; however,
RAT controllers are oppositely taciturn, revealing practi-
cally nothing to RAT-Scan during the handshake. Dark-
Comet controllers acknowledge a victims’ correct pass-
word and njRAT controllers do not acknowledge this.
Therefore, when we classify a host as a DarkComet sink-
hole we are fairly confident, but when we label a host a
controller it is possible that it is a high-fidelity sinkhole
or sandboxed controller.

Attempted validation. The investigation by Recorded
Future and Shodan in 2015 that resulted in Malware
Hunter [22] flagged 696 IP addresses as RAT controllers,
10 of which appear in our dataset. However, Malware
Hunter has since flagged RAT-Hole as a RAT controller
and high-priority threat, so we question the value of any
such threat intelligence feed as proper ground truth. We
leave developing a method for improved validation of our
scanning results as future work.

5.4 Operation Summary

Controller Type # IP % IP

njRAT 4,584 71.6
DarkComet 2,032 31.7
DarkComet (Unknown Password) 11 0.2

Total 6,401 100.0

Table 10: Breakdown of RAT controllers detected on IP ad-
dresses responsive to RAT-Scan. Some IP addresses hosted
multiple types of RAT controller.

Our scanning operation began on 2017-05-11 and
ended on 2017-11-25, for a total of 198 days. During
this period, we established 86,694 connections to 6,401
IP addresses exhibiting behavior indicative of RAT con-
troller software; 2,032 DarkComet controllers and 4,584
njRAT controllers, with some IPs hosting both. Table 10
provides a summary of our scanning operation.

Other than on RAT-Hole itself, our sinkhole detection
methods did not trigger during this study. We are led to
believe that all controllers reported here are either legiti-
mate instances of the controller software, or services that
have implemented the handshake properly and maintain
a single configuration. We suspect that such services ex-
ist; however, we currently have no way of distinguishing
them from legitimate controllers. Further, we have no
reason to believe that we encountered any high-fidelity
sinkholes similar to RAT-Hole.

6 Measurements and Analysis
6.1 Victim Analysis
IP address churn. We find that most victims do not
change their IP address. 60% of victims use one IP ad-
dresses, with an additional 20% of victims using just
two IP addresses. Note that we might not observe all of
the victims’ IP address changes due to our incomplete
sinkholing of domains.
Webcam availability. As part of the handshake, Dark-
Comet and njRAT victims report if they have a camera
device. We found that 1,725 (53.4%) of victims have a
camera, making them susceptible to visual monitoring
(unless they have physically covered the camera).
Infected servers. 21 njRAT victims reported a server
version of Windows (i.e., Windows Server 2012) running
on the peer. We manually investigated the Autonomous
System Numbers for the IP addresses used by these peers
and confirmed that they were located on corporate net-
works or cloud hosting providers. This suggests that
some higher profile peers associated with companies are
infected with njRAT, providing the operator with an en-
try point into their systems.
Infection longevity. Our methodology is predicated on
victims remaining after the command-and-control dy-
namic DNS domain used by the attacker expires, which
occurs 30 days after registration with No-IP. Figure 4
shows the fraction of domains still receiving legitimate
victim connections as a function of time since the dy-
namic DNS domain expired. Because our sinkholing pe-
riod does not span our full domain monitoring period
(31 days from 2017-08-15 to 2017-09-16, and 220 days
from 2017-04-21 to 2017-11-26; see Figure 3), we do not
necessarily known victim availability immediately after
domain expiration. Figure 4 shows an upper and lower
bound curve; the upper bound corresponds to the case
that at least one victim connection occurred during the

0 20 40 60 80 100 120 140 160 180

Days Between Domain Expiration and Victim Connection

0%

10%

20%

30%

40%

50%

60%

F
ra

ct
io

n
o
f

D
om

ai
n

s

Probability of Domain Yielding Victim N Days After Expiration

Connection just before observation

No connection before observation

Figure 4: PDF showing the probability that a domain we sink-
holed would yield a victim connection N days after its most re-
cent registration by another party. 1,686 of the 6,897 domains
we sinkholed had no resolution known to us and were excluded,
leaving 5,211 domains (824 yielding victim connections).

period when the command-and-control domain was not
monitored, and the lower bound corresponds to the case
that no victim connections occurred during the same pe-
riod. Thus, 120 days after the command-and-control do-
main expired, 10% of domains were still receiving con-
nections from legitimate victims.

In all, 975 domains received victims, 14% of the 6,897
we sinkholed. 1,686 of these domains had no known his-
toric resolution from any of our sources, including threat
intelligence feeds and our own resolver.

6.2 Attacker Campaign Analysis

0 20 40 60 80 100 120 140 160 173

Victims Received by Individual Domain

0%

20%

40%

60%

80%

100%

F
ra

ct
io

n
of

D
om

ai
n

s

Percentage of Domains Receiving N or Less Victims

90% of domains (875/975)

95% of domains (926/975)

Figure 5: CDF showing the number of victims (by fingerprint)
received by a given domain. This plot only includes the 975
domains which yielded victim connections.

Only 975 of the domains we sinkholed yielded victim
connections, yet they received connections from 3,231
unique victims. In Figure 5, we examine the number of
unique victims any one domain received. 43% of do-
mains received only a single victim; 90% received at
most 20 unique victims; 95%, 41 or less. Three outlier
domains received over 100 victims. This disparity sug-
gests that some attackers are distributing their malware
more widely, or are more proficient at compromising
their targets, than others.

We also find that 45% of victims connected to just
one domain. 90% of victims connected to four or less
different domains, while 95% connected to five or less.

These victims connecting to multiple different domains,
and domains receiving tens of unique victim connec-
tions, suggest a number of phenomena. Attackers may be
using sets of domains interchangeably, or victims may be
infected by multiple different attackers.

To investigate the former, we examine the samples
we downloaded from VirusTotal. Our 975 domains are
found in 1,429 unique samples. Once again, there is bidi-
rectional overlap. Only eight samples contain more than
one domain in their configurations; 1,421 have a single
domain. Multiple domains being in a single sample is
our strongest indicator of them being shared by an at-
tacker. Oppositely, 246 domains are found in more than
one sample’s configurations; the remaining 729 domains
are each present in just one sample. Some domains are
shared by many samples - one being found in 24 unique
DarkComet samples. Unfortunately, these domains fur-
ther muddy our analysis. In the case of the domain shared
by 24 samples, only two samples clearly belong to the
same actor (based on shared configuration parameters).

Our methodology cannot definitively answer whether
attackers use rotating domains, or whether victims are
multiply infected by different campaigns. Based on our
evidence, both appear probable, and confound our at-
tempts at differentiating attackers and their victims.

6.3 Geographic Analysis
All IP-based geolocations were performed using Max-
Mind’s GeoIP2 Precision Insights service.

njRAT DarkComet

Country Proxy Other Country Proxy Other

France (FR) 3,829 69 United States (US) 4,552 1,881
United States (US) 714 167 France (FR) 2,771 1,623
Sweden (SE) 433 19 Sweden (SE) 1,051 318
United Kingdom (GB) 160 63 Netherlands (NL) 706 256
Canada (CA) 152 12 Germany (DE) 511 3,077
Netherlands (NL) 96 9 United Kingdom (GB) 487 1,494

... ...
Algeria (DZ) 22 7,820 Turkey (TR) 130 21,913
Brazil (BR) 42 7,206 Russia (RU) 233 17,020
Egypt (EG) 27 5,655 Algeria (DZ) 13 13,202
Morocco (MA) 3 4,293 Morocco (MA) 2 6,693
Iraq (IQ) 5 2,001 Egypt (EG) 4 4,872
Tunisia (TN) 0 1,504 Saudi Arabia (SA) 0 4,491
Saudi Arabia (SA) 0 1,297 Ukraine (UA) 75 3,971
Indonesia (ID) 8 732 Brazil (BR) 78 3,257
Libya (LY) 0 682 Pakistan (PK) 28 2,935

Other 524 6,113 1,921 36,919
Total 6,015 37,642 12,562 123,922

Table 11: Geolocations of historic controller IP addresses based
on DNS history

Proxies. MaxMind provides information regarding the
likelihood that an IP address is a proxy, as well as IP
ownership (which can be used to manually determine
proxies). We use this information to separate proxies
from non-proxies, as in Tables 11 and 12. A large por-
tion of the controllers in our data set appear to be uti-
lizing proxies from certain countries like France, Swe-
den, and the U.S. We manually investigate the largest

njRAT DarkComet

Country Proxy Other Country Proxy Other

France (FR) 2,625 4 France (FR) 258 41
Sweden (SE) 184 0 Sweden (SE) 16 0
United States (US) 16 2 United States (US) 12 6

... ...
Brazil (BR) 2 441 Turkey (TR) 0 594
Morocco (MA) 0 382 Ivory Coast (CI) 0 207
Algeria (DZ) 0 281 Russia (RU) 11 201
Egypt (EG) 0 178 India (IN) 1 128
Korea (KR) 0 80 Thailand (TH) 0 102
Tunisia (TN) 0 65 Vietnam (VN) 0 88
Iraq (IQ) 0 58 Ukraine (UA) 8 63
Saudi Arabia (SA) 0 52 Egypt (EG) 1 41
Thailand (TH) 0 39 Azerbaijan (AZ) 0 37
Turkey (TR) 0 37 Malaysia (MY) 0 33

Other 17 121 35 156
Total 2,844 1,740 342 1,697

Table 12: Geolocations of probed controller IP addresses

in Appendix A. In short, we find two VPN providers
(IPjetable [24] and Relakks [42]) account for 40% and
3% of all actively-probed controllers, respectively, while
prominent VPS services like Amazon AWS, Microsoft
Azure, and Digital Ocean are also frequently abused.

As the geolocation results of the proxies only serve to
muddle the geospatial relationships between victims and
attackers, we filter them from the following analyses. We
report only on those results in the Other columns of the
geolocation tables.
Controller geography. Tables 11 and 12 show the ge-
olocations of historic and actively-probed controller IP
addresses, respectively. We find both to have heavy pres-
ences in North Africa and the Middle East. Outliers in-
clude Brazil and Russia, both of which tend to corre-
spond with victims in bordering nations.
Victim geography. Exploring Table 13, we find that vir-
tually every country has some RAT victims with Brazil
being the top location for victims of both DarkComet and
njRAT, as shown in Table 13. We find what appears to be
geographic concentrations of DarkComet and njRAT vic-
tims in South America and North Africa / Middle East,
including some bordering countries. We also find that
DarkComet is used to infect a larger percentage of vic-
tims in Russia and bordering countries. Note that these
measurements might be biased by our methodology of
acquiring RAT samples and sinkholing DDNS domains.
Controller-victim geography: Recall that during the
sinkholing portion of the experiment, we registered the
command-and-control domain, directing all potential
victims to our server. During this period, we were able
to observe all victims that attempted to connect to the
controller. Prior to the sinkholing period, controller do-
mains may have been held by the original controller or
may have been sinkholed by researchers or vigilantes. In
addition, for four and a half months prior to the sinkhol-
ing experiment, we resolved all controller domains to de-

njRAT DarkComet

Country #Src-IP #FP Country #Src-IP #FP

Brazil (BR) 2,416 1,070 Brazil (BR) 318 178
Egypt (EG) 331 94 Turkey (TR) 188 130
Iraq (IQ) 207 82 Russia (RU) 184 127
Argentina (AR) 138 62 Ukraine (UA) 44 38
Algeria (DZ) 149 60 Egypt (EG) 74 36
Peru (PE) 131 55 Poland (PL) 28 26
Vietnam (VN) 117 53 Philippines (PH) 22 21
United States (US) 54 47 Thailand (TH) 35 17
Venezuela (VE) 105 47 Vietnam (VN) 16 14
India (IN) 88 46 Algeria (DZ) 21 13
Turkey (TR) 93 40 Bosnia (BA) 17 13
Thailand (TH) 189 38 Indonesia (ID) 12 11
Mexico (MX) 66 37 India (IN) 11 10

Other 1,401 659 265 207
Total 5,485 2,390 1,235 841

Table 13: Geolocations of victim IP addresses

termine whether they were registered, and, if registered
whether they had an associated A record, and whether
the corresponding hosts behaved correctly (as a con-
troller). Thus, for each domain, we have the IP addresses
of all controllers that held the domain, as well as of all
victims that attempted to connect to the domain dur-
ing the sinkholding period. (Note that two periods are
necessarily disjoint: both we and the original controller
cannot hold the same domain at the same time.) Fig-
ure 6 shows the geographic relationship between respon-
sive controllers and the victims, using the geolocation
methodology above. Each cell of the matrix shows the
number of distinct campaigns (domains) associated with
the given country pair. In cases where a domain resolved
to more than one country or where victims where located
in more than one country, the domain contributed a frac-
tional weight to each cell in proportion to the number of
controller-victim pairs of the domain from the country
pair, so that the total contribution of each domain was
1. Figure 6 shows only the top 25 countries, ordered by
the greater of the number of victims and controllers in the
country. The dominant feature of the data is the controller
and victim being located in the same country, visible as a
concentration around the diagonal in the matrix. In addi-
tion, there were 5 campaigns with a controller in Ukraine
(UA) and victims in Russia (RU). This may be due to a
common infection vector, as Ukraine has a large Russian-
speaking population and its users may frequent the same
Russian-language sites. The incidence of controllers and
Russia and victims in Brazil (BR) is more puzzling; al-
though both Russia and Brazil have large victim and con-
troller populations, there is no obvious reason why con-
trollers in Russia might target victims in Brazil specifi-
cally. Another possibility is that the controllers were us-
ing a proxy in Russia that was missed by our filtering.

Figure 7 shows the same type of data, but for all con-
trollers using the historic controller dataset. Note that

B
R

R
U

D
Z

T
R

U
A

F
R

U
S

S
A

E
G

M
A

V
E

A
R IQ V
N

D
E

C
O

E
S

T
N

P
E

P
K

S
Y

P
H

S
D IN G
B

P
L

Victim Country

BR

RU

DZ

TR

UA

FR

US

SA

C
on

tr
o
ll
er

 C
ou

n
tr

y

3 1 1 1 1 1 1 1 1 1 1 1 1

5 4 1 1 1 1 1 1 1 1 1

3 1 2 1 2 3 1 1 1 1 1 1 1 1 1 1 1 1

2

5 3

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1

1 1 1 1 1 1 1 1

Figure 6: Relational matrix comparing geolocations of actively-
probed controller IP addresses to received victim IP addresses,
per sinkholed domain. Proxy IP addresses are filtered.

B
R

R
U

G
B

U
S

U
A

D
Z

F
R

M
A

T
R

IQ R
O

E
G

S
A

L
Y

T
H

D
E

E
S

K
Z

B
Y

A
U

J
O

M
D

U
Y

S
G IT

Victim Country

BR

RU

GB

US

UA

DZ

FR

MA

TR

IQ

RO

EG

SA

LY

TH

DE

ES

KZ

BY

AU

JO

MD

UY

SG

IT

D
om

ai
n

 R
eg

is
tr

at
io

n
 C

o
u

n
tr

y

212 6 4 7 3 7 5 7 13 6 5 18 4 9 5 7 1 1 1 1

81 47 4 9 13 11 1 5 20 9 7 31 10 7 6 5 2 4 5 1 1

37 12 2 4 7 5 3 7 11 7 2 14 4 4 3 5 3 5 1 1 2 1

23 3 4 6 3 4 2 5 10 4 2 10 2 6 3 5 1 4 1

26 18 1 2 12 5 4 2 8 4 1 5 3 2 2 4 5 1 1

13 2 4 1 16 2 8 1 7 1 9 5 1 2 1 1 2

15 3 1 2 2 6 6 3 5 5 2 7 1 3 1 4 1 1 1 1

10 3 1 4 9 1 9 3 5 9 3 1 2

14 3 2 5 1 25 1 4 1 1 1 1

13 1 2 3 2 1 8 7 2 2 1 1

6 3 1 1 2 1 4 6 3 1 3 2 1

11 2 1 1 1 3 21 1 1 1 1

4 3 2 2 4 1 5

1 1 1 1 1 1 1 1 2 1 1 1

3 1 1 1 1 1 2 5 1

12 1 1 1 1 1 2 1 1

5 1 1 1 2 1 1 1 1

6 3 1 2 1 2 1 1 1 2 1

6 2 1 1 1 2 1 1 2

3 1 1 1 2 1 1 1 1

2 1 1 1 1 1 1 1 1 1

4 1 1 2

1 1 1 1 1 1 1

1 1 1 1 1 1 1

5 1 1 1 1

Figure 7: Relational matrix comparing geolocations of historic
controller IP addresses to received victim IP addresses, per
sinkholed domain. Proxy IP addresses are filtered.

this data spans the period 2010 to 2017 and includes
name resolution from passive DNS sources (see Sec-
tion 5.1), where we did not verify the correct behavior
of the controller. As such, this data should be interpreted
with caution. Figure 7 exhibits the same concentration
around the diagonal as Figure 6, indicating campaigns
where both controller and victim are in the same coun-
try. As the results of Table 13 suggest, Brazil has by far
the largest concentration of victims across both RATs.
Moreover, Brazil appears to be victimized indiscrimi-
nately. We also note some language clustering, where
countries that speak the same language or are geograph-
ically proximate are more likely to be paired; e.g., Rus-
sia on Ukraine (13), Ukraine on Russia (18), Ukraine on
Kazakhstan (4), Ukraine on Belarus (5), Morocco (MA)
on Algeria (DZ) (9), Algeria on Morocco (8).

7 Discussion
7.1 Limitations
Adversarial robustness. Our classification methods that
RAT-Hole uses to distinguish sandboxes, scanners, and
victims are not robust to an adversarial actor that is ac-
tively trying to evade our classification. Based on our
validation it appears that there are many detectable sand-
boxes and scanners. As future work, we will explore po-
tentially more robust features, such as inter-arrival timing
of connection attempts in order to detect scanners and
analysis of active window patterns to detect sandboxes.
Manual reverse engineering. We have not developed a
method for automatically decrypting RAT Protocols or
parsing out information from fields in the protocol. This
caused us to limit our analysis to two common RAT fam-
ily types. It is unclear what biases might have been in-
troduced into our results due to limiting the number of
RAT families and DDNS services included in our study.
As future work we will explore how well existing meth-
ods for automated protocol reverse-engineering [7,8] and
decrypting of messages [47] perform at our task.
Family-specific classification heuristics. Our method-
ology for building up a set of classification heuristics
was again a manual process and in some instances, such
as triggering error conditions, was RAT family specific.
As future work, we will explore more automated meth-
ods, such as semi-supervised machine learning based ap-
proaches using inter-arrival timing of connections to dif-
ferentiate scanners from execution of the actual malware.
We will also explore methods based on victim behavior
to identify sandboxes. We hypothesize that it will be dif-
ficult for a sandbox to mimic the patterns of a real victim.
Validating scanning results. We have little ground truth
to evaluate methods for distinguishing between legiti-
mate RAT controllers and sinkhole operations, other than
our own sinkhole. As future work we will explore addi-
tional methods of ethically probing controllers, such as
calling rarely used API functions that are unlikely to be
implemented by sinkholes.

7.2 Protecting Victims
Our results show that expired RAT domains still have
likely victims attempting to connect to them. The 3,231
likely victims we detected could be further victimized by
an adversary that claimed these domains. We are in the
process of working with some free DDNS providers to
understand if they would be willing to permanently block
domain names associated with RAT controllers. We plan
to pursue the same dialogue with the VPN proxy services
that provide support infrastructure for RAT operators.

7.3 Notification Efforts
We received repeated manual notifications based on
scanners misclassifying RAT-Hole as a large-scale RAT

controller hosting operation. Our results suggest that
more accurate identification of controllers and victims
could reduce wasted notification effort.

8 Related Work
Our work is influenced heavily by research projects from
industry and academia. We discuss works that informed
our study’s primary aspects: sinkholing and scanning.

Sinkholing and infection enumeration. A number
of early botnet measurement studies mused on its chal-
lenges. A Trend Micro industry report from 2001 [29]
qualitatively discussed the problems with sinkholing bot-
net domains, like receiving PII. The ethical issue of vic-
tim PII receipt is universal to infection enumeration ef-
forts; Han et al. [23] built a system for sandboxing phish-
ing kits explicitly designed to protect victim privacy.

Always prominent has been the issue of accurate in-
fection size estimation. Ramachandran et al. [41] pro-
posed a method of estimating botnet infection size based
on frequency of DNS lookups to C&C domains. A sub-
sequent pair of botnet size estimation studies used DNS
lookups [9] and IRC channel monitoring [1], but arrived
at different estimates due to errors caused by churn [40].

A number of studies explored how to estimate the size
of the Storm botnet [16, 21, 38], while Stone-Gross et
al. [49] actually sinkholed the Torpig botnet, live, and
created unique fingerprints for each infection to address
infection measurement difficulties, as do we in this study.
A follow-up study by Kanich et al. [25] showed that pol-
lution caused by interfering measurement operations had
inflated the measured size of the botnet. Nadji et al. [34]
discuss the same issue of measurement pollution while
running a domain sinkhole performing botnet takedowns.

Novel approaches for detecting and filtering scanners
exist. For instance, Rossow et al. [44] proposed a method
for detecting sensors based on detecting crawlers inject-
ing themselves into large numbers of points in a P2P net-
work. Successful methods for detecting scanners tend to
be highly tailored, as was ours.

Our methodology exploits the fact that DDNS do-
mains used as C&C’s will ultimately expire, though vic-
tims are still contacting them. This is one of the premises
behind work by Starov et al. [48]; though they focus on
web shells rather than more traditional RATs, their goal
of measuring the ecosystem of attackers and victims is
similar to ours. Lever et al. [28] measure the adversarial
possibilities behind re-registering an expired domain.

Part of our methodology focuses on the challenge of
detecting malware samples being executed in sandboxes,
which we found to be a source of intelligence pollution.
Most prior studies on sandbox detection focus on mal-
ware sandbox evasion techniques [4, 26, 33, 37, 45, 53].
A more recent study demonstrated that intentionally-
designed binary submissions to antivirus companies can

exfiltrate sandbox fingerprints [55]. Our approach fur-
thers these efforts to identify Internet-connected sand-
boxes, using unmodified malware binary submissions
and leveraging artifacts of the execution process like
short execution duration to inform our detection.

In a 2014 report, researchers at FireEye enumerated
infections for an XtremeRAT campaign by sinkholing
the controller domain [51]. This study notes the chal-
lenges of victim IP address churn, which our work also
encountered. We designed our methodology to explicitly
handle the challenges this study uncovered, as well as to
filter intelligence pollution from scanners and sandboxes,
such that we could accurately and ethically enumerate
RAT infections based on sinkhole data.

Scanning and controller discovery. BladeRun-
ner [15] was the first scanning-based system to actively
discover RAT controllers by emulating RAT victims.
Since then, Shodan [31] has added active probing and
banner identification for numerous RAT families includ-
ing DarkComet and njRAT. Marczak et al. [30] created a
scanner that was able to detect stealthy APT controllers
by triggering error conditions. Most recently, Farinholt
et al. [17] presented a scanner that used ZMap [14],
Shodan, and a custom port scanner to detect Dark-
Comet controllers based only on their initial handshake
challenges. RAT-Scan’s design is based on these systems.

RAT-Scan also contains logic to (attempt to) address
the issue of sinkholes polluting controller measurements.
The most closely related work is SinkMiner, a system
which proposed a method to detect sinkholes based on
historic DNS data [39]. Though SinkMiner uses passive
DNS to detect sinkholed domains, its research goals -
measuring the effective lifetime of a C&C domain and
avoiding enumerating fellow security vendors’ infratruc-
ture - matched ours. We consider RAT-Scan complimen-
tary to SinkMiner in this regard.

9 Conclusion
We presented the results of our study of attacker and vic-
tim populations of two major RAT families, njRAT and
DarkComet. One of the challenges of studying both op-
erators (attackers) and victims is the noisy nature of the
signal. To distinguish real operators and victims, we de-
velop a set of techniques for testing the behavior of a sus-
pected victim to determine if it is a genuine infection or
not. Using a similar set of tests, we identify genuine con-
trollers, excluding sinkholes and controllers using VPNs.

Using our collected data, we then report on the pop-
ulation of victims and controllers, their geographic rela-
tionship, and periods of activity. Our results show that
the RATs we studied are used primarily by operators and
victims located in the same country, with the bulk of the
population in Russia, Brazil, and Turkey. We also found
that victims remain vulnerable long after the controller

abandons the campaign, presenting an opportunity for
third-party intervention by sinkholing the domains.

Acknowledgments
This work was supported by the National Science Foun-
dation through grants CNS-1237264, CNS-1619620, and
CNS-1717062, and by gifts from Comcast, Farsight Se-
curity, and Google. We would also like to thank the fol-
lowing: VirusTotal, for the invaluable Intelligence ac-
count from which we sourced malware; Richard Harper
of DuckDNS, for generous access to a Duck Max ac-
count; Matthew Jonkman of EmergingThreats, for gen-
erous access to an unlimited Threat Intelligence account;
and finally, our reviewers, for their invaluable feedback.

References
[1] ABU RAJAB, M., ZARFOSS, J., MONROSE, F., AND

TERZIS, A. A multifaceted approach to understanding
the botnet phenomenon. In ACM Internet Measurement
Conference (IMC) (2006).

[2] AM523. How to create vpn for rat 2017. https://www.

youtube.com/watch?v=0KQQ0pM3dDU.
[3] ANTONAKAKIS, M., APRIL, T., BAILEY, M., BERN-

HARD, M., BURSZTEIN, E., COCHRAN, J., DU-
RUMERIC, Z., HALDERMAN, J. A., INVERNIZZI, L.,
KALLITSIS, M., KUMAR, D., LEVER, C., MA, Z., MA-
SON, J., MENSCHER, D., SEAMAN, C., SULLIVAN, N.,
THOMAS, K., AND ZHOU, Y. Understanding the Mi-
rai Botnet. In USENIX Security Symposium (USENIX)
(2017).

[4] BAZHANIUK, O., BULYGIN, Y., FURTAK, A., GORO-
BETS, M., LOUCAIDES, J., AND SHKATOV, M. Reach-
ing the far corners of MATRIX: generic VMM finger-
printing. SOURCE Seattle (2015).

[5] BREEN, K. RAT Decoders. https://techanarchy.net/
2014/04/rat-decoders/, April 2014.

[6] BREEN, K. DarkComet – Hacking The Hacker.
https://techanarchy.net/2015/11/darkcomet-

hacking-the-hacker/, November 2015.
[7] CABALLERO, J., YIN, H., LIANG, Z., AND SONG, D.

Polyglot: Automatic Extraction of Protocol Message For-
mat Using Dynamic Binary Analysis. In ACM Confer-
ence on Computer and Communications Security (CCS)
(2007).

[8] CUI, W., KANNAN, J., AND WANG, H. J. Discov-
erer: Automatic Protocol Reverse Engineering from Net-
work Traces. In USENIX Security Symposium (USENIX)
(2007).

[9] DAGON, D., ZOU, C., AND LEE, W. Modeling Botnet
Propagation Using Time Zones. In Networked and Dis-
tributed System Security Symposium (NDSS) (2006).

[10] DENBOW, S., AND HERTZ, J. pest control: taming the
rats. Tech. rep., 2012.

[11] DIGITAL CITIZENS ALLIANCE. SELLING ”SLAVING”
- Outing the principal enablers that profit from pushing
malware and put your privacy at risk, July 2015.

[12] DITTRICH, D., LEDER, F., AND WERNER, T. A case
study in ethical decision making regarding remote mitiga-

https://www.youtube.com/watch?v=0KQQ0pM3dDU
https://www.youtube.com/watch?v=0KQQ0pM3dDU
https://techanarchy.net/2014/04/rat-decoders/
https://techanarchy.net/2014/04/rat-decoders/
https://techanarchy.net/2015/11/darkcomet-hacking-the-hacker/
https://techanarchy.net/2015/11/darkcomet-hacking-the-hacker/

tion of botnets. In International Conference on Financial
Cryptography and Data Security (2010).

[13] DURUMERIC, Z., ADRIAN, D., MIRIAN, A., BAILEY,
M., AND HALDERMAN, J. A. A Search Engine Backed
by Internet-Wide Scanning. In ACM Conference on Com-
puter and Communications Security (CCS) (Oct. 2015).

[14] DURUMERIC, Z., WUSTROW, E., AND HALDERMAN,
J. A. ZMap: Fast Internet-wide Scanning and Its Security
Applications. In USENIX Security Symposium (USENIX)
(2013).

[15] EISENBARTH, M., AND JONES, J. BladeRunner: Adven-
tures in Tracking Botnets. In Botnet Fighting Conference
(Botconf) (2013).

[16] ENRIGHT, B., VOELKER, G. M., SAVAGE, S., KANICH,
C., AND LEVCHENKO, K. Storm: When researchers col-
lide. USENIX ;login: (2008).

[17] FARINHOLT, B., REZAEIRAD, M., PEARCE, P., DHAR-
MDASANI, H., YIN, H., LE BLOND, S., MCCOY, D.,
AND LEVCHENKO, K. To Catch a Ratter: Monitoring
the Behavior of Amateur DarkComet RAT Operators in
the Wild. In IEEE Symposium on Security and Privacy
(S&P) (2017).

[18] FARIVAR, C. Sextortionist who hacked miss teen usa’s
computer sentenced to 18 months, Mar 2014.

[19] Farsight Security. https://farsightsecurity.com/.
[20] FIDELIS. Fidelis Threat Advisory 1009: “njRAT” Uncov-

ered, June 2013.
[21] GRIZZARD, J. B., SHARMA, V., NUNNERY, C., KANG,

B. B., AND DAGON, D. Peer-to-peer botnets: Overview
and case study. In USENIX Workshop on Hot Topics in
Understanding Botnets (HotBots) (2007).

[22] GUNDERT, L. Proactive Threat Identification Neu-
tralizes Remote Access Trojan Efficacy. http:

//go.recordedfuture.com/hubfs/reports/threat-

identification.pdf, 2015.
[23] HAN, X., KHEIR, N., AND BALZAROTTI, D. Phish-

eye: Live monitoring of sandboxed phishing kits. In ACM
Conference on Computer and Communications Security
(CCS) (2016).

[24] ipjetable. https://ipjetable.net/.
[25] KANICH, C., LEVCHENKO, K., ENRIGHT, B.,

VOELKER, G. M., AND SAVAGE, S. The heisen-
bot uncertainty problem: Challenges in separating bots
from chaff. In USENIX Conference on Large-scale
Exploits and Emergent Threats (LEET) (2008).

[26] KIRAT, D., VIGNA, G., AND KRUEGEL, C. Barecloud:
Bare-metal analysis-based evasive malware detection. In
USENIX Security Symposium (USENIX) (2014).

[27] LE BLOND, S., URITESC, A., GILBERT, C., CHUA,
Z. L., SAXENA, P., AND KIRDA, E. A look at targeted
attacks through the lense of an ngo. In USENIX Security
Symposium (USENIX) (2014).

[28] LEVER, C., WALLS, R., NADJI, Y., DAGON, D., MC-
DANIEL, P., AND ANTONAKAKIS, M. Domain-z: 28
registrations later measuring the exploitation of residual
trust in domains. In IEEE Symposium on Security and
Privacy (S&P) (2016).

[29] LINK, R., AND SANCHO, D. Lessons learned while
sinkholing botnets - not as easy as it looks! In Virus Bul-

letin International Conference,(Barcelona) (2001).
[30] MARCZAK, W. R., SCOTT-RAILTON, J., MARQUIS-

BOIRE, M., AND PAXSON, V. When governments hack
opponents: A look at actors and technology. In USENIX
Security Symposium (USENIX) (2014).

[31] MATHERLY, J. Shodan - Malware Hunter. https:

//malware-hunter.shodan.io/.
[32] MATHERLY, J. Shodan - The search engine for the Inter-

net of Things. https://www.shodan.io/.
[33] MIRAMIRKHANI, N., APPINI, M. P., NIKIFORAKIS,

N., AND POLYCHRONAKIS, M. Spotless Sandboxes:
Evading Malware Analysis Systems using Wear-and-Tear
Artifacts. In IEEE Symposium on Security and Privacy
(S&P) (2017).

[34] NADJI, Y., ANTONAKAKIS, M., PERDISCI, R., DAGON,
D., AND LEE, W. Beheading hydras: performing effec-
tive botnet takedowns. In ACM Conference on Computer
and Communications Security (CCS) (2013).

[35] No-IP. https://www.noip.com/.
[36] OPPLEMAN, V. Network Defense Applications using IP

Sinkholes. hakin9.org.
[37] PETSAS, T., VOYATZIS, G., ATHANASOPOULOS, E.,

POLYCHRONAKIS, M., AND IOANNIDIS, S. Rage
against the virtual machine: hindering dynamic analysis
of android malware. In European Workshop on System
Security (2014).

[38] PORRAS, P., SAIDI, H., AND YEGNESWARAN, V. A
multi-perspective analysis of the storm (peacomm) worm.
Tech. rep., Computer Science Laboratory, SRI Interna-
tional, 2007.

[39] RAHBARINIA, B., PERDISCI, R., ANTONAKAKIS, M.,
AND DAGON, D. SinkMiner: Mining Botnet Sinkholes
for Fun and Profit. In USENIX Conference on Large-scale
Exploits and Emergent Threats (LEET) (2013).

[40] RAJAB, M. A., ZARFOSS, J., MONROSE, F., AND

TERZIS, A. My Botnet is Bigger Than Yours (Maybe,
Better Than Yours): Why Size Estimates Remain Chal-
lenging. In USENIX Workshop on Hot Topics in Under-
standing Botnets (HotBots) (2007).

[41] RAMACHANDRAN, A., FEAMSTER, N., AND DAGON,
D. Revealing Botnet Membership Using DNSBL
Counter-intelligence. In Steps to Reducing Unwanted
Traffic on the Internet - Volume 2 (2006).

[42] relakks vpn. https://www.relakks.com/.
[43] RiskIQ PassiveTotal. https://www.riskiq.com/.
[44] ROSSOW, C., ANDRIESSE, D., WERNER, T., STONE-

GROSS, B., PLOHMANN, D., DIETRICH, C. J., AND

BOS, H. P2PWNED: Modeling and Evaluating the Re-
silience of Peer-to-Peer Botnets . In IEEE Symposium on
Security and Privacy (S&P) (May 2013).

[45] RUTKOWSKA, J. Red pill: Detect VMM using (almost)
one CPU instruction. http://invisiblethings.org/

papers/redpill.html, 2004.
[46] SATTER, R., J DONN, E., AND VASILYEVA, N.

Russian hackers hunted journalists in years-long cam-
paign. Associated Press (Dec. 22, 2017).

[47] SONG, D., BRUMLEY, D., YIN, H., CABALLERO, J.,
JAGER, I., KANG, M. G., LIANG, Z., NEWSOME, J.,
POOSANKAM, P., AND SAXENA, P. BitBlaze: A New

https://farsightsecurity.com/
http://go.recordedfuture.com/hubfs/reports/threat-identification.pdf
http://go.recordedfuture.com/hubfs/reports/threat-identification.pdf
http://go.recordedfuture.com/hubfs/reports/threat-identification.pdf
https://ipjetable.net/
https://malware-hunter.shodan.io/
https://malware-hunter.shodan.io/
https://www.shodan.io/
https://www.noip.com/
https://www.relakks.com/
https://www.riskiq.com/
http://invisiblethings.org/papers/redpill.html
http://invisiblethings.org/papers/redpill.html

Approach to Computer Security via Binary Analysis. In
International Conference on Information Systems Secu-
rity (2008).

[48] STAROV, O., DAHSE, J., AHMAD, S. S., HOLZ, T., AND

NIKIFORAKIS, N. No honor among thieves: A large-
scale analysis of malicious web shells. In International
Conference on World Wide Web (WWW) (2016).

[49] STONE-GROSS, B., COVA, M., CAVALLARO, L.,
GILBERT, B., SZYDLOWSKI, M., KEMMERER, R.,
KRUEGEL, C., AND VIGNA, G. Your Botnet is My Bot-
net: Analysis of a Botnet Takeover. In ACM Confer-
ence on Computer and Communications Security (CCS)
(2009).

[50] TUTORIALS ON HACK. Example: How To open port
windows 10 Free vpn {Tutorials android hack}. https:

//www.youtube.com/watch?v=N1mhRUCuyF4.
[51] VILLENEUVE, N., AND BENNETT, J. XtremeRAT:

Nuisance or Threat. https://www.fireeye.com/blog/

threat-research/2014/02/xtremerat-nuisance-or-

threat.html, 2014.
[52] Virustotal malware intelligence service. https://www.

virustotal.com/#/intelligence-overview.
[53] WILLEMS, C., HUND, R., FOBIAN, A., FELSCH, D.,

HOLZ, T., AND VASUDEVAN, A. Down to the bare
metal: Using processor features for binary analysis.
In Annual Computer Security Applications Conference
(2012).

[54] YARA: The pattern matching swiss knife for malware
researchers (and everyone else). http://virustotal.

github.io/yara/.
[55] YOKOYAMA, A., ISHII, K., TANABE, R., PAPA, Y.,

YOSHIOKA, K., MATSUMOTO, T., KASAMA, T., IN-
OUE, D., BRENGEL, M., BACKES, M., AND ROSSOW,
C. SandPrint: Fingerprinting Malware Sandboxes to Pro-
vide Intelligence for Sandbox Evasion. In Research in
Attacks, Intrusions, and Defenses (2016).

A VPN/VPS Provider Abuse
IPjetable VPN: 141.255.144/20. Of the 6,401 IP addresses
RAT-Scan successfully probed, a full 2,635 (or 40.2%) came
from this address space. Further, these IP addresses accounted
for over 40% of all connections made during the six months of
active scanner operation, exhibiting abnormal longevity com-
pared to other controllers. This space is owned by IPjetable
[24], a French company that provides free VPN services and
that is recommended by hundreds of RAT instruction videos
available online [2]. IP addresses belonging to IPjetable are
even present in the Recorded Future IoC dataset from 2015.

Relakks VPN: 93.182.168/21. Though not nearly as large
as the IPJetable address space, this space contained 167 IP ad-
dresses probed by RAT-Scan (2.6% of all IP addresses), ac-
counting for nearly 2% of all RAT-Scan connections. This ad-
dress space belongs to Relakks VPN [42], a Swedish company
that provides free VPN services and is likewise recommended
by RAT instruction videos [50] and HackForums members.

VPS providers. In addition to using VPN’s, we found the
use of VPS instances from prominent services like Amazon
AWS, Microsoft Azure, and Digital Ocean, as well as less rep-
utable providers like OVH.

B Telescope Data

Peer Type Overlapping /32 % Overlap

Victim 5 <0.1
Sandbox 8 <0.1
LF Scanner 38 <0.1
HF Scanner 1 <0.1
Unknown 31,014 3.8

Total 828,137 100.0

Table 14: Breakdown of the Src-IPs (/32) of our defined peer
types that overlap with IP addresses from our telescope dataset.

Table 14 compares RAT-Hole’s connection dataset with a
prominent network telescope’s connection dataset, showing the
overlapping connecting source IP addresses. Of import is the
lack of overlap between the datasets. This refutes our initial hy-
pothesis that network telescope data could be used to filter most
indiscriminate scanning operations from a sinkhole’s dataset.

(a) (b)

Figure 8: The standard handshake protocol for (a): njRAT (b):
DarkComet

C njRAT Network Protocol
njRAT speaks a custom application-layer network proto-
col over TCP. In Figure 8a, we provide a diagram of the
njRAT handshake, the initial exchange of messages between
the stub and controller before the command-response cycle be-
gins. We note that, as njRAT is a victim-initiated RAT, its stub
sends the first payload of the handshake after establishing a
TCP connection to the controller.

njRAT has many variants (or sub-species). The three most
commonly found in the wild are main (the original version),
KilerRAT, and Coringa-RAT. We reverse engineered the
protocols of each of these three variants, and as such RAT-
Hole fully supports connections from all three.

Each of the messages exchanged in the njRAT handshake
from Figure 8a is now further detailed individually.

1. njRAT Victim Info Message (Basic) †

<NI><NS><NS><PC NAME><NS><PC USERNAME><NS>

<INSTALL DATE><NS><COUNTRY><NS><OS><NS>

<WEBCAM FLAG><NS><VERSION><NS><ACTIVE WINDOW>

<NS><NS><NT>

† An example of this message is provided in Figure 9.

1. njRAT Victim Info Message (Extended)

Victim Info Message (Basic) ‖ <INF NI><INFO><NS><NT>

https://www.youtube.com/watch?v=N1mhRUCuyF4
https://www.youtube.com/watch?v=N1mhRUCuyF4
https://www.fireeye.com/blog/threat-research/2014/02/xtremerat-nuisance-or-threat.html
https://www.fireeye.com/blog/threat-research/2014/02/xtremerat-nuisance-or-threat.html
https://www.fireeye.com/blog/threat-research/2014/02/xtremerat-nuisance-or-threat.html
https://www.virustotal.com/#/intelligence-overview
https://www.virustotal.com/#/intelligence-overview
http://virustotal.github.io/yara/
http://virustotal.github.io/yara/

00000000 6c 76 7c 27 7c 27 7c 53 47 46 6a 53 32 56 6b 58 |lv|’|’|SGFjS2VkX| # <NI>: lv

00000010 7a 68 46 4d 54 46 43 51 55 4d 34 7c 27 7c 27 7c |zhFMTFCQUM4|’|’|| # <NS>: |’|’|

00000020 74 65 73 74 2d 50 43 7c 27 7c 27 7c 61 64 6d 69 |test-PC|’|’|admi| # : SGFjS2VkXz... -> base64(HacKed_8E11BAC8)

00000030 6e 7c 27 7c 27 7c 32 30 31 35 2d 30 35 2d 31 32 |n|’|’|2015-05-12| # <CAMPAIGN_ID>: HacKed

00000040 7c 27 7c 27 7c 7c 27 7c 27 7c 57 69 6e 20 37 20 ||’|’||’|’|Win 7 | # <VSN>: 8E11BAC8

00000050 50 72 6f 66 65 73 73 69 6f 6e 6e 65 6c 20 53 50 |Professionnel SP| # <PC_NAME>: test-PC

00000060 31 20 78 36 34 7c 27 7c 27 7c 4e 6f 7c 27 7c 27 |1 x64|’|’|No|’|’| # <PC_USERNAME>: admin

00000070 7c 30 2e 36 2e 34 7c 27 7c 27 7c 2e 2e 7c 27 7c ||0.6.4|’|’|..|’|| # <INSTALL_DATE>: 2015-05-12

00000080 27 7c 53 57 35 7a 64 47 46 73 62 43 42 68 62 6d |’|SW5zdGFsbCBhbm| # <OS>: Win 7 Professionnel SP1 x64

00000090 51 67 64 58 4e 6c 49 47 35 71 55 6b 46 55 49 45 |QgdXNlIG5qUkFUIE| # <WEBCAM_FLAG>: No

000000a0 5a 56 52 43 42 30 62 79 42 6f 59 57 4e 72 49 46 |ZVRCB0byBoYWNrIF| # <RAT_VERSION>: 0.6.4

000000b0 42 44 49 43 30 67 57 57 39 31 56 48 56 69 5a 53 |BDIC0gWW91VHViZS| # <ACTIVE_WINDOW>: SW5zdGFsbCBhbmQgdXNlIG5qU...

000000c0 41 74 49 45 64 76 62 32 64 73 5a 53 42 44 61 48 |AtIEdvb2dsZSBDaH| # -> base64(Install and use njRAT FUD to hack

000000d0 4a 76 62 57 55 3d 7c 27 7c 27 7c 5b 65 6e 64 6f |JvbWU=|’|’|[endo| # PC - YouTube - Google Chrome)

000000e0 66 5d |f]| # <NT>: [endof]

Figure 9: An example njRAT Victim Info packet with individual components extracted, labelled, and decoded in the case of base64
encodings. Note that this is not from a real infection.

Field Description

<NI> Payload header. lv, llv, lvv, and <SIZE><NUL>ll are used by
different njRAT versions.

<SIZE> Number of bytes in message.
<NS> Delimiter. The default is |'|'|, but KilerRAT and Coringa-RAT

use |Kiler| and |Coringa|.
 <CAMPAIGN ID> <VSN>, base64-encoded.
<CAMPAIGN ID> Identifier set by the operator, used to distinguish attack campaigns.
<VSN> Volume serial number, victim’s hard drive serial number.
<PC NAME> Victim PC name.
<INSTALL DATE> Date malware infected victim.
<COUNTRY> Geolocation of victim IP address.
<OS> Victim operating system.
<WEBCAM FLAG> Set if victim has webcam.
<VERSION> Malware version.
<ACTIVE WINDOW> Victim’s active window, base64-encoded.
<NT> Payload end. [endof], llv, <NUL> used by different versions.
<INF NI> Information payload header. inf and <SIZE><NUL>inf are used by

different njRAT versions. <CAMPAIGN ID>, port, C&C domain or IP,
installation directory, binary name, registry flag, and startup flag.

Table 15: Descriptions of the fields in the njRAT handshake.

2. njRAT Ping Message

P[endof] or 0<NUL>

3. njRAT Pong Message

P[endof] or 0<NUL><SIZE><NS><ACTIVE WINDOW>

While reversing the njRAT protocol, we uncovered a set of
unique behaviors, some of which we used in differentiating be-
tween real njRAT victims and imitating scanners.

1. The njRAT stub can send either the Basic or the Extended
version of the Victim Info message upon connection. Nor-
mally, the stub will send the Basic message the first time it
contacts a controller, indicating that the stub likely main-
tains some state regarding past connections.

2. The Extended Victim Info message may be followed by
multiple Pong messages, each containing the victim’s ac-
tive window. This appears to happen when the victim
is physically present and interacting with applications at
the immediate time of infection (and connection to the
controller), prompting the stub to report active window
changes in real-time.

3. The Capture Command is a command sent by the con-
troller to the stub to request a screenshot. We found that
a malformed Capture Command is not executed by the
stub (as it fails out of the stub’s command parser routine),
but that instead the stub replies with a defined error re-
sponse. This fringe behavior was useful in filtering real
njRAT stubs from impersonators.

D DarkComet Network Protocol
DarkComet speaks a custom application-layer network proto-
col over TCP. In Figure 8b, we provide a diagram of the Dark-
Comet handshake. As DarkComet is a controller-initiated RAT,
the controller sends the first payload after the stub establishes
a TCP to it. In the case of DarkComet, in the first exchange the
controller challenges the stub, after which it obtains informa-
tion about the stub’s host. We now detail the individual mes-
sages from Figure 8b further.

1. DarkComet Challenge Message

IDTYPE

2. DarkComet Response Message

SERVER

3. DarkComet Info Request Message

GetSIN<WAN IP>|<NONCE>

4. DarkComet Victim Info Message †

infoes<CAMPAIGN ID>|<WAN IP>/[<LAN IP>]:<PORT>|

<PC NAME>/<USERNAME>|<NONCE>|<PING>|<OS>

[<BUILD>]<BIT>bit(<PATH>)|<ADMIN FLAG>|

<WEBCAM FLAG>|<COUNTRY>|<ACTIVE WINDOW>|<HWID>|

<RAM USAGE>|<LANGUAGE>/ -- |<INSTALL DATE>|

<VERSION>

† An example of this message is provided in Figure 10.

Field Description

<WAN IP> Victim machine’s public IP address.
<NONCE> Six random digits.
<LAN IP> Victim machine’s LAN IP address.
<PORT> Controller’s DarkComet port.
<USERNAME> Victim’s user name.
<NONCE> Same nonce sent in Info Request.
<PING> Stub response time, in seconds.
<BUILD> Victim machine OS build version.
<BIT> Victim machine architecture (e.g. 64).
<PATH> Path to drive where OS is stored on victim machine.
<ADMIN FLAG> Set if stub is running as admin.
<HWID> Victim machine’s UUID‡ and VSN.
<RAM USAGE> RAM in use on victim machine.
<LANGUAGE> Victim machine’s primary language.

Table 16: Descriptions of the fields in the DarkComet hand-
shake. Note that fields from Table 15 are not duplicated. ‡ Uni-
versally Unique Identifier.

00000000 69 6e 66 6f 65 73 43 72 61 63 6b 65 64 50 68 6f |infoesCrackedPho| # <CAMPAIGN_ID>: CrackedPhotoshopSeeding

00000010 74 6f 73 68 6f 70 53 65 65 64 69 6e 67 7c 33 32 |toshopSeeding|32| # <WAN_IP>: 32.245.251.132

00000020 2e 32 34 35 2e 32 35 31 2e 31 33 32 20 2f 20 5b |.245.251.132 / [| # <LAN_IP>: 192.168.53.71

00000030 31 39 32 2e 31 36 38 2e 35 33 2e 37 31 5d 20 3a |192.168.53.71] :| # <PORT>: 1604

00000040 20 31 36 30 34 7c 41 43 43 4f 55 4e 54 49 4e 47 | 1604|ACCOUNTING| # <PC_NAME>: ACCOUNTING-ADMIN-PC

00000050 2d 41 44 4d 49 4e 2d 50 43 20 2f 20 41 64 6d 69 |-ADMIN-PC / Admi| # <USERNAME>: Administrator

00000060 6e 69 73 74 72 61 74 6f 72 7c 37 36 39 37 33 34 |nistrator|769734| # <NONCE>: 769734

00000070 7c 30 73 7c 57 69 6e 64 6f 77 73 20 58 50 20 53 ||0s|Windows XP S| # <PING>: 0s

00000080 65 72 76 69 63 65 20 50 61 63 6b 20 33 20 5b 32 |ervice Pack 3 [2| # <OS>: Windows XP Service Pack 3

00000090 36 30 30 5d 20 33 32 20 62 69 74 20 28 20 43 3a |600] 32 bit (C:| # <BUILD>: 2600

000000a0 5c 5c 20 29 7c 78 7c 7c 55 4b 7c 51 75 61 72 74 |\\)|x||UK|Quart| # <BIT>: 32

000000b0 65 72 6c 79 20 46 69 6e 61 6e 63 69 61 6c 20 52 |erly Financial R| # <PATH>: C:\\

000000c0 65 70 6f 72 74 20 44 52 41 46 54 20 28 43 6f 6e |eport DRAFT (Con| # <ADMIN_FLAG>: x

000000d0 66 69 64 65 6e 74 69 61 6c 29 20 2d 20 4d 69 63 |fidential) - Mic| # <WEBCAM_FLAG>:

000000e0 72 6f 73 6f 66 74 20 45 78 63 65 6c 7c 7b 58 58 |rosoft Excel|{XX| # <COUNTRY>: UK

000000f0 58 58 58 58 58 58 2d 58 58 58 58 2d 58 58 58 58 |XXXXXX-XXXX-XXXX| # <ACTIVE_WINDOW>: Quarterly Financial Report

00000100 2d 58 58 58 58 2d 58 58 58 58 58 58 58 58 58 58 |-XXXX-XXXXXXXXXX| # DRAFT (Confidential) - Microsoft Excel

00000110 58 58 7d 7c 38 33 25 7c 45 4e 47 4c 49 53 48 20 |XX}|83%|ENGLISH | # <HWID>: XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX

00000120 28 55 4e 49 54 45 44 20 4b 49 4e 47 44 4f 4d 29 |(UNITED KINGDOM)| # <RAM_USAGE>: 83%

00000130 20 47 42 20 2f 20 20 2d 2d 20 7c 30 36 2f 30 31 | GB / -- |06/01| # <LANGUAGE>: ENGLISH (UNITED KINGDOM) GB

00000140 2f 32 30 31 38 20 41 54 20 30 37 3a 32 33 3a 33 |/2018 AT 07:23:3| # <INSTALL_DATE>: 06/01/2018 AT 07:23:34 PM

00000150 34 20 50 4d 7c 35 2e 33 2e 30 |4 PM|5.3.0| # <VERSION>: 5.3.0

Figure 10: An example DarkComet Victim Info packet with individual components extracted and labelled. Not from a real infection.

Authenticity in this handhshake consists of the stub hav-
ing the shared RC4 password as well as knowing the correct
response to the challenge. All handshake messages are RC4-
encrypted with an operator-set key in the stub’s configuration.

We discovered the following set of unique behaviors:

1. The stub only attempts up to 124 connections to a con-
troller, provided the controller offers an unexpected chal-
lenge banner (e.g. has the wrong RC4 key). This means
that if a sinkhole tries to brute force a stub’s password, it
can only try 124 times to get the correct challenge. After
that, the stub will suspend until it is either executed again
or the victim machine is rebooted.

2. However, we found that multiple challenges can be at-
tempted during a single TCP connection. The stub’s TCP
buffer is 16,384 bytes. The stub will accept multiple chal-
lenges in a single message if they are joined by \n\r

followed by 1,024 0’s, and will scan the entire message
for the correct challenge. As such, trying more than 124
banners is possible, though brute-forcing the 12-character
hexadecimal challenge is unrealistic.

3. The stub sends keepalive messages (KEEPALIVE en-
crypted in versions 4.0+, or #KEEPALIVE# in plaintext
in older versions) during the handshake. However, Dark-
Comet 5.2 never sends keepalives during the handshake.

4. Versions prior to DarkComet 4.0 do not use encryption.

5. Versions prior to DarkComet 4.0 reorder Victim Info.

E Other RATs

Peer Type # Src-IP % Src-IP

Black WorM 1 <0.1
LuminosityLink 8 <0.1
Xtreme RAT 226 <0.1
NetWire 575 0.1
H-W0rm 653 0.1

Unidentified 256,764 31.5
Passive 600,345 73.6

Total 815,455 100.0

Table 17: “Unknown” connections’ detected peer types.

In Table 17, we present the detected peer types of those
connections considered “Unknown.” We received connections

from several other RAT families, though we cannot distinguish
between legitimate victims and impersonators. The small de-
gree of overlap in the table indicates that some IP addresses
presented multiple behaviors, possibly due to multiple-RAT in-
fections, NAT’ed peers, or multiple scan behaviors.

DarkComet FPs njRAT FPs

Sandbox Service Conn. Sandbox Sandbox HF Scanner Victim

Avast - - - - -
Avira - - - - -
Bitdefender - - - - -
Comodo - - - - -
F-Secure - - - - -
Fortiguard X 1 3 - -
HybridAnalysis X 42 25 2 1
Intezer Analyze - - - - -
JOESandbox X 4 4 - -
Kaspersky X - 3 - -
Metadefender - - - - -
Microsoft X 2 2 4 1
sandbox.pikker X 2 1 - -
SONICWALL - - - - -
Symantec - - - - -
ThreatExpert X 1 - - -
ThreatTrack (CWsandbox) - - - - -
TotalHash X 1 - - -
Valkyrie Comodo - - - - -
ViCheck - - - - -
VirusTotal X 13 17 - -

Total 9 66 55 6 2

Table 18: Public sandbox services to which we submitted
honey-samples, as well as detected connections from said ser-
vices and their automatic classifications by RAT-Hole.

F Internet-Connected Sandboxes
We submitted honey-samples to the 21 public sandbox services
in Table 18. Services were chosen based on their popularity
among malware researchers, as well as their ease of use and
cost. We only detected connections to RAT-Hole from nine
of the services, indicating that their sandboxes are Internet-
connected and that they did execute our honey-samples. While
we detected the majority of connections correctly as sandboxes,
a handful of njRAT connections were classified as HF Scanners
or Victims. We strongly believe that these classifications are
correct, and that some services either scanned RAT-Hole based
on configurations extracted from our samples (the HF Scan-
ners) or executed the samples in a non-automated analysis en-
vironment (the Victims).

	Introduction
	Background
	RAT Components
	RAT Command and Control Protocol
	Sinkholing
	Scanning
	Ethical Framework

	RAT-Hole Methodology and Dataset
	RAT Binary Acquisition
	Domain Claiming
	RAT-Hole Operation
	Operation Summary

	RAT-Hole Validation
	Low Fidelity (LF) Scanners
	Victims, Sandboxes, & High Fidelity (HF) Scanners
	Honey Sample Seeding

	RAT-Scan Operation
	Controller Tracking
	Active Scanning
	Detected Service Classification
	Operation Summary

	Measurements and Analysis
	Victim Analysis
	Attacker Campaign Analysis
	Geographic Analysis

	Discussion
	Limitations
	Protecting Victims
	Notification Efforts

	Related Work
	Conclusion
	VPN/VPS Provider Abuse
	Telescope Data
	njRAT Network Protocol
	DarkComet Network Protocol
	Other RATs
	Internet-Connected Sandboxes

