
Hulk: Eliciting Malicious Behavior in Browser Extensions

Alexandros Kapravelos� Chris Grier†∗ Neha Chachra‡ Christopher Kruegel�

Giovanni Vigna� Vern Paxson†∗

�UC Santa Barbara †UC Berkeley ‡UC San Diego
∗International Computer Science Institute

{kapravel, chris, vigna}@cs.ucsb.edu {grier, vern}@cs.berkeley.edu nchachra@cs.ucsd.edu

Abstract

We present Hulk, a dynamic analysis system that de-
tects malicious behavior in browser extensions by mon-
itoring their execution and corresponding network activ-
ity. Hulk elicits malicious behavior in extensions in two
ways. First, Hulk leverages HoneyPages, which are dy-
namic pages that adapt to an extension’s expectations in
web page structure and content. Second, Hulk employs
a fuzzer to drive the numerous event handlers that mod-
ern extensions heavily rely upon. We analyzed 48K ex-
tensions from the Chrome Web store, driving each with
over 1M URLs. We identify a number of malicious ex-
tensions, including one with 5.5 million affected users,
stressing the risks that extensions pose for today’s web
security ecosystem, and the need to further strengthen
browser security to protect user data and privacy.

1 Introduction

All major web browsers today support broad extension
ecosystems that allow third parties to install a wide range
of modified behavior or additional functionality. Inter-
net Explorer has binary add-ons (Browser Helper Ob-
jects), while Firefox, Chrome, Opera, and Safari support
JavaScript-based extensions. Some browsers have online
web stores to distribute extensions to users. For exam-
ple, the most popular extension in Chrome’s Web Store,
AdBlock, has over 10 million users. Other popular ex-
tensions serve a variety of functions, such as preserving
privacy, changing the aesthetics of the browser’s UI, or
integrating with web services such as Google Translate.

The amount of critical and private data that web
browsers mediate continues to increase, and naturally
this data has become a target for criminals. In addition,
the web’s advertising ecosystem offers opportunities to
profit by manipulating a user’s everyday browsing be-
havior. As a result, malicious browser extensions have
become a new threat, as criminals realize the potential

to monetize a victim’s web browsing session and readily
access web-related content and private data.

Our work examines extensions for Google Chrome
that are designed with malicious intent—a threat dis-
tinct from that posed by attackers exploiting bugs in be-
nign extensions, which has seen prior study [6, 5]. Ex-
tensions for Google Chrome are primarily distributed
through the Chrome Web Store.1 Like app stores for
other platforms, such as Android or iOS, inherent risks
arise when downloading and executing programs from
untrusted sources. Reports have documented not only
malicious extensions [27], but miscreants purchasing ex-
tensions (and thereby access to their userbases via update
mechanisms) to add malicious functionality [2, 25]. In
addition to the web store, extensions can also be directly
installed by users and other programs. Installed by a pro-
cess called sideloading, these extensions pose a recog-
nized risk that browser vendors have attempted to prevent
through modifications to the browser [22]. Sideloaded
extensions are especially problematic since they can be
installed without user knowledge, and are not subject to
review by a web store. Despite efforts to stifle sideloaded
extensions, they remain a significant problem [12].

In this paper we present Hulk, a tool for detecting ma-
licious behavior in Google Chrome extensions. Hulk re-
lies on dynamic execution of extensions and uses several
techniques to trigger malicious functionality during exe-
cution. One technique we developed to elicit malicious
behavior is the use of HoneyPages: specially-crafted web
pages designed to satisfy the structural conditions that
trigger a given extension. We interpose on all queries and
modifications to the DOM tree of the HoneyPage to au-
tomatically create elements and mimic DOM tree struc-
tures for extensions on the fly. Using this technique, we
can readily observe malicious behavior that inserts new
iframe or div elements.

In addition, we built a fuzzer to drive the execution

1https://chrome.google.com/webstore/category/extensions

of event handlers registered by extensions. In our ex-
periments, we use the fuzzer to trigger all event handlers
associated with web requests, exercising each with 1 mil-
lion URLs. Although we undertook extensive efforts to
trigger malicious behavior, the possibility remains that
Hulk lacks the mechanisms to satisfy all of the conditions
necessary for eliciting an extension’s malicious behavior.

Our analysis of 48,332 Chrome extensions found that
malicious extensions pose a serious threat to users. By
developing a set of rules that label execution logs from
Hulk, we identified 130 malicious extensions and 4,712
“suspicious” extensions, most of which appear in the
Chrome Web Store. Several large classes of malicious
behavior appear within our set of extensions: affiliate
fraud, credential theft, ad injection or replacement, and
social network abuse. In one case, an extension perform-
ing ad replacement had nearly 2 million users, similar in
size to some of the largest botnets.

In summary, we frame our contributions as follows:

• We present Hulk, a system to perform dynamic
analysis for Chrome extensions.

• We demonstrate the effectiveness of HoneyPages
and event handler fuzzing to elicit malicious behav-
ior in browser extensions.

• We perform the first broad study of malicious
Chrome extensions.

• We characterize several classes of malicious
Chrome extensions, some with very large footprints
(up to 5.5M installations) and propose solutions to
eliminate entire classes of malicious behavior.

2 Background

We begin by reviewing the Google Chrome extension
model and the opportunities this model provides to mali-
cious extensions.

2.1 Chrome Extension Composition
Google Chrome supports extensions written in
JavaScript and HTML (distributed as a single zip

file). A small number of extensions also include binary
code plugins, although these are subject to a manual
security review process [15]. Each extension contains a
(mandatory) manifest that, along with other extension
parameters, describes the permissions the extension uses
and the list of resources that the browser should load.

The permission system is designed in the spirit of least
privilege, with the goal of limiting the resources avail-
able to an extension in case it has exploitable vulnera-
bilities [5]. The threat model does not attempt to ad-
dress malicious extensions accessing sensitive content or

performing other actions. The permission system deter-
mines which sites an extension can access, the allowed
API calls, and the use of binary plugins. We describe
relevant parts of the permission system later in this sec-
tion. See Barth et al. for a more detailed description of
Chrome’s extension architecture [5].

2.2 Installing Extensions
The Chrome Web Store is the official means for users
to find and install extensions. The web store is similar
to other app stores, such as those for iOS and Android,
in that developers create extensions and upload them to
the store for users to download. Extension developers
can also push out updates without requiring any action
by the end-user.

In addition to the Chrome Web Store, extensions can
also be installed manually by a user or an external pro-
gram. We refer to the installation of extensions out-
side the web store as sideloading. Chrome version 25
(released February, 2013) included changes to prevent
silent installation of Chrome extensions and require that
the user indicate consent for installation [22]. In May,
2014, Chrome took further steps to prevent sideload-
ing by requiring all installed extensions to be hosted in
the Chrome Web Store [18]. While these changes in-
crease the difficulty of sideloading, it is still possible
for programs to force silent installation of extensions,
since the attacker already has control of the machine. For
our study we obtained a set of extensions that are side-
loaded into Chrome by other Windows programs, many
of which are known malware.

2.3 Extension Permissions

Permissions. Chrome requires extensions to list the
permissions needed to access the different parts of the
extension API. For example, Figure 1 shows a portion
of a manifest file requesting permission to access the
webRequest and cookies API. The webRequest per-
mission allows the extension to “observe and analyze
traffic and to intercept, block, or modify requests in-
flight” by allowing the extension to register callbacks
associated with different parts of the HTTP stack [15].
Similarly, the cookies API allows the extension to get,
set, and be notified of changes to cookies.

The extension API permissions operate in con-
junction with the optional host permissions, which
limit the API permissions to access resources only
for the specified URLs. For example, in Fig-
ure 1 the extension requests host permissions for
https://www.google.com/, which allows it to ac-
cess cookies and webRequest APIs for the specified
domains. Host permissions also support wildcarding

2

...

"permissions": [

"cookies",

"webRequest",

"*://*.facebook.com/",

"https://www.google.com/"

],

...

"content_scripts": [

{

"matches": ["http://www.yahoo.com/*"],

"js": ["jquery.js", "myscript.js"]

}

],

...

"background": {

"scripts": ["background.js"]

},

...

"content_security_policy": "script-src 'self'

http://www.foo.com 'unsafe-eval';"

...

Figure 1: Example of a manifest that shows API permis-
sions for two hosts, followed by content scripts that run
on http://www.yahoo.com, followed by a background
script that runs on all pages. Finally, the CSP specifies
the ability to include and eval scripts in the extension
from foo.com.

URLs. In Figure 1, the extension requests access to
://.facebook.com. This permission allows for ac-
cess to all subdomains of facebook.com requested via
any URL scheme. In addition to wildcards, the special
token <all urls> matches any URL.

Besides the permissions described above, we found
that extensions request a variety of other permissions. In
Section 4 we summarize the permissions requested for
all of the extensions we examined, and we discuss the
permissions relevant to various types of abuse in Sec-
tion 5. Other resources provide a thorough analysis of
the Chrome permission system [5, 6].

Content Scripts. In addition to permissions for access-
ing various resources associated with a page, extensions
can also specify a list of content scripts to indicate
JavaScript files that will run inside of the web page. Fig-
ure 1 shows an example of including two JavaScript files,
jquery.js and myscript.js that will be run in the
context of the page for any URLs matching the specified
URL patterns (all pages on http://www.yahoo.com/

in this example). Inside of each JavaScript file the au-
thor can include further logic to decide if and when to
execute.

The ability to run in the context of a page is a powerful
feature. Once a content script executes, any resulting ac-
tions become indistinguishable from actions performed
by JavaScript provided by the web server. Not only can
the scripts modify the DOM tree or other scripts, but they
can also issue authenticated web requests (such as POST
with proper cookies).

Background Pages. Besides the content scripts that
allow an extension to interact with a given page,
Chrome also allows extensions to run scripts in a
“background page”. Figure 1 shows an example man-
ifest file that specifies background.js as a back-
ground page. Background pages often contain the
logic and state an extension needs for the entirety
of the browser session and do not have any visibil-
ity to the user. For example, an extension request-
ing webRequest permissions may use the background
script to attach a listener to read outgoing requests
using the chrome.webRequest.onBeforeRequest.

addListener() call. After filtering on the host permis-
sions, Chrome will send the extension a notification for
every outgoing request. We detail further examples in
the context of the extensions in the following sections.

Content Security Policy. In general, servers can specify
a Content Security Policy (CSP) header that the browser
uses to determine the sources from which it can include
objects on the page. CSP can also specify other options,
such as whether to allow the page to perform an eval

or to embed inline JavaScript [29]. Extensions can use
the same syntax to express their CSP in the manifest file.
For example, an extension that wishes to include source
from foo.com and to execute eval can specify its CSP
as shown in Figure 1.

3 Architecture

In this section, we describe the architecture of Hulk, our
dynamic analysis system that identifies malicious behav-
ior in Chrome extensions. Hulk dynamically loads exten-
sions in a monitored environment and observes the inter-
action of extensions with the loaded web pages. Using
a set of heuristics to identify potentially dangerous be-
havior, it labels extensions as malicious, suspicious, or
benign. In the rest of this section we describe how Hulk
works and the challenges that arise in analyzing browser
extensions.

3.1 Profiling Extensions
At the core of our dynamic analysis system is an instru-
mented browser and extension loader that enables us to
automatically install extensions and instrument activity
during web browsing. Our monitoring hooks collect data

3

foo.com

from multiple vantage points within Hulk as it visits web
pages and triggers a range of extension behavior.

URL Extraction. Before we dynamically analyze an ex-
tension we need to ensure that we can trigger the exten-
sion’s functionality. Most extensions interact with the
content of web pages, so we need to choose which URLs
to load for our analysis. To this end, we use three sources
of URLs: the manifest, the source code, and a list of pop-
ular sites. First, using the manifest file of the extension
we construct valid URLs that match the permissions and
content scripts specified. In some cases, the host per-
missions of an extension are restrictive—for example,
https://*.facebook.com—so we can generate URLs
that will match the pattern. It is more difficult to pick
URLs to visit in cases where the extension requests host
permissions on all URLs (Section 2.3), because the ma-
licious behavior may only trigger on a small subset of
sites. Therefore, we search the source code for any static
URLs and visit those as well. Finally, for every extension
we also visit a set of popular sites targeted by malicious
extensions. We constantly strive to improve this list as
we detect malicious extensions attacking particular do-
mains. We however note that although we use multiple
sources of URLs to determine the appropriate pages to
visit, our approach is not complete; we discuss the limi-
tations further in Section 7.

HoneyPages. Some extensions activate based on the
content of a web page instead of the URL. To analyze
such extensions we use specially crafted pages that at-
tempt to satisfy the conditions that an extension looks
for on a page before performing an action. We call these
HoneyPages. HoneyPages contain JavaScript functions
that overload built-in functions that query the DOM tree
of the web page. As a result, when an extension queries
for the presence of a specific element we can automati-
cally create it and insert it into the page. For example, if
the extension queries an iframe DOM element with the
intention to alter it, then our HoneyPage will create an
iframe element, inject it in the DOM tree, and return it
to the extension.

HoneyPages enable us to supplement the URL extrac-
tion phase and dynamically create an environment for the
extension to perform as many actions as it needs. The on-
demand nature of a HoneyPage does not restrict us to a
specific DOM tree structure, but enables us to determine
what an extension looks for in a page during execution,
since we can record all interactions within a HoneyPage.
By using HoneyPages we can better understand how the
extension will behave on arbitrary pages that are other-
wise difficult to generate prior to analysis.

3.2 Event-Based Execution
The Chrome browser offers to extensions an event-
based model to register callbacks that respond to certain
browser-level events. For example, extensions use the
chrome.webRequest.onBeforeRequest callback to
intercept all outgoing HTTP requests from the browser.
HoneyPages will not trigger callbacks for network events
that require special properties, such as a specific URL
or HTTP header. Therefore, we complement Honey-
Pages with event handler fuzzing. Specifically, we in-
voke all event callbacks that an extension registers in the
chrome.webRequest API with mock event objects. We
point to a HoneyPage loaded in the active tab while in-
voking the callbacks, enabling us to monitor the changes
that the extension attempts to make on that page. Our
approach allows us to test for every extension the exten-
sion’s callbacks on the top 1 million Alexa domains in
under 10 seconds on average.

3.2.1 Monitoring Hooks

Browser Extension API. Depending on the permissions
included in the manifest (Section 2.3), an extension can
use the Chrome extension API to perform actions not
available to JavaScript running in a web page. As such,
monitoring the extension API captures a subset of the
total JavaScript activity that results from an extension,
but gives us a detailed picture of what the extension at-
tempts to do. For example, we monitor the extension API
and log if the extension registers a callback to intercept
all HTTP requests performed by the browser, and then
track the changes that the extension makes to the HTTP
requests. To do this, we leverage the current logging in-
frastructure offered by Chrome for monitoring the activ-
ity of extensions. We build upon the JavaScript func-
tion call logging provided by the browser to identify ma-
licious behavior, such as tampering of security-related
HTTP headers.

Content Scripts. We intercept and log all additional
code introduced by the extension in the context of the
visited page. Doing so provides a more complete picture
of the extension’s functionality, since it can include re-
mote scripts from arbitrary locations and inject them into
the page. Remote scripts can compromise the page’s se-
curity similar to third-party JavaScript libraries [23], and
make the analysis of the extension more difficult. Using
remote scripts gives miscreants the ability to blacklist IP
addresses of our analysis system (i.e., cloaking [17, 28])
or return code without the malicious components. Re-
mote JavaScript inclusion also renders static analysis
on the extension’s code fundamentally incomplete since
parts of the extension’s codebase are not available until
execution.

4

Network Logging. We use a transparent proxy that in-
tercepts all browser HTTP and DNS traffic to log the re-
quests made during extension execution. A browser ex-
tension has a set of files available as resources loaded by
the browser, and it can also download and execute con-
tent from the web. Since the URLs retrieved can be com-
puted at runtime, monitoring the network activity of the
extension is critical for a complete analysis of its source
code and included components. In addition to identifying
remote content, we log all domains contacted by moni-
toring the DNS requests generated by the browser. Do-
ing so enables us to identify extensions that contact non-
existent domains, which can occur because the extension
is no longer operational or up-to-date. In these cases, our
analysis was necessarily incomplete, since when the do-
main was active the extension could have fetched more
remote code from it.

3.3 Detecting Malicious Behavior

As described in the previous section, our dynamic anal-
ysis system can provide detailed information about all
browser and extension activity performed while visiting
web pages. We combine this data to label the extension
as either benign, suspicious, or malicious by applying a
set of labeling heuristics based on the behavior. Labeling
an extension as malicious indicates we identified behav-
ior harmful to the user. Suspicious indicates the presence
of potentially harmful actions or exposing the user to new
risks, but without certainty that these represent malicious
actions. Finally, when we do not find any suspicious ac-
tivity, we label the extension as benign.

3.3.1 JavaScript Attributes

We use our monitoring modules described in Sec-
tion 3.2.1 to identify malicious JavaScript execution. Be-
low we detail actions that we consider malicious or sus-
picious in our post-processing analysis.

Extension API. As described earlier, Chrome’s exten-
sion API offers privileged access to additional function-
ality of the browser besides native JavaScript, using per-
missions specified in the manifest file. While there are
benign uses for every permission, we found several ex-
tensions that abuse the API. Specifically, for reasons de-
scribed below, we consider the following actions avail-
able only through the extension API as malicious: unin-
stalling other extensions, preventing uninstallation of the
current extension, and manipulating HTTP headers.

We consider uninstalling other extensions as malicious
because some extensions uninstall cleaner extensions,
such as the extension Facebook created to remove harm-

ful extensions on its blacklist.2 We detect this behavior
by monitoring the chrome.management.uninstall

API calls. To avoid false positives, we can differentiate
cleaners from malicious extensions because, to the best
of our knowledge, cleaners operate in a different fashion
than Antivirus does: they clean up malicious extensions
and then remove themselves from the browser. This dif-
fers from the behavior of malicious extensions, which
remain persistent on the system.

Besides attempting to uninstall other extensions, mali-
cious extensions often prevent the user from uninstalling
the extension itself. More specifically, we found exten-
sions that prevent the user from opening Chrome’s exten-
sion configuration page where a user can conveniently
uninstall any extension. To prevent uninstallation, ma-
licious extensions interfere with tabs that point to the
extension configuration page, chrome://extensions,
either by replacing the URL with a different one, or by
removing the tab completely. For analysis, we load a tab
with chrome://extensions in the browser during our
dynamic analysis and monitor any interactions to iden-
tify such behavior.

Lastly, using callbacks in the webRequest API,
a malicious extension can manipulate HTTP headers.
Extensions can use the webRequest API to effec-
tively perform a man-in-the-middle attack on HTTP
requests and responses before they are handled by
the browser. This behavior is often malicious (or at
least dangerous) since we found extensions that re-
move security-related headers, such as Content-Security-
Policy or X-Frame-Options, through the use of call-
backs such as webRequest.onHeadersReceived and
webRequestInterval.eventHandled. By monitor-
ing the use of this API, we can log events that reveal state
of HTTP headers before and after the request. Upon ma-
nipulation of any security-related headers, we label the
extension as malicious.
Interaction with visited pages. In addition to the exten-
sion API, we also monitor an extension’s use of content
scripts to modify web content loaded in the browser. In
our analysis, we flag two kinds of interaction: sensitive
information theft as malicious and injection of remote
JavaScript content as suspicious.

There are many ways an extension can steal per-
sonal information from the user. For example, it can
act as a JavaScript-based keylogger by intercepting all
keystrokes on a page. Extensions can also access form
data, such as a password field, before it is encrypted
and sent over the network. Finally, extensions can also
steal sensitive information from third parties by access-
ing sites with which the user has a valid session, and ei-

2https://chrome.google.com/webstore/

detail/facebook-malicious-extens/

mhkafblddkepdhhjpmedkngigkjjknoa

5

https://chrome.google.com/webstore/detail/facebook-malicious-extens/mhkafblddkepdhhjpmedkngigkjjknoa
https://chrome.google.com/webstore/detail/facebook-malicious-extens/mhkafblddkepdhhjpmedkngigkjjknoa
https://chrome.google.com/webstore/detail/facebook-malicious-extens/mhkafblddkepdhhjpmedkngigkjjknoa

ther issuing requests to exfiltrate data, or simply stealing
valid authentication tokens.

We label any extension that injects remote JavaScript
content into a web page as suspicious. We define this ac-
tivity as adding a script element with a src attribute
pointing to a domain that is different from the one of
the web page. Including these scripts complicates anal-
ysis since the JavaScript content can change without any
corresponding change in the extension. We have ob-
served changes to JavaScript files that substantially alter
the functionality of an extension, possibly due to a server
compromise.

3.3.2 Network Level
By monitoring network requests, including DNS lookups
and HTTP requests, we identify other types of suspi-
cious/malicious behavior. Using a manual analysis of
network logs we have identified two attributes that indi-
cate malicious or suspicious behavior: request errors and
modification of HTTP requests. To detect HTTP mod-
ifications, we examine if the network response that we
observe on the wire differs from the network response
finally processed by the browser.

As we discussed earlier, the extension API offers call-
backs to give extensions the ability to intercept and ma-
nipulate web requests. Not only can extensions drop
security-related headers, but extensions can change or
add parameters in URLs before the HTTP request is sent.
We find such suspicious behavior common, especially
among extensions that request permissions on shopping-
related sites such as Amazon, EBay, and others. In these
cases, the extension adds parameters to the URL that in-
dicate that the site should credit a particular affiliate for
any resulting sales. We discuss this behavior in more de-
tail in Section 5. At the network level, we have the com-
plete view of how the requests originally appeared. We
combine that knowledge with our chrome.* API moni-
toring to identify the exact changes made to the request.

We also look for errors during domain name resolution
to identify extensions that contact domains since taken
down. As with drive-by downloads, we expect that ma-
licious code dynamically loaded into an extension will
eventually become blacklisted. In such cases, the exten-
sion will fail to introduce more code during its execution.
We detect this behavior and mark it as suspicious.

3.4 Injected Content Analysis
A Chrome extension can also manipulate the visited
pages of the browser by injecting a content script. The
injected script runs in the context of the visited page
and thus has full access to its DOM tree. The injected
code can vary significantly, and, with the dynamic na-

Analysis result Count

Malicious 130
Suspicious 4,712
Benign 43,490

Total 48,332

Table 1: Classification distribution of extensions.

Detection class Count

[s] Injects dynamic JavaScript 2,672
[s] Produces HTTP 4xx errors 2,322
[s] Evals with input >128 chars long 451
[m] Prevents extension uninstall 56
[m] Steals password from form 39
[s] Performs requests to non-existent domain 26
[m] Contains keylogging functionality 23
[m] Injects security-related HTTP header 11
[m] Steals email address from form 10
[m] Uninstalls extensions 8

Table 2: Distribution of detected suspicious/malicious
behavior from analyzed extensions. Notice that an ex-
tension might have more than one detections and that we
mark with [m] detections classified as malicious and with
[s] detections classified as suspicious.

ture of JavaScript, can prove difficult to analyze stati-
cally. The use of HoneyPages enables us to understand
the injected code’s full intentions. Instead of trying to
infer what the code will do, we actually run it to observe
its effects on the DOM tree and classify it accordingly.
For example, if the injected code looks for a form field
with the name “password,” we classify it as malicious,
since it can potentially hijack the user’s credentials on
the page. Another example concerns injecting additional
code, where the injected code is part of a two-stage pro-
cess that fetches yet more code from the web and dynam-
ically executes it in the context of the visited page. By
relying on HoneyPages to understand the code’s inten-
tions by the effect that the code has on a given page, we
obtain a more precise view of what the code attempts do
than we can using only static analysis.

4 Results

To evaluate Hulk we use two sources of extensions: the
official Chrome Web Store (totaling 47,940 extensions),
and extensions sideloaded by binaries. We obtained the
latter based on binaries executed in Anubis [1], which,
after removing a large number of duplicates, resulted in

6

Rank Top 10 types of permissions # ext.

1 tabs 16,787
2 notifications 12,011
3 unlimitedStorage 9,424
4 storage 5,725
5 contextMenus 4,774
6 cookies 2,872
7 webRequest 2,849
8 webRequestBlocking 2,102
9 webNavigation 1,623
10 management 1,533

Table 3: The top 10 permissions found in the manifest
files for all extensions we ran. Extensions can include
more than one permission.

a set of 392 unique extensions. As shown in Table 1, in
total we analyzed 48,332 distinct extensions, of which
Hulk labeled 130 as malicious and 4,712 as suspicious.
Table 2 summarizes all of the detected behaviors, which
we analyze in more detail in the following sections.

4.1 Permissions Used
In this section we characterize the extensions we exe-
cuted by identifying the most popular permissions, con-
tent scripts, and API calls that they performed.

Permissions. Table 3 shows the top 10 permissions
from 30,392 unique extensions that use the Chrome Ex-
tension API (excluding the host permissions). The most
commonly used, the tabs permission, allows an exten-
sion to interact with the browser’s tabs, including nav-
igating a tab to a specified URL and registering call-
backs to react to changes in the address bar. The sec-
ond most popular permission, notifications, allows
an extension to generate custom notifications that alert
the user. The storage and unlimitedStorage per-
missions allow storing of permanent data in the user’s
browser. The contextMenus permission allows an ex-
tension to add additional items on the context menu of
the browser. Context menus appear when the user right
clicks on a page. To manipulate the browser’s cookies,
an extension needs to ask for the cookies permission.
The permissions webRequest, webRequestBlocking
and webNavigation allow an extension to inspect, in-
tercept, block, or modify web requests from the browser.
Finally, an extension can get a list of other extensions
installed in the browser—and even disable or unistall
them—with the management permission.

We also computed permission statistics independently
for the set of benign extensions and the set of mali-
cious or suspicious ones. To our surprise, we found

Rank Top 25 hosts in permissions # ext.

1 http://*/* 7,319
2 https://*/* 6,395
3 <all urls > 2,044
4 http://*/ 1,126
5 *://*/* 1,025
6 https://*/ 665
7 www.flashgame90.com/Default.aspx 224
8 https://api.twitter.com/ 200
9 http://localhost/* 161
10 http://127.0.0.1/* 133
11 https://secure.flickr.com/ 95
12 *://*.facebook.com/* 91
13 *://*/ 89
14 https://www.facebook.com/* 82
15 http://vk.com/* 77
16 http://*.facebook.com/* 77
17 https://mail.google.com/* 71
18 https://*.facebook.com/* 70
19 http://*.google.com/ 68
20 https://www.google-analytics.com/ 67
21 https://mail.google.com/ 64
22 https://*.google.com/ 62
23 https://twitter.com/* 61
24 https://www.googleapis.com/ 60
25 google.com/accounts/OAuthGetAcc[..] 56

Table 4: The top 25 host permissions used by extensions.
Extensions can include more than one host permission
per manifest.

that permissions for benign extensions do not dif-
fer significantly from permissions requested by mali-
cious/suspicious ones, indicating that often attackers do
not need to target different APIs to perform their attacks;
maliciousness instead manifests in the way they use the
API.

We found 18,313 extensions that use host permissions
to restrict on which pages the extension can use the priv-
ileged chrome.* API. Table 4 shows the top 25 hosts
appearing in host permissions. As seen in the table, ex-
tensions typically request broad permissions using wild-
cards in URL patterns. In addition these, we examined
the hosts that extensions specified as targets for injecting
content scripts, per Table 5, finding similar broad decla-
rations. In practice, extension authors often use content
scripts and host permissions in an unrestricted fashion.

API calls. Table 6 shows the top 15 Chrome Ex-
tension API calls made during by extensions during
our experiments. There are several measurement arti-
facts introduced by our methodology. To load an ex-
tension for testing, we install the extension on a clean

7

Rank Top 25 hosts in content scripts # ext.

1 http://*/* 12,472
2 https://*/* 10,864
3 <all urls> 4,795
4 *://*/* 1,536
5 https://www.facebook.com/* 520
6 *://*.facebook.com/* 510
7 https://mail.google.com/* 458
8 http://www.facebook.com/* 433
9 https://*.facebook.com/* 344
10 http://*.facebook.com/* 320
11 file://*/* 315
12 https://twitter.com/* 303
13 http://mail.google.com/* 273
14 *://pages.brandthunder.com/[..] 265
15 https://plus.google.com/* 261
16 ftp://*/* 246
17 http://vk.com/* 227
18 http://www.youtube.com/* 211
19 file:///* 207
20 *://mail.google.com/* 189
21 http://twitter.com/* 179
22 *://www.facebook.com/* 178
23 http://ak.imgfarm.com/images[..] 177
24 *://*.reddit.com/* 164
25 https://vk.com/* 164

Table 5: The top 25 hosts used in extensions’ content
script permissions.

browser each time we start an analysis. This causes
runtime.onInstalled to appear in every analysis in-
dependent of the extension’s activities. We also open the
chrome://extensions tab from inside the extension to
determine if the extension interferes with the manage-
ment of extensions. This causes Hulk to record a large
number of tabs.create calls. In Table 6 the tabs API
is by far the most used API, which matches the popular-
ity of tabs permissions observed in Table 3.

4.2 Network Level
Using network activity alone we identified 24 malicious
extensions. These extensions were labeled as malicious
by Hulk because they tampered with security-related
HTTP headers. By removing HTTP response headers
like Content-Security-Policy, the malicious extensions
can inject JavaScript into pages that specifically do not
allow scripts from external sources (according to the CSP
policies provided by the web server). For example, Hulk
found multiple variants of an active extension on the
Chrome Web Store targeting users that seek to cheat in

Rank Top 15 chrome.* APIs called # calls

1 runtime.onInstalled 182,476
2 webRequestInternal.eventHandled 57,466
3 tabs.getAllInWindow 49,312
4 tabs.onUpdated 32,354
5 tabs.create 25,947
6 i18n.getMessage 13,549
7 webRequest.onBeforeSendHeaders 13,213
8 runtime.connect 13,004
9 extension.getURL 11,942
10 storage.get 10,178
11 contextMenus.create 7,816
12 tabs.get 6,970
13 webRequest.onBeforeRequest 6,168
14 runtime.sendMessage 5,847
15 extension.sendRequest 5,454

Table 6: The top 15 chrome.* APIs called by extensions
during dynamic analysis.

online games; these extensions, generally going by the
name “Cheat in your favorite games”, affect over 20K
users.

During our experiments we encountered cases where
our analysis could not obtain the full set of information
needed to make a decision regarding the maliciousness
of an analyzed extension. This problem arose due ex-
tensions performing HTTP requests that either returned
errors, such as an HTTP 404 responses, or having do-
main names that no longer resolved. In such cases, given
our inability to exercise the extension’s full set of capa-
bilities, and because the failed requests might correspond
to fetching additional code, we mark these extensions as
suspicious.

4.3 Extensions Management

Using signals tailored to detect the manipulation of
the chrome://extensions page (as described in Sec-
tion 3.3), we found several extensions on the Chrome
Web Store that prevent uninstallation. Two of of these
extensions claim to be video players (each with thou-
sands of user) and completely replace Chrome’s ex-
tensions management with a page that prevents users
from uninstalling them. These are “HD Video Player”
with 7,173 users and “SmartScreen Video Plugin” with
11,012 users. These signals also generated a false pos-
itive: the “No Tab Left Behind” extension (with only
8 users) allows only one tab at a time to be open. Thus,
during our execution this extension prevented us from
opening the extension settings tab.

8

chrome://extensions

4.4 Code Injection
Code injection was the most commonly detected “sus-
picious” feature in our dataset. In principle injection
need not occur at all, since Chrome extensions can come
packaged with all the code needed to operate. In to-
tal, we found more than 3,000 extensions that dynam-
ically introduced remotely-retrieved code either through
script injections or by evoking eval. As we noted earlier,
using remote code renders static analysis on the exten-
sion’s code fundamentally incomplete. However, Hulk
can identify code injections and pinpoint the remote lo-
cations from which an extension fetches code. Although
not necessarily malicious, we found many cases of dan-
gerous code injection. For example, our system identi-
fied an extension named “Bang5TaoShopping assistant”
from the Chrome Web Store that has been installed in
5.6 million (!) browsers and injects code into every vis-
ited page. Several extensions perform this same activity,
while others insert tracking pixels for similar purposes.
One instance sends cleartext HTTP request to a server
controlled by the extension that encodes the URL visited
by the user along with a unique identifier, leaking users
browsing behavior and thus compromising their privacy.

5 Profiting from Maliciousness

In this section, we discuss five categories of malicious
behavior in extensions, and describe their characteris-
tics and the methods they employ to carry out their
goals. We base each of these categories on examples we
found in our feeds. When the extension is available on
the Chrome Web Store, we also when possible include
the number of users prior to reporting the extension to
Google for review.

We have reported to Google any extension that per-
forms behavior that is clearly abusive or malicious, and
several of our reports have lead to removals of extensions
from the web store.

5.1 Ad Manipulation
Advertisement manipulation falls in a grey area in that it
does not subvert the user, but rather manipulates an ex-
ternal ecosystem. Replacing ads might appear benign to
end users, but removes the potential for monetary credit
for website owners (publishers) and instead fraudulently
credits the extension owner. We include in this category
the addition of new ads as well as the replacement of ex-
isting ads or identifiers. We find a range of behaviors
in extensions, such as replacing banner ads with differ-
ent identically-sized banners; inserting banners and text
ads into well-known sites (such as Wikipedia); changing
affiliate IDs for ads; or simply overlaying ads on top of

"content_scripts": [{

"matches": ["http://*/*", "https://*/*"],

"js": ["js/content.js"]

}],

"permissions": ["http://*/*",

"https://*/*", "tabs"],

Figure 2: Permission-related JSON from the manifest
file of an extension performing ad replacement.

content. Each instance aims to profit from impressions
or clicks on the substituted advertisements.

As one striking example of ad manipulation we
found an extension on the Chrome Web Store that had
1.8M users at the time we detected it. The exten-
sion, named “SimilarSites Pro” used primarily unobfus-
cated JS to perform benign functionality as advertised
on the Chrome Web Store; however, it also inserted a
script element into the content of web pages that down-
loads another, fully-obfuscated script (using eval and
unescape) from a web server. At the time of analysis,
this script contained a large conditional block that looked
for iframe elements of particular sizes, such as 728x90
pixels, and replaced them with new banners of the same
size. Since our first analysis, we have seen several new
versions of the script available from the same URL. In
addition, the extension contains a blacklist of sites and
meta keywords where it should not change the banners,
which appears due to many ad networks prohibiting the
display of their ads on porn sites.

We find the same JavaScript included in five other ex-
tensions from the Chrome Web Store, as well as one
sideloaded extension. Based on manual analysis, these
extensions are primarily produced by a single company
called “SimilarGroup” that engages in dubious behavior
through the Chrome Web Store.

To perform banner replacement, the extension requests
the permissions shown in Figure 2. Such exception-
ally wide permissions are not uncommon [6]. There-
fore, their presence alone provides little insight into the
functionality of the extension. The most significant per-
mission in Figure 2 is the broad use of content scripts
that allow the extension to inject dynamic JavaScript files
from a remote location. Following injection, execution
continues as though the page had included it. Such con-
tent scripts provide an exceptionally powerful feature to
enable a variety of malicious behaviors, as further dis-
cussed in this Section.

5.2 Affiliate Fraud
Many major merchant web sites such as amazon.com,
godaddy.com, and ebay.com run affiliate programs that

9

amazon.com
godaddy.com
ebay.com

credit affiliates with a fraction of the sales made as a
result of customers referred by the affiliates. Usually
merchant programs assign unique identifiers to affiliates,
which affiliates then include in the URL that refers cus-
tomers to the merchant site. Furthermore, affiliate pro-
grams usually associate a cookie with the user’s browser
so that they can attribute a sale to an affiliate within sev-
eral hours after a user originally visited the merchant site
with an affiliate identifier.

As an example, when a user reads product reviews
on an Amazon affiliate’s blog and clicks on a link
to Amazon, the link includes an Amazon affiliate ID
specified with the tag parameter in the URL, such
as http://www.amazon.com/dp/0961825170/?tag=
affiliateID. When Amazon receives this request, it
returns a Set-Cookie header with a cookie that asso-
ciates the user with the affiliate. When the customer re-
turns to Amazon within 24 hours and makes a purchase,
Amazon credits the affiliate with a small percentage of
the transaction amount.

Such programs expect affiliates to bring potential cus-
tomers to their sites via affiliate pages that advertise the
merchant products. However, we found examples of
several extensions involved in cookie stuffing—a tech-
nique that causes the user’s browser to visit the merchant
URLs without the user clicking on affiliate URLs. Do-
ing so causes the merchant to deliver a cookie associ-
ated with the fraudulent affiliate, who then receives credit
for any future, unrelated purchase made by the customer
on the merchant site. Besides defrauding the merchant,
the fraudulent affiliate also causes an over-write of the
cookie associated with any legitimate affiliate who might
have genuinely influenced the user to buy the product.

In our study, we found two kinds of extensions that
defrauded affiliate programs. The first group includes
extensions that provide some utility to users—such as
refreshing pages automatically every few seconds, or
changing the theme of popular sites like Facebook—but
do not inform users of the extension author profiting from
the user’s web browsing. Generally, these activities in-
volve monitoring visited URLs for merchant sites where
the extension can earn a commission and modifying the
outgoing requested URLs to include the affiliate ID, or
by injecting iframe’s that include affiliate URLs.

For example, we found an extension named “*Split
Screen*” (with 52K users) that allows users to show two
tabs in a single window, while also stealthily monitoring
the URLs visited by the user. It then silently replaces the
requested URL with the affiliate’s URL for sites such as
amazon.com, amazon.co.uk, hotelscombing.com,
hostgator.com, godaddy.com, and booking.com.
For some merchants, it also sets the referrer header for
outgoing requests to falsely imply a visit through the af-
filiate’s site. The extension is able to make these changes

using tab and webRequest permissions, as well as
by registering callbacks on chrome.tabs.onUpdated

to identify changes in the URL as a user types,
and chrome.webRequest.onBeforeSendHeaders to
modify the referrer header before the browser sends a re-
quest to a merchant site. We found four other extensions
created by the same developer that similarly provided
some small utility to the user while defrauding merchant
programs in the background. Overall this developer’s ex-
tensions have nearly 70K users.

Another extension we found named “Facebook
Theme: Basic Minimalist Black Theme” (2.5K users) al-
lows users to change the appearance of Facebook. Be-
sides its stated intent, however, it also monitors brows-
ing and appends an affiliate identifier to 7 different Ama-
zon sites. By using its Content Security Policy (Sec-
tion 2.3) to perform eval, it runs a highly-obfuscated
hexadecimal and base64-encoded background script that
stores all affiliate identifiers in Chrome’s storage (using
storage permissions), and registers callbacks on tab up-
date events using tab permissions. When the user visits
any URL, Chrome notifies the extension, and the exten-
sion uses regular expressions to identify target Amazon
URLs for which to add an affiliate identifier. The ex-
tension then updates the URL before the browser sends
the request. The creator of the extension appears well
aware that the extension violates Amazon’s Conditions
of Use [3] and has heavily used obfuscation, evidently to
evade any static analysis for detecting affiliate fraud.

As another example, we found an extension named
“Page Refresh” (200 installations) that allows users to
refresh tabs periodically and only requests tabs permis-
sion. By using the background page to listen on all tab
update events, if a user visits a merchant site it sets the
URL in the tab to a URL shortener that redirects the user
to the same merchant page but with the affiliate identifier
included in the URL, thereby stuffing a cookie into the
user’s browser. This extension abuses 40 different mer-
chants, again including Amazon.

This approach has the advantage that it capitalizes on
organic traffic to merchant sites, which can make fraud
detection difficult because merchants see visit behavior
highly similar to that they would otherwise see as a result
of legitimate affiliate referrals.

The second group of extensions includes extensions
that clearly state in their descriptions that the exten-
sion monetizes the user’s online purchases—generally
for charitable causes or donations to organizations. The
intent or legitimacy of such programs is difficult to ascer-
tain. For example, the extension “Give as you Live” [8]
has over 11K users, and forms part of a larger cam-
paign [7] to raise funds for charities from user purchases
online. The extension works by adding a list of stores
for which the extension author has signed up as an affil-

10

http://www.amazon.com/dp/0961825170/?tag=affiliateID
http://www.amazon.com/dp/0961825170/?tag=affiliateID
amazon.com
amazon.co.uk
hotelscombing.com
hostgator.com
godaddy.com
booking.com

iate to the results of major search engines. It also adds a
script on merchant sites such as amazon.co.uk to redi-
rect users via its own URL. While it does bring legitimate
and likely well-intentioned traffic to Amazon, the legiti-
mate affiliates can lose out if users choose to read product
reviews on affiliate sites and then make the purchase via
this extension.

In fact, a plethora of extensions exists allowing users
to donate to charity simply by shopping online. An-
other such extension uses webRequest permissions to
modify the requested URL to the affiliate URL, includ-
ing over-writing the existing affiliate URL. While this
clearly constitutes cookie-stuffing, the extension adver-
tises itself as “Help support our charity by shopping at
amazon.co.uk”.3

5.3 Information Theft
Information theft clearly reflects malicious behavior that
has the potential to harm the user in a number of ways,
from disclosing private information to financial loss.
This broad category of abuse in many ways replicates
the functionality of some malware families. Within the
browser, we observe stealing of: keypresses, passwords
and form data, private in-page content (e.g., bank bal-
ances), and authentication tokens such as cookies. We
do not include extensions that simply re-use existing au-
thentication tokens already present, such as extensions
that spam on social networks; we discuss these in Sec-
tion 5.4.

One example of keylogging we found in the Chrome
Web Store, “Chrome Keylogger”, is an experimental ex-
tension from researchers [14] that is now removed. Key-
loggers use content scripts to register callbacks for key
press events, recording the pressed key by using the mes-
saging API to communicate with a background page.
The background page then queues up data to send to a
remote server. This behavior has similarities with that
of extensions that steal form data, although the specific
event handlers differ. Both form field theft and keylog-
ging require the extension to specify a content script but
do not require other permissions.

5.4 OSN Abuse
Online social network abuse constitutes the final cate-
gory of prevalent malicious extensions we found. These
extensions typically target Facebook, and spread via both
the Chrome Web Store and sideloading. These exten-
sions use existing authentication data to interact with
the APIs and websites of online social networks. Previ-
ous work identified and reported Chrome extensions that

3 The extension creator also helpfully marked the JavaScript code
that adds the affiliate identifier as something to obfuscate in the future.

"content_scripts": [{

"js":["BlobBuilder.js", ...],

"matches":["http://*/*", "https://*/*"],

"run_at": "document_end"

}],

"permissions":["http://*/*", "https://*/*",

"*://*.facebook.com/",

"tabs", "cookies", "notifications",

"contextMenus", "webRequest", ...],

Figure 3: Permissions and content script excerpts from
the manifest for an extension that spams on Facebook
and creates Tumblr accounts.

abuse social networks, reporting that thousands of users
had installed extensions from the Chrome Web Store that
spam on Facebook [4].

We found a number of extensions that post spam mes-
sages and use other features provided by social networks,
such as the ability to upload and comment on photos or
query the social graph. When we execute these exten-
sions with Hulk, the HoneyPage features allows the ex-
tensions to create elements and insert them into the DOM
tree. While we do not typically inspect the visual results
of our executions, in one case we observed an extension
creating div elements to mimic Facebook status updates
and inserting them into a page. The HoneyPage acted as
a sink for the spam status messages resulting in a page
full of spam for the infected user.

One extension of interest, WhasApp (a name closely
resembling the popular WhatsApp, a mobile chat appli-
cation), has since been removed from the Chrome Web
Store, but we also found evidence of the same extension
being sideloaded from malware. The extension targets
both Facebook and Tumblr. At Facebook, the extension
uploads images to Facebook and then comments on them
with messages containing URLs. In some cases the links
are used to spread the malicious extension to a wider au-
dience, while other URLs sought to monetize users as
part of a spam campaign to advertise products. At Tum-
blr, the extension creates new Tumblr accounts and veri-
fies them in the background.

The manifest file contains permissions and content
scripts that request broad access, as shown in Figure 3.
The extension is in fact over-privileged, since the exten-
sion in fact does not use some of the API permissions
the manifest includes. Prior work has identified over-
privileging as not uncommon, even among benign ex-
tensions [13]. Figure 3 shows the extension specifically
requesting access for permissions and content scripts
on facebook.com in addition to all other sites, which
provides a hint as to the sites targeted. To carry out
spamming on Facebook and Tumblr account creation,

11

amazon.co.uk

the extension actually only requires the use of content
scripts. The abusive component of the extension is 15
lines of JavaScript that downloads a much larger remote
JavaScript file containing the spamming functionality.

6 Recommendations

In this section, we frame changes to make Chrome’s ex-
tension ecosystem safer. Extensions should not have the
ability to manipulate browser configuration pages, such
as chrome://extensions, that govern how users man-
age and uninstall extensions. Extensions should also not
be allowed to uninstall other extensions unless they are
from the same author or a trusted source (such as Google
or Antivirus vendors). We also recommend preventing
extensions from manipulating HTTP requests by remov-
ing security-related headers that compromise the secu-
rity of web pages. This change will require modifica-
tions to several extension APIs to comprehensively ad-
dress this issue, the primary one being webRequest.

To address cloaking and other changes in remotely in-
cluded content, we suggest that Google should encour-
age local inclusion of static files in the context of a
web page. Chrome supports pushing automatic updates
of extensions to users, so remotely including additional
JavaScript code is not necessary to support rapid changes
in an extenion’s code. This change will make it possi-
ble to have a more complete analysis of extension behav-
ior, since the analysis engine—Hulk or otherwise4—will
have the complete extension code available. To encour-
age developers to write completely self-contained exten-
sions and not load additional code from the network, one
could introduce a new policies, such as: if an exten-
sion loads code from a remote site, it loses permissions
such as the ability to inject that new code into the visited
pages.

Finally, extensions should not have the ability to hook
all keyboard events on a given site. The window.onkey*
API that exists in JavaScript has utility for pages that
want to intercept the keyboard events of their users, but in
the context of extensions it provides too much power. An
experimental API (chrome.commands) exists that allows
extensions to register keyboard shortcuts; this strikes us
as a step in the right direction, as this covers the common
use-case for requiring access to these events.

These suggestions will not eliminate malicious exten-
sions, but can prevent classes of attacks, and significantly
facilitate the analysis of extensions.

4 In particular, ultimately an extension store operator such as
Google needs to undertake such analysis as part of its curation of the
store contents.

7 Limitations

Our system uses dynamic analysis for analyzing exten-
sions, and, as with every dynamic analysis system, the
correct classification of an extension relies on triggering
the malicious activity. Hulk employs HoneyPages and
event handler fuzzing on the extension’s web request lis-
teners to enhance dynamic analysis, but does not provide
a complete view of extension behavior. For example,
we do not attempt to address cloaking that loads differ-
ent code based on the client’s location or time. We also
will not observe behavior that depends on specific tar-
gets, such as those that require user interaction with a
visited page to take effect. Similarly, pages that require
sign-in pose difficulties. Hulk has a pre-set list of sites
and credentials to use while visiting pages, but does not
perform account creation on the fly.

Hulk’s Honeypages do not currently support multi-
step querying of DOM elements. While we can place
elements in the DOM tree that an extension looks for, if
the extension expects elements to have additional prop-
erties in order to trigger its malicious behavior, we will
fail to adapt to the extension’s expectations. We plan on
improving HoneyPages to support multi-step querying,
and for many element types and attributes this appears
possible.

We currently also lack data flow analysis in the
Chrome browser, a feature that would substantially im-
prove the depth of behavior available for analysis. One
example where this would prove particular useful regards
keystroke interception. Without data flow tracking, we
cannot automatically derive whether this information ul-
timately becomes transmitted to a third party via a net-
work request.

Another difficult concern for Hulk is analysis eva-
sion by extensions that specifically look for HoneyPages.
A determined adversary with knowledge of the system
could try to evade Hulk by querying for random elements
in the DOM tree first, and, if found, avoid malicious ac-
tivity. A similar type of evasive behavior arose for in
submissions to Wepawet [17]. One way to counter this is
by introducing non-deterministic HoneyPages for which
DOM tree queries only succeed with a given probabil-
ity. We could further enhance this approach by crawling
a few million sites and building models of the existing
elements to assign apt probabilities weights for different
queries. This approach may also require analysis of an
extension’s DOM queries in case the extension repeat-
edly performs these in an effort to detect randomized
queries. Finally, we can consider measuring code cov-
erage to examine the impact that each DOM query has
on the amount of code executed by an extension, as the
extension will skip executing the malicious code when it
detects the presence of an analysis system.

12

8 Related Work

Browser extensions have been available for Internet Ex-
plorer and Firefox for over a decade. As a result of
a study of vulnerabilities in Firefox extensions, Barth
et al. designed an extension architecture that promotes
least privilege and isolation of components to prevent
a compromised extension from gaining full access to a
user’s browser [5], an architecture subsequently adopted
by Google Chrome. Since then, further work has exam-
ined the success of the Chrome extension architecture
at preventing damage [6] and the ability of developers
to correctly request privileges for their extensions [13].
Similar studies have examined the Firefox extension sys-
tem to limit the potential damage arising from exploita-
tion of extension vulnerabilities, and to improve the de-
fenses the browser provides [27]. These works have a
focus mostly tangential to our work, since the principle
of least privilege does not prevent an overtly malicious
extension from executing malicious code.

The security industry has documented malicious ex-
tensions in ways similar to malware reports and other
new threats [2, 4]. Liu et al. examined Google Chrome
extensions and, based on malicious extensions the au-
thors built, suggested refined privileges to make detect-
ing malicious extensions easier [21]. In our work, we
build a system that performs dynamic analysis and clas-
sification of extensions, and present an analysis of mali-
cious extensions that we found in the wild.

JavaScript-based program analysis has particular
promise for benefiting our work, and in light of our cur-
rent limitations we will be exploring techniques that we
can adapt to improve our system’s detection capabili-
ties. Research has applied information flow analysis to
Firefox extensions [10], performed taint-based tracking
of untrusted data within the browser [11], used sym-
bolic execution to detect vulnerabilities [26], applied
static verification to extensions [16], contained exten-
sions in privacy-preserving environments [20], and used
supervised learning of browser memory profiles to detect
privacy-sensitive events [14].

Our work has similarities to that of other malware de-
tection and execution systems. While our implementa-
tion and requirements significantly differ from systems
that execute Windows binary malware (such as Anu-
bis [1]), at a high level we share common goals of ex-
ecuting and extracting data from samples. Like Anu-
bis, Wepawet, the GQ honeyfarm, and other malware
execution platforms, we share the difficult problem of
triggering malicious behavior in a synthetic environ-
ment [9, 19]. Other research in this area has focused
on classification and discerning malware from good-
ware [24].

9 Summary

In this paper we presented Hulk, a system to dynamically
analyze Chrome browser extensions and identify mali-
cious behavior. Our system monitors an extension’s ac-
tions and creates a dynamic environment that adapts to an
extension’s needs in order to trigger the intended behav-
ior of extensions, classifying the extension as malicious
or benign accordingly. In total, we identified 130 ma-
licious and 4,712 suspicious extensions that have up to
5.5 million browser installations, many of which remain
live in the Chrome Web Store. Based on these results,
we developed a detailed characterization of the malicious
behavior that we found, targeted at determining the moti-
vation behind the extension. Finally, we propose several
changes for the Chrome browser ecosystem that could
eliminate classes of extension-based attacks and aid with
analysis.

Acknowledgments

We would like to thank our shepherd David Evans for his
insightful comments and feedback. We would also like to
thank Niels Provos, Adrienne Porter Felt, Nav Jagpal and
the rest of the Safebrowsing team at Google for their in-
sight and discussions throughout this project. This work
was supported by the National Science Foundation under
grants 0831535 and 1237265, by the Office of Naval Re-
search (ONR) under grant N000140911042, the Army
Research Office (ARO) under grant W911NF0910553,
by Secure Business Austria and by generous gifts from
Google. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the
sponsors.

References

[1] Anubis — Malware Analysis for Unknown Binaries.
http://anubis.iseclab.org/.

[2] AMADEO, R. Adware vendors buy Chrome Ex-
tensions to send ad- and malware-filled updates.
http://arstechnica.com/security/2014/01/

malware-vendors-buy-chrome-extensions-to-

send-adware-filled-updates/, Jan 2014.

[3] AMAZON. Associates Program Operating Agree-
ment. https://affiliate-program.amazon.com/

gp/associates/agreement/, 2012.

[4] ASSOLINI, F. Think twice before installing Chrome
extensions. http://www.securelist.com/en/blog/

208193414/Think_twice_before_installing_

Chrome_extensions, Mar 2012.

[5] BARTH, A., FELT, A. P., SAXENA, P., AND BOODMAN,
A. Protecting Browsers from Extension Vulnerabilities.

13

http://anubis.iseclab.org/
http://arstechnica.com/security/2014/01/malware-vendors-buy-chrome-extensions-to-send-adware-filled-updates/
http://arstechnica.com/security/2014/01/malware-vendors-buy-chrome-extensions-to-send-adware-filled-updates/
http://arstechnica.com/security/2014/01/malware-vendors-buy-chrome-extensions-to-send-adware-filled-updates/
https://affiliate-program.amazon.com/gp/associates/agreement/
https://affiliate-program.amazon.com/gp/associates/agreement/
http://www.securelist.com/en/blog/208193414/Think_twice_before_installing_Chrome_extensions
http://www.securelist.com/en/blog/208193414/Think_twice_before_installing_Chrome_extensions
http://www.securelist.com/en/blog/208193414/Think_twice_before_installing_Chrome_extensions

In Proceedings of the Network and Distributed System Se-
curity Symposium (NDSS) (2010).

[6] CARLINI, N., FELT, A. P., AND WAGNER, D. An Evalu-
ation of the Google Chrome Extension Security Architec-
ture. In Proceedings of the USENIX Security Symposium
(2012).

[7] CHARLES ARTHUR. Infographic: Internet shopping.
http://www.theguardian.com/technology/blog/

2011/jul/04/internet-shopping-infographic-

give-as-you-live-charity, 2011.

[8] CHROME WEB STORE. Give as you Live. https://

chrome.google.com/webstore/detail/give-as-

you-live/fceblikkhnkbdimejiaapjnijnfegnii,
2013.

[9] COVA, M., KRUEGEL, C., AND VIGNA, G. Detection
and Analysis of Drive-by-Download Attacks and Mali-
cious JavaScript Code. In Proceedings of the World Wide
Web Conference (WWW) (2010).

[10] DHAWAN, M., AND GANAPATHY, V. Analyzing Infor-
mation Flow in JavaScript-Based Browser Extensions. In
Proceedings of the Annual Computer Security Applica-
tions Conference (ACSAC) (2009).

[11] DJERIC, V., AND GOEL, A. Securing script-based exten-
sibility in web browsers. In Proceedings of the USENIX
Security Symposium (2010).

[12] F-SECURE. Coremex innovates search engine hijack-
ing. http://www.f-secure.com/weblog/archives/
00002689.html, April 2014.

[13] FELT, A. P., GREENWOOD, K., AND WAGNER, D. The
Effectiveness of Application Permissions. In Proceedings
of the USENIX Conference on Web Application Develop-
ment (WebApps) (2011).

[14] GIUFFRIDA, C., ORTOLANI, S., AND CRISPO, B. Mem-
oirs of a browser: A cross-browser detection model for
privacy-breaching extensions. In Proceedings of the ACM
Symposium on Information, Computer and Communica-
tions Security (ASIACCS) (2012), ACM.

[15] GOOGLE. What are extensions? https://developer.

chrome.com/extensions/index, 2014.

[16] GUHA, A., FREDRIKSON, M., LIVSHITS, B., AND

SWAMY, N. Verified Security for Browser Extensions.
In Proceedings of the IEEE Symposium on Security and
Privacy (2011), IEEE, pp. 115–130.

[17] KAPRAVELOS, A., SHOSHITAISHVILI, Y., COVA, M.,
KRUEGEL, C., AND VIGNA, G. Revolver: An Auto-
mated Approach to the Detection of Evasive Web-based
Malware. In Proceedings of the USENIX Security Sym-
posium (2013).

[18] KAY, E. Protecting Chrome users from mali-
cious extensions. http://chrome.blogspot.

com/2014/05/protecting-chrome-users-from-

malicious.html, May 2014.

[19] KREIBICH, C., WEAVER, N., KANICH, C., CUI, W.,
AND PAXSON, V. GQ: Practical containment for measur-
ing modern malware systems. In Proceedings of the ACM

Internet Measurement Conference (IMC) (2011), ACM,
pp. 397–412.

[20] LI, Z., WANG, X., AND CHOI, J. Y. Spyshield: Pre-
serving privacy from spy add-ons. In Proceedings of the
Recent Advances in Intrusion Detection (RAID) (2007).

[21] LIU, L., ZHANG, X., YAN, G., AND CHEN, S. Chrome
Extensions: Threat Analysis and Countermeasures. In
Proceedings of the Network and Distributed System Se-
curity Symposium (NDSS) (2012).

[22] LUDWIG, P. No more silent extension installs.
http://blog.chromium.org/2012/12/no-more-

silent-extension-installs.html, Dec 2012.

[23] NIKIFORAKIS, N., INVERNIZZI, L., KAPRAVELOS,
A., VAN ACKER, S., JOOSEN, W., KRUEGEL, C.,
PIESSENS, F., AND VIGNA, G. You are what you in-
clude: Large-scale evaluation of remote JavaScript inclu-
sions. In Proceedings of the ACM Conference on Com-
puter and Communications Security (CCS) (2012).

[24] RAJAB, M. A., BALLARD, L., LUTZ, N., MAVROM-
MATIS, P., AND PROVOS, N. CAMP: Content-Agnostic
Malware Protection. In Proceedings of the Network and
Distributed System Security Symposium (NDSS) (2013).

[25] REDDIT. Reddit: I am One of the Developers of a
Popular Chrome Extension. . . . http://www.reddit.

com/r/IAmA/comments/1vjj51/i_am_one_of_the_

developers_of_a_popular_chrome/, Jan 2014.

[26] SAXENA, P., AKHAWE, D., HANNA, S., MAO, F., MC-
CAMANT, S., AND SONG, D. A Symbolic Execution
Framework for JavaScript. In Proceedings of the IEEE
Symposium on Security and Privacy (2010).

[27] TER LOUW, M., LIM, J. S., AND VENKATAKRISHNAN,
V. Enhancing Web Browser Security Against Malware
Extensions. Journal in Computer Virology 4, 3 (2008),
179–195.

[28] WANG, D., SAVAGE, S., AND VOELKER, G. M. Cloak
and Dagger: Dynamics of Web Search Cloaking. In Pro-
ceedings of the ACM Conference on Computer and Com-
munications Security (CCS) (2011), ACM, pp. 477–490.

[29] WEST, M. An Introduction to Content Security Pol-
icy. http://www.html5rocks.com/en/tutorials/

security/content-security-policy/, 2012.

14

http://www.theguardian.com/technology/blog/2011/jul/04/internet-shopping-infographic-give-as-you-live-charity
http://www.theguardian.com/technology/blog/2011/jul/04/internet-shopping-infographic-give-as-you-live-charity
http://www.theguardian.com/technology/blog/2011/jul/04/internet-shopping-infographic-give-as-you-live-charity
https://chrome.google.com/webstore/detail/give-as-you-live/fceblikkhnkbdimejiaapjnijnfegnii
https://chrome.google.com/webstore/detail/give-as-you-live/fceblikkhnkbdimejiaapjnijnfegnii
https://chrome.google.com/webstore/detail/give-as-you-live/fceblikkhnkbdimejiaapjnijnfegnii
http://www.f-secure.com/weblog/archives/00002689.html
http://www.f-secure.com/weblog/archives/00002689.html
https://developer.chrome.com/extensions/index
https://developer.chrome.com/extensions/index
http://chrome.blogspot.com/2014/05/protecting-chrome-users-from-malicious.html
http://chrome.blogspot.com/2014/05/protecting-chrome-users-from-malicious.html
http://chrome.blogspot.com/2014/05/protecting-chrome-users-from-malicious.html
http://blog.chromium.org/2012/12/no-more-silent-extension-installs.html
http://blog.chromium.org/2012/12/no-more-silent-extension-installs.html
http://www.reddit.com/r/IAmA/comments/1vjj51/i_am_one_of_the_developers_of_a_popular_chrome/
http://www.reddit.com/r/IAmA/comments/1vjj51/i_am_one_of_the_developers_of_a_popular_chrome/
http://www.reddit.com/r/IAmA/comments/1vjj51/i_am_one_of_the_developers_of_a_popular_chrome/
http://www.html5rocks.com/en/tutorials/security/content-security-policy/
http://www.html5rocks.com/en/tutorials/security/content-security-policy/

	Introduction
	Background
	Chrome Extension Composition
	Installing Extensions
	Extension Permissions

	Architecture
	Profiling Extensions
	Event-Based Execution
	Monitoring Hooks

	Detecting Malicious Behavior
	JavaScript Attributes
	Network Level

	Injected Content Analysis

	Results
	Permissions Used
	Network Level
	Extensions Management
	Code Injection

	Profiting from Maliciousness
	Ad Manipulation
	Affiliate Fraud
	Information Theft
	OSN Abuse

	Recommendations
	Limitations
	Related Work
	Summary

