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Abstract ISPs collect summary statistics for thousands of net-

This paper describes Mortar, a distributed streanVO'k €lements, other important applications are emerg-
processing platform for building very large queries ing. For instance, end-system monitoring specifically

across federated systems (enterprises, grids, datax;,entellﬁver"j?geS the host vantage point as a me_th(_)d for in-
testbeds). Nodes in such systems can be queried for disfeasing the transparency Of, network activity in enter-
tributed debugging, application control and provisioning PTiS€ networks [11] or observing the health of the Inter-
anomaly detection, and measurement. We address tHi€! itself [15]. These environments pose challenges that
primary challenges of managing continuous queries thaptrongly affect stream processing fidelity, including fre-

have thousands of wide-area sources that may periodguent node and network failures and mis-configured or

cally be down, disconnected, or overloaded, e.g., multiJl-oehaved clock synchronization protocols [24]. This
ple data centers filled with cheap PCs, Internet testbedd@S recently been referred to as the “Internet-Scale Sens-

such as Planetlab, or country-wide sensor installations. N9” Problem [26]. , _
Mortar presents a clean-slate design for best-effortin- Mortar provides a platform for instrumenting end
network processing. For each query, it builds muItipIe,hOSts' laptop-class devices, and network elements with

static overlays and leverages the union of overlay pathdat@ srt]ream p_rocesscljng oper?tofrs. The platfo(;m mr;';m-
to provide resilient query installation and data routing."’u-:]eSt e creation and removal of operators, and orches-

Further, a unique data management scheme mitigates tﬁ'@tes the flow of data between them. Our design goal

impact of clock skew on distributed stream processing!S [0 Support best-effort data stream processing across

reducing result latency by a factor of 8, and allows userdn€se federated systems, specifically providing the gbilit

to specify custom in-network operators that transpariC Manage in-network queries that source tens of thou-

ently benefit from multipath routing. When compared to sands O_f streams. While _other data management sys-
a contemporary distributed snapshot querying substraté?ms, exist, thelr. accuracy 1S often encumbered by pro-
Mortar uses a fifth of the bandwidth while providing in- cessing all queries over a single dynamic overlay, such

creased query resolution, responsiveness, and accurafy @ distributed hash table (DHT) [18, 41, 27]. Our
during failures. own experience (and that of others [33]) indicates an

impedance mismatch between DHT design objectives
and in-network stream processing. Even without fail-
ures, periodic recovery mechanisms may disrupt the data

There is a growing need to monitor, diagnose, anomanggemgnt layer during route table maintenance, in-
react to data and event streams emitted by wide-scal€onsistencies, and route flaps [17].
networked systems. Examples include big-box retail- Mortar incorporates a suite of complementary tech-
ers analyzing retail streams across thousands of locdidues that provide accurate and timely results during

tions, real-time weather predictors sourcing hundreds ofdilures. Such an ability facilitates stream processing
doppler radars [13], studying network attacks with dis- across federated environments where the set of all nodes

tributed Internet telescopes [3] or end systems [11, 15]IN the system is well known, but many nodes may pe-
and anomaly detection across wired [20] or wireless netfiodically be down, disconnected, or overloaded, e.g.,
work infrastructures [9, 2]. multiple data centers filled with cheap PCs, Internet

These systems represent a global pool of nodes corffestbeds such as Planetlab, or city-wide sensor instal-

tinuously emitting system and application-specific data@tions [25].  This work complements prior research
at has primarily focused on querying distributed struc-

streams. In these scenarios, in-network data processi ! :
is often necessary as the data streams are too large, t&g'ed data sources [18, 14, 27], processing high speed

numerous, or the important events within the streams to§tréams [19], managing large numbers of queries [8], or
sparse to pay the cost of bringing the data to a centra’l“a'”,ta'”'ng consistency guara.ntees du_rlng. failures [4].
location. While distributed data processing is important ' NS paper makes the following contributions:

for monitoring large backbone networks [36, 16], wheree Failure-resilient aggregation and query manage-

1 Introduction



ment: Mortar uses the combined connectivity of a static of thousands of nodes producing data streams at low to
set of overlay trees to achieve resilience to node and nemedium rates, issuing one to 1000’s of records a second.
work failures. By intelligently building the tree set (Sec- Given the size of such queries, we expect machine fail-
tion 3), the overlays are both network aware and exhibitures and disconnections to be common. Thus a key de-
sufficient path diversity to connect most live nodes dur-sign goal is to provide failure-resilient data stream rout-
ing failures. Our data routing (Section 3.3) and query reing and processing, maximizing result accuracy without
covery protocols (Section 6) ensure that even when 40%acrificing responsiveness.

of the nodes in a given set are unavailable, the system We begin by motivating a clean-slate approach for
can successfully query 94% of the remaining nodes.  connecting continuous aggregate operators based on

e Accurate stream processing in the presence of clock static overlays. A goal of this data routing substrate is
offset: The lack of clock synchronization, such as the 0 capture all constituent data that were reachable dur-
presence of different clock skews (frequencies), carlnd the query’s processing window [18, 41, 40], and this
harm result fidelity by changing the relative time re- Work uses resutompletenesshe percentage of peers or
ported between nodes (relative clock offéetfor dis- nodes whose data are included in the final result, as the
tributed stream processing this can increase latency anfimary metric for accuracy. We end this section with
pollute the final result with values produced at the wronghOW users specify stream-based queries and user-defined
time. Mortar'ssynclessnechanism (Section 5) replaces OPerators in Mortar.
traditional timestamps witlages eliminating the effect
of clock offset on results and improving result latency by
a factor of 8. While it is natural to consider a dynamic overlay,
¢ Multipath routing with duplicate-sensitive opera-  such as a distributed hash table (DHT), as the underly-
tors: Mortar’s time-divisiondata management model ing routing substrate, we pursue a clean-slate design for
isolates data processing from data routing, allowinga number of reasons. First, we dess@pedqueries;
duplicate-free processing in the presence of multipattonly the nodes that provide data should participate in
routing policies. This enables our dynamic tuple stripingquery processing. It is difficult to limit or to specify
protocol (Section 3.3), and allows user-defined aggregatgodes in the aggregation trees formed by a DHT’s rout-
operators, without requiring duplicate-insensitive @gper ing policy. Second, we can reduce system complexity
tors or synopses [28]. and overhead by taking advantage of our operating en-
vironment, where the addition or removal of nodes is
Extensive experimentation with our Mortar prototype rare. While Mortar peers may become unavailable, they
using a wide-area network emulator and Internet-likenever explicitly “join” or “leave” the system. Further,
topologies indicate that it enables accurate best-efforbHTs are not optimized for tasks such as operator place-
stream processing in wide-scale environments. We comment [33], and, more importantly, complicated routing
pare its performance to a release of SDIMS [41], an agtable maintenance protocols may produce routing incon-
gregating snapshot query system, built on the latest versistencies [17].
sion of FreePastry(2.03). Mortar uses 81% less band-  In contrast, Mortar connects query operators across
width with higher monitoring frequency, and is more ac- multiple statictrees, allowing query writers to explicitly
curate and responsive during (and after) failures. Ad-specify the participants anode set Here we take ad-
ditionally, Mortar can operate accurately in environ- vantage of the relatively stable membership seen in fed-
ments with high degrees of clock offset, correctly as-erated systems, which usually have dedicated personnel
signing 91% of the values in the system to the right 5-to address faults. Machines in these environments may
second window, outperforming a commercial, central-temporarily fail, be shutdown for maintenance, or briefly
ized stream processor. Finally, to validate the design oflisconnected, but new machines rarely enter or leave the
the operator platform, we design a Wi-Fi location sens-system. The combined connectivity of this tree set not
ing query that locates a MAC using three lines of theonly allows data to flow around failed links and nodes,
Mortar Stream Language, leveraging data sourced fromput also query install and remove commands. This al-

2.1 Motivating static overlays

188 sensors throughout a large office building. lows users to build queries across the live nodes in their
system simply with lists of allocated IP addresses.
2 Design This idea builds upon two existing, basic approaches

to improving result completeness. Data mirroring, ex-
As a building block for data processing applications, plored by Borealis [4] and Flux [37], runs a copy of the
Mortar allows users to deploy continuous queries in feddogical query plan across different nodes. Static strip-
erated environments. It is designed to support hundredsg, found in TAG [21], sendd /n of the data up each
of in-network aggregate queries that source up to tensf n different spanning trees. We compare these ap-



Technique Benefits

Tree set planning (Section 3)| A primary static overlay tree places the majority of data close to tlo¢ @perator by cluster
ing network coordinates. Statsibling trees preserve the network awareness of the primary,
while exhibiting the path diversity of random trees.
Dyamic tuple striping (Secti Route tuples toward root operator while leveraging avélaaths. Ensures low path length
tion 3.3) and avoids cycles. Even when 40% of the nodes are unreaclusile from 94% of the
remaining nodes is available.
Time-division data partition- Isolates tuple processing from tuple routing, allowing tipalth tuple routing, and avoiding
ing (Section 4) duplicate data processing.
Syncless operation (Section %) Allows accurate stream processing in the presense ofveleltbck offset, and reduces result
latency by a factor of 8.
Pair-wise reconciliation (Sect Leverages combined connectivity bfoverlay trees for eventually consistent query installa-
tion 6) tion and removal.

Table 1: A roadmap to the techniques Mortar incorporates.
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Percentage of failures failed links (or nodes). Here, after a failed link, node Btesu
successive partial values to node C on the second tree.
Figure 1: Result completeness under uniformly random fail-
ures for mirroring, striping, and dynamic striping.is the tree
set size.
each operator stripes outbound data across each down-
stream parent in the tree set. When a failure occurs, dis-

proaches for an aggregate sum operator using a simplg, o cting a parent, the operator migrates the stripe to

simulation. We build random trees (with 10k nodes) ofa remaining, live parent. Note that because Mortar is a

various bra_mching factors_, uniformly “fail” random links, best-effort system, it does not retransmit data lost due to
and ttr:en ?'m%ly wz;lkthe In-memory gracljph arr]wd counttheyq ailure. Figure 2 illustrates this three step process.
number of nodes that remain connected to the root. Eachiq 4j1ows nodes to continue to push values towards the

t_nal Sl.JbJeCtS the same tree setouniformly random root as long as there remains a single live path across the
link failures, and we plot the average performance acros§nion of upward paths in the tree set. Figure 1, shows

400.”'3'5' » o _ . that this technique is effective, even with a low number
Figure 1 shows the ability of mirroring and striping ¢ stripes.
to maintain connections to nodes under different levels
of failure, number of trees[{), and a branching fac- Routing data across a set of static spanning trees for
tor of 32. Both static options perform poorly. Strip- each query sidesteps many of the issues raised by dy-
ing performs no better than a single random tree; manyamic overlays, but poses new guestions. How should
slices of a tree behave, in expectation, as a single randone design the tree set so that it is both network aware,
tree. Data mirroring improves resiliency to failure, but at but provides a diverse set of overlay paths? How does
significant cost. When 20% of the links fail, mirroring one route data towards the root while ensuring low path
across 10 treed{ = 10) improves consistency by 10% length and avoiding cycles? How should the system
while increasing the bandwidth footprint by an order of prevent duplicate data processing to allow duplicate-
magnitude. Obviously, this approach is not scalable.  sensitive aggregate operators? Meeting these design
Instead, we propose dynamic striping, a multipathchallenges required us to innovate in a number of areas
routing scheme that combines the low overhead of statiand led to the development of a suite of complementary
striping with adaptive overlay routing. Without failures, techniques (Table 1).



2.2 Queries and in-network operators N oee Final Sibling Tree

Level 2 Rotations Lve‘\tl 1 Rotation
Mortar consists of a set of peering processes, any of d ,‘/ \“ d‘\‘
which may accept, compile, and inject new queries. Each =< / /
query is defined by its in-network operatortypeandpro- @ @ @ @ O ; ‘ bo ; ‘ b

duces a single, continuous output data stream. It may
take as input one or more raw sensor data streams or supTgure 3: We derive sibling trees from the primary tree

scribe tQ existing O_'ata streams tQ compose F:omplex dat@wough successive random rotations of internal subtrEeis.
processing operations. Users write queries in the Mortaj,oqyces path diversity while retaining some clustering
Stream Languade

We require that all operators are non blocking; they
may emit results without waiting for input from all 3.1 Building the primary tree
sources. An operator’s unit of computation is a tuple, an ) S _
ordered set of data elements. Operators use sliding win- Our primary objective is to plan an aggregation tree
dows to compute their result, issuing answers that sumthat places the majority of nodes “close” to the root op-
marize the last: seconds (a time window) or the last erator. This allows the root to return answers that re-
tuples (a tuple window) of a source stream. This is theflect the majority of the data quickly. The idea is to
window range the windowslide (again in time or tuple ~ Minimize the latency between stream sources and their
count) defines the update frequency (e.g., report the aarent operator through recursive data clustering on net-
erage of the last 20 tuples every 10 tuples). work coordinates [12]. In network coordinate systems,

Mortar provides a simple API to facilitate program- each peer produces a coordinatg whose Euclidean dis-
ming sophisticated in-network operators. Many appnca_tance_from oth_er peers predicts inter-peer Iatency_. Our
tion scenarios may involve user-defined aggregate fund?/@nning algorithm places operators at the centroids of
tions, like an entropy function to detect anomalous traf-clusters, avoiding high-latency paths in the top of the
fic features or a bloom filter for maintaining an index. AUery tree. _
However, multipath routing schemes often require spe- Mo_rtar treats_ network <_:oord|nates as a data stream,
cial duplicate and order-insensitive synopses to imple&nd first establishes a union query to bring a set of co-
ment common aggregate functions [28]. When combinedrdinates to the node compiling the query. Once at the
with a duplicate-suppressing network transport protocol COMPiling peer, Mortar invokes a clustering algorithm
Mortar's data model (Section 4) ensures duplicate-freéhat builds full tr_ees with a particular branching factor
operation. Thus each in-network operator only needs t§%f)- The recursive procedure takes a root node and the
provide amer ge function, that the runtime calls to inject N°de set. It proceeds by first finding clusters, finding
a new tuple into the window, and reermove function the centroids of each cluster, and making each a child of

that the runtime calls as tuples exit the window. Eachthe root. The procedure is then called with each child as
function has access to all tuples in the window. Thisthe root, and that child’s cluster as the node set. The re-

API supports a range of streaming operators, includingursion ends when _the input node set size is less than or
maps, unions, joins, and a variety of aggregating func€dual to the branching factor. .

tions, which are the focus of this work. This design distributes tree building across a small
subset of nodes actively used to inject queries. Though
the total amount of data brought to the injecting node is
relatively small, 10,000 nodes issuing 5-dimensional co-
, _ _ . __ordinates results in 0.5MB, the cost is amortized across
Mortar’s robustness relies on the inherent path d|ver-.[he compilation of multiple queries. The union query

sity in the union of multiple query trees. Our physical 5y have a slide on the order of tens of minutes, as la-
dataflow planner arranges aggregate operatorsinto a su

X ; 'ﬁéncy measurements are relatively stable for those time
able set of aggregation trees. This means that the SySteHbriods [29].

deploys an operator at each source, whether it is a raw

sensor stream or the output stream of an existing queng.2  Building sibling trees

This allows operators to label the tuples according to

our data model and reduce the data before crossing the The key challenge for building sibling trees is retain-
network. The first planning step is to build a network- ing the majority of the primary’s clustering while provid-
aware “primary” tree, and then to perform permutationsing path diversity. These are competing demands, large
on that tree to derive its siblings. Finally, a routing pglic changes to the primary will create a less efficient tree.
explores available paths while preventing routing cycles Our algorithm works in a bottom-up fashion, pushing
and ensuring low-length paths. leaves into the tree to create path diversity. This is im-

3 Planning and using static overlay trees



portant because interior-node disjoint (IND) trees ensure level | Tree A |Tree B | Tree A

that failures in the interior of one tree only remove a sin- 1 S logai i

gle node’s data in any other. However, complete IND 2 T egalroute

trees would fail to retain the primary trees clustering. 3 R N RV . Ui
We derive each sibling from the primary tree. The a7 illegal route

process walks the tree according to a post-order traver-
sal and performs random rotations on each internal noderigure 4: Multipath tuple routing up two trees. To ensure
Figure 3 illustrates the process for a binary tree. Startforward progress, tuples route to trees at levels less than t
ing at the bottom of the tree, the algorithm ascends to thgyst level they occupied on the tree.
first internal node and rotates that subtree. The rotation
chooses a random child and exchanges it with the curren
parent. Rotations continue percolating leaves up into the
tree until it rotates the root subtree.

While this pushestmicaves Jeaves into the interior
of the tree, it doesn’t replace all interior nodes. At the
same time, it is unlikely that a given leaf node will be
rotated into a high position in the tree, upsetting the clus-
tering. Our experimental results (Section 7) confirm this.
Note that sibling tree construction makes no explicit ef-
fort to increase the underlying path diversity. Doing so is

the subject of future work. Finally, an obvious concern|ast |evel at which the current tuple visited tree=unc-

is a change in the network coordinates used to plan thgons p and C of indicate the parent/child of the current
primary tree. While we have yet to investigate this in de-gde in tree.

tail, large changes in network coordinates would require Figure 5 shows the decision process operators use to
query re-deployment. choose a destination node. Each successive stage al-
lows for more routing freedom, but may also lengthen
the path. The first policy attempts to use the same tree
As operators send tuples towards the root, they musen which the tuple arrived. If this parent(#, is down,
choose a neighboring operator in one of thearees. Wwe try “up*”, which tries a parent on a different tree,
For dynamic tuple striping the default policy is to stripe that is at least as close to the root as the currentitree
newly created tuples in a round-robin fashion across théf no such tree can be found, we allow the tuples overlay
trees. However, when a parent becomes disconnectegath to lengthen. The “flex” policy tries to make forward
the operator must choose a new destination. The chaprogress on any tree. These first three stages prevent
lenge is to balance the competing goals of exploring theeycles by ensuring that tuples do not re-enter any tree
path diversity in the tree set while ensuring progress toat a level already visited. However, initial experiments
wards the query root. We explore a staged policy thashowed that they overly constrain the available paths.
leverages a simple heartbeat protocol to detect unreach- Thus, we allow a tuple to descend to the child of a
able parents. tree chosen by the “flex” policy. This however, does
Each peer node maintains a list of live parents for allnot ensure cycle-free operation, and, when using “flex
locally installed queries. Each node also maintains a sedown”, we increment a TTL-down field to limit the pos-
of nodes from which it expects heartbeats and a set o$ible number of backward steps a tuple can make. When
nodes to which it delivers heartbeats. When the nodéhis field is greater than three, stage 4 is no longer avail-
installs a query, it updates these sets based on the parerile, and the operator drops the tuple. While not shown
and children contained in the query operator. Heartbeati Figure 5, we may choose the tree with the minimum
are the primary source of bandwidth overhead in Mortarlevel at each stage.
Figure 4 illustrates the intuition behind our scheme. In
general the routing policy allows tuples to choose a par4  Time-division data partitioning
ent in a given tree only if it moves the tuple closer to the
root. To do so, each tuple maintains a list{trfee,leve} Dynamic tuple striping requires a data model that al-
pairs that indicates the last level of each tree the tuple vislows multipath routing. At any moment, a single query
ited. Operators consult this list to implement the routingmay have thousands of tuples in flight across multiple
policy. To explain the policy we define four functions. physical dataflows. For example, an aggregate operator
The function Ol(t) determines the level occupied by the participates in each tree (dataflow) simultaneously, and
local operator on tree The function TL(¢) specifies the could receive a tuple from any of its children on any tree.

TUPLE ARRIVES ON TREEL

Same tree:Route to Ft)

Up*: Route to Rx) such that Ol(z) < TL(¢)

Flex: Route to Rx) such that Ollx) < TL(x))

Flex down: Route to Gx) such that Oliz) < TL(x)
Drop

a b wWwNPE

Figure 5:A staged multipath routing policy. Note that we may
choose the tree with thminimumlevel given the constraint.

3.3 Dynamic tuple striping



The insight is to allow operators to label tuples with NodeA:  __time

an index that describes the particular processing window tuples 4

H H H H summary| Root: ___time
to which it belongs. Both time and tuple windows can *%5ies it S
be uniquely identified by a time range, thus the name NodeB:  __ time o
time-division With these time-division indices, opera-  tiples tuples B H
tors need only inspect the index to know which tuples iy

may be processed in the same window. The scheme is-andma/mime

independent of operator type; the data model supports

standard operators such as joins, maps, unions, filter§;igure 6:Two nodes creating summary tuples transmit them
and aggregates. Though this work focuses on in-networko the root. Each node (A and B) receives tuples only from its
aggregates because of their utility, the model also supsensor, and labels the summary tuples wittirzdow indexhat
ports content-sensitive operators, those to whom specifighiquely identifies which set of summaries can be merged.
tuples must be routed (e.g,. a join must see all of the

data), by using a deterministic function that maps tuple i ind ith th o the slide:
indices to particular operator replicas. a time window Wi € range equal o the sfde, opera-

In many respects, the time-division data model buiIdstors at nodes A an_d B crea_te indices for each.prodgced
upon Borealis’ SUnion operator, which uses tuple times->ummary tuple. This figure |IIustra_1tes .that, fqr time win-
tamps to maintain deterministic processing order acrosgows’ we can actually use a log'?"’}l index instead of a
operator replicas [4]. However, instead of a single times_tu_ne_rang_e. Th(_a root groups arriving su’mmary tuples
tamp, itindexes tuples with validity intervals, and definesV_V'th identical |nd|ces,_ upcalls the operator's merge func-
how to transform those indices as operators process ir;qon,.and reports a final resu. Here, the root only
put. Unlike SUnion, the data model underlies all Mortar receves summary tupleg. . .

operators. Its purpose is to allow replicas to process dif- For time windows, this sc_:hem.e prowdeg semantics
ferent parts of a stream, not to support a set of consistenfient'cal to that of a centralized interpretation, assum-

mirrored operator replicas. The data model also differd"9 synchronized clocks. In our example the root would

from previous approaches that parallelize operators bBr/eturn identical results had it sourced the data streams

partitioning input data based on its content [6, 37]. directly. This scheme also provides useful semantics for

The model impacts operator design in two ways. First,tume window processing. Instead of calculating over the
lobally lastn received tuples (no matter the source),

an operator computes across a window of raw tuple§ X
streamed from the local source, upcalling ther ge Mortar's query operators process the lastuples from
function for each tuple. This first merge transforms raweaCh source. o ) )

tuples intasummaryuples and attaches an index; we call Summaries contain disjoint data for a given time span,

this merging across time. Note that, if the operator is arf"d @ long as the routing policy and underlying transport

aggregation function, then the summary tuple is a partiafv0ld duplicates, time-division data partitioning ensure
duplicate-free operation. Nodes are now free to route

value. All tuples sent on the network (sent between op- ) . e
erators) are summary tuples. An operator’s second dut§}lples along any available physical query tree, even if it

is to merge summary tuples from all its upstream (Chi|_means the summary re-visits a physical node. Note that

dren) operators. We call this merging across space. Thik @ Mortar query consists of content-sensitive operators,

runtime, using the index attached to the summary tup|eypstream operators are constrained in their tuple routing

calls the sameer ge function with summary tuples that options. In that case, source operators must agree to send
the same indices to the same replica.

all belong to the same processing window.
4.1 Indexing summary tuples 4.2 The time-space list

Operators create summary tuple indices using two An operator may receive summary tuples in any order
timestamps 1,t.] that indicates a range of time for from upstream operators, and it must merge summary tu-
which the summary is valid. If the window is defined in ples with matching indices. A per-operator time-space
time, t, indicates the beginning of the time window and (TS) list tracks the current set attiveindices, indices
t. represents the end. If the window is defined acrosgor which the operator is actively merging arriving sum-
tuples,t, indicates the arrival time of the first tuple and mary tuples. The TS list either inserts or removes (evicts)
t. the arrival time of the last. Thus each summary tuplesummaries. A TS list is a sorted linked list of summary
represents a particular slide of the window across the ravuples representing potential final values to be emitted by
input tuples. this operator. Here we assume that each summary tuple

Figure 6 illustrates two nodes creating summary tu-is valid for its index: [y,t.].
ples and transmitting them to the root operator. This is Upon arrival the operator inserts the tuple into the TS



list and merges it with existing summary tuples with ARRIVAL OF TUPLET

overlapping indices. If indices do not overlap, we in- 1 O.tref — O.tref + elapsedime
sert the tuple in order into the list. An exact index 2 index— (O.t_ref - T.age)/ O.slide
match results in the two tuples being merged (calling EVICTION OF TUPLE S

nmer ge). The index of the resulting summary tuple 1 O.t.ref — O.tref + elapsedime

is unchanged. However, when two tupl€s and 7> 2 S.age— AVG(T}.age,..T,.age)
have partially overlapping indices, the system creates

a new tuple,75. T represents the overlapping re- Figure 7:Syncless indexing pseudocode.

gion, and its value is the result of mergifig and75.
Ty’s index begins abf ax (T 1peqin, T2beqin) andendsat 5 Reducing the impact of clock skew
Min(T1end, T2en4). The non-overlapping regions re-
tain their initial values and shrink their intervals to ac- The performance of distributed stream processing ul-
commodatel;. Thus, values are counted only once for timately depends on accurate timekeeping. But assum-
any given interval of time. ing synchronized clocks is a well-known problem across
large, distributed systems. Even with its wide-spread
adoption, NTP may be mis-configured, its ports may be
blocked, or it may have limited resolution on heavily
loaded nodes [24]. In such cases, differences in clock
A common problemin distributed stream processing isskew or large clock adjustments can cause substantial
telling the difference between sources that have stalledjifferences in reported time between nodes, the relative
experienced network delay, or failed. This ambiguity clock offset. This offset impacts traditional complete-
makes it hard for an operator to choose when to output aness, the percentage of participants included in a win-
entry (window) in the TS list. Mortar uses dynamic time- dow, but also whether the correct tuples are assigned to
outs to balance the competing demands of result latencthe window. Here we assess the impact of relative clock
and query completeness. The runtime expires entries abffset ontrue completeness, the percentage of correct tu-
ter a timeout based on the longest delay a tuple expeples assigned to a window, tuple dispersion, the distri-
riences on a path to this operator. Each tuple carries abution of tuples from their true window, and result la-
estimate of the time it has taken to reach the current opettency. Our results, presented at the end of this section,
ator (I".agg), which includes the tuple’s residence time at show that even mild amounts of offset impact complete-
each previous operator. Operators maintain a latency estess and can increase result latency by a factor of 8.
timate, callechetDist using an EWMA of the maximum ]
received sampfe When the first tuple for a particular 9-1 Going syncless
index arrives, the TS list sets the timeout in proportion
to netDist-T.age This is because, by the time tugie
arrives,T".agetime has already passed; the most delaye
tuple should already be in flight to the operator.

4.3 Dealing with loss and delay

This section describes a simple mechanism that im-
proves true completeness, bounds temporal dispersion,
and reduces result latency. Thgnclessnechanism re-
quires no explicit synchronization between peers. The

Stalled streams also impact our ability to ascertainntyition is that correct tuple processing depends on the
summary tuple completeness, and determine how longg|ative passage of time experienced for each tuple. In-
a tuple-window summary remains valid. To remedy this,stead of assigning each tuple a timestamp, we can lever-
operators periodically inject “boundary” tuples when aage theageof each tupleT.age a field that represents
raw input stream stalls. They are similar in spirit to the the number of milliseconds since its inception. Recall
boundary tuples used in Borealis [4]. For time windows, from Section 4.3 that this includes operator residence
boundary tuples are only used to update the tuple’s coMime and network latency. Operators then merge tuples
pleteness metric (a count of the number of participants)inat are alive for similar periods of time at the same in-
they never carry values. However, boundary tuples playjex within the time-space list, in the same summary tuple
an additional role when maintaining tuple windows. A (Section 4.2).

tuple window only ends when the first non-boundary tu- - Figure 7 shows the pseudocode used to assign incom-
ple of the next slide arrives. When a stream stalls, bounding tuples to the correct local index. As Figure 8 illus-

ary tuples tell downstream operators to extend the previgates, O.t_ref maintains a relative position in time for
ous summary tuple’s index, extending the validity inter- each operator, and begins to accumulate time on opera-
val of the summary. tor installation. Thus indices are purely local, indicgtin
Finally, Mortar requires that the underlying trans- the set of tuples that should be merged, and may even
port protocol suppress duplicate messages, but otherwidge negative for some tuples. The evicted summary tu-
makes few demands of it. ple, S, represents the aggregate of those tuples, and we
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Figure 8:With the syncless mechanism, operators have differ- ) )
ent installdeltasrelative to the root node. Figure 10:Result latency for a 5-second window.

100k J,T I‘T ‘ I‘ buffer (BSort operator) we configured to hold 5k tuples.
T I ) Figure 9 illustrates true completeness (with std. dev.)
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while Figure 10 shows result latency for the same exper-

True completeness (%)
[e2]
o

40} ~6—Syncless iments. As expected, the timestamp mechanism results
20 57 Imestamp 1 in a high-degree of accuracy and low result latency when
0% 05 1 15 D) there is little clock offset. However, at 50% of Planetlab
skew scale skew, true completeness drops to 75% and result latency
. for timestamps increases by an order of magnitude. Off-
Figure 9:Total completeness for a 5-second window.  set also affects the results from the centralized stream

processor, though latency is nearly constant because of
) ) the static buffering limit.

set the age of to the average age of its constituents. |, conrast, syncless performance is independent of
This weights the tuple age towards the majority of its ojock offsef, and provides better completeness (averages
constituent data. 91%) than timestamped Mortar or the centralized stream

One benefit of syncless operation is that it limits tupleprocessor at low-levels of skew. Equally important, is
dispersion to a tight boundary around the correct Win-hat result latency is constant and small (6 seconds).
dow. To see why, first note that operators are not guar- | grge relative clock skew and drift remain potentially
anteed to install at the same instant. This results in arbroblematicl The |onger atup'e remains at any node, the
installdelta, (tinstan — tissuea) %oslide, of the query’'sin-  more influence a badly skewed clock has on query accu-
stall time {instqu) (S€€N in Figure 8) relative to the root's racy. The tuple’s residence time is primarily a function
install ime {¢;ssueq). This shifts the local indices for an  of the furthest leaf node in the tree set, and, from our
operator, changing the set of summary tuples mergecbyperiments across Inet-generated topologies, is on the
Thus, between any two operators, the interpretation oprder of only a few seconds. Determining this penalty
a tuple’s age can differ by at most one window. That is,remains future work. However, techniques already ex-
once merged, the tuple may be included in a summary tust for predicting the impact of clock skew on one-way
ple with an average age that places it outside of the tru@etwork latency measurements [22], and could likely be
window. We correct for this effect by tracking tageof  gpplied here. Even with these limitations, syncless op-

the query installation message, and subtraciggfrom  eration provides substantial benefits in the event NTP is
tinstau ON installation. While here the upper bound onjmpaired or unavailable.

tuple dispersion is directly proportional to tree height,
dispersion with timestamps is virtually unbounded. 6 Query persistence

To determine the efficacy of the syncless mechanism
we deployed the Mortar prototype over our network em- This section discusses how Mortar reliably installs and
ulation testbed, both described in Section 7. Here 43%emoves queries across the system. As a best-effort sys-
peers, connected over an Inet-generated network topotem, Mortar makes no attempt to salvage data that was
ogy, have their clocks set according to a distribution ofcontained in an operator at the time of node failure. In-
clock offset observed across Planetlab. 20% of the nodestead, Mortar uses a pair-wise reconciliation protocol to
had an offset greater than half a second, a handful in exre-install the same kind of operator, including its type,
cess of 3000 seconds. We measure true completenegsery-specific arguments, and position in the static pri-
for an in-networksum with a five-second window, as mary and sibling aggregation trees, on a recovering node.
we scale the distribution linearly along the x-axis. Each |Initially, a peer installs (and removes) a query using
data point is the average of 5 runs. For comparisorthe primary tree as the basis for an un-reliable multicast.
we plot results from a commercially available central- However, because the trees are static, the message must
ized stream processor, StreamBase, whose tuple re-ordeontain the primary and sibling tree topologies. To re-



duce message size and lessen the impact of failed nodedynamic overlay. The ultimate purpose of our techniques
the peer breaks the tree intocomponents, and multi- is to ensure accurate wide-scale stream processing when
casts the query down each component in parallel. Whilenode sets contain failed nodes.
fast, it is unreliable, and the reconciliation mechanism Our Java-based Mortar prototype implements the Mor-
guarantees eventual query installation and removal.  tar Stream Language and the data management, sync-
Our protocol draws inspiration from systems such adess, and recovery mechanisms. Each Mortar peer is
Bayou [31], but has been streamlined for this domain. Inevent driven, leveraging Bamboo’'s [34SyncCor e
particular, the storage layer guarantees single-writer seclass that implements a single-threaded form (based on
mantics, avoiding write conflicts, and communication isSFS/ | i basync) of the staged event-driven architec-
structured, not random. Like those prior pair-wise reconture(SEDA). Other advantages of this low-level integra-
ciliation protocols, the process is eventually consistent tion include UdpCC, a congestion-controlled version of
UDP, and their implementation of Vivaldi [12] as the
source of network coordinates We use the X-Means

Mortar manages queries in a top-down fashion, allow-data clustering algorithm to perform planning [30]. Be-
ing children who miss install or remove commands toYond the usual in-network operators, the prototype sup-
reconcile with parents, and vice versa. The reconciliaPorts a custom trilateration operator for our Wi-Fi loca-
tion protocol leverages the flow of parent-to-child heart-tion service. Last, aggregate operator results include a
beats in the physical query plan. Periodically, parentcompleteness field.
child node pairs exchange summaries describing shared We evaluate Mortar primarily on a local-area emula-
queries. The reconciliation protocol begins when a noddion testbed using ModelNet [39]. A ModelNet emula-
receives a summary, a hash (MD5) of relevant querie§i0n provides numerous benefits. First, it tests real, de-
ordered by name, that disagrees with its local summaryPloyable prototypes over unmodified, commodity operat-
The process is identical for removal operations, but beiNg systems and network stacks. A Mortar configuration
cause removals cancel parent-child heartbeats, Mortd#nning over our local cluster requires no code changes
overloads tuple arrivals (child-to-parent data flow) for to use ModelNet; the primary difference is that, in Mod-
summary comparisons. elNet, network traffic is subjected to the bandwidth, de-

First, the two nodes4 and B, exchange their current lay, and loss constraints of an arbitrary network topology.
set of installed queried.,oq4.>, and their current set of Running our experiments in this controlled environment
cached query removal& - ,,q.~. Each node then per- allows direct comparison across experiments. 34 phys-
forms the same reconciliation process. Each node cond¢al machines, running Linux 2.6.9 and connected with
putes a set adihstall candidated C.,,q.~ andremoval ~ 9igabit Ethernet, multiplex the Mortar peers.

6.1 Pair-wise reconciliation

candidatesRC< odes - Unless stated otherwise, ModelNet experiments run
across an Inet-generated network topology with 34 stub

ICa=1Ip —(IpN1a) — (I N Ra) nodes. We uniformly distribute 680 end nodes across
RCa=1I,NRB those stubs, emulating small node federations. All link

capacities are 100 Mbps, the stub-node latency is 1 ms,
: _ > _ the stub-stub latency is 2 ms, the stub-transit latency is 10
the installation. Additionally, nodd removes all queries ms, and the transit-transit latency is 20 ms. The longest

for which there is a matching remove ;. Peers use ooy petween any two peers is 104 ms. Each mortar
sequence numbers, issued by the object store, to dete('jhery uses four trees and a branching factor of 16.
mine the latest management command for a particular

query name. Nod® computed Cz andRCp similarly. 7.1 Query installation
At this point,I4 == Ip; reconciliation is complete. )

The last step in this process is for the installing peer to Ultimately, query results are only as complete as the
re-connect the operator, discovering the parent/child sefPerator installation coverage. Reconciliation shoutd in
for each tree in the physical query plan. In this case, thét@ll queries across all live, reachable nodes within a
peer contacts the query root, who, acting as a topolog\?‘)de set, even when a significant fraction of the set is
server, returns the parent/child sets. Thus, like plan- down. Here we use a query that sources 680 nodes, but
ning, Mortar distributes the topology service across alldisconnect a random node subset before installation.

1C 4 represents the set of queries for whi¢lhas missed

query roots in the system. Figure 11 shows both the rate and coverage of query
installation. Recall that while installation is a multitas
7 Evaluation operation, it is “chunked”, i.e., the installer splits theet

into separate pieces and installs them in parallel. Our ex-
Mortar has taken a different approach to adaptivityperiments use 16 chunks, and with no failures, it takes
than traditional DHT-based systems that create a singldess than ten seconds to install 680 nodes. We recon-
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Figure 13:System scaling is directly proportional to the num-
Figure 11:Query installation behavior across 680 nodes with ber of unique children at each peer. This plot illustratesisy

inconsistent node sets. across sibling and primary trees as the number of queries in-
crease.
1005 ‘ ;
f\g\ —e— Optimal
9(; 80r Ii::ii 1 four trees, query results reflect most live nodes, achiev-
8 60l N ~ o dwees ing perfect completeness for 10 and 20% failures. For
% 40! —A—ltee | 30% and 40% failures, Mortar’s results include 98% and
E‘ 94% of the remaining live nodes respectively. This is
8 20 . nearly identical to the results from our simulation and
oO 20 20 50 20 0 attest to the ability of our sibling tree construction algo-

Failed nodes (%) rithm to create overlay path diversity that approaches that
of random trees. Secondly, this appears to be the point
Figure 12:Coverage as a function of the number of trees. Of diminishing returns, as five trees provides small addi-
tional improvements in connectivity.

Note that each additional tree increases background
nect all nodes after 30 seconds. Note that reconciliatiomegrtheat traffic by adding to the number of unique
runs every third heartbeat, i.e., every six seconds, a”ﬁarent-child pairs in the tree §etHowever, the same
this results in the slower rate of installation when usingheartbeats may be used across the trees in different
reconciliation. However, as predicted by the simulationsqueries. Figure 13 shows the number of unique children
in SeCtiOI’l 21, reconci"ation inSta”S Opel’atOI’S on 5450/qhat a given node must heartbeat as a function of the num-
of all nodes even when 40% of nodes are unreachablg)e, of queries in the system. Here there is a query for ev-
resilience similar to that achieved by multipath routing. ery peer, and that query aggregates over all other nodes.
Empirically, overhead scales sub-linearly with both ad-
ditional queries, and additional siblings per query. In

With the operators successfully installed, the systenthe first case, repeated clusterings on the same coordi-
must now route data from source to query root, avoidingnate set result in similar primary trees across queries. In
network and node failures. Here our goal is to study howthe second case, adding a single sibling (2 trees total)
Mortar responds to failures of “last mile” links. Unless roughly doubles the overhead of using a single, primary
mentioned otherwise, these microbenchmarks deploy tree. However, three additional siblings (4 trees total)
sumquery that subscribes to a stream at each peer idoes not double the overhead of using two trees, but re-
the system, counting the number of peers. Mortar uses aults in a 50% relative increase. This is due to our sibling
time window with range and slide equal to one secondconstruction algorithm constraining the possible chitdre
A sensor at each system node produces the integer val@enode can have.

“1” every second.

7.2 Failure resilience

7.2.2 Responsiveness

7.2.1 Theimpact of tree set size A best-effort system should provide accurate answers

Increasing the tree set size improves failure resiliencén a timely fashion. We first explore the impact of tran-
as additional trees add more overlay paths. Here we meaient “rolling” failures. These time-series experiments
sure the resiliency additional sibling trees provide anddisconnect a percentage (10, 20, 30, and 40%) of random
discuss the overhead that comes with it. nodes for 60 seconds, and then reconnect them. Note that

Figure 12 plots query completeness as a function ofesult completeness is identical to that seen in Figure 12
the percentage of disconnected nodes in the system. Hefer four trees; here the point is to assess the impact of
each data point is the average of five runs, each run lasfailure on result latency, completeness, tuple path length
ing three minutes. The first thing to note is that with and total network load, the sum of traffic across all links.
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Here, result latency is the time between when the result — __ [
was due and when the root operator reported the value. & 400t
Figure 14 shows that Mortar responds quickly to fail- < gggj
ures, returning stable results on average 7 seconds afteli 100},
each failure. This is a function of our heartbeat period (2 ) 200 400 600 800
seconds), and appears independent of the number of fail- Time (sec)
ures. The system captures the majority of the data with
an average result latency of 4.5 seconds. Our branchingigure 16:Query accuracy and total network load for SDIMS
factor of 16 results in a tree of height 4, which is the pathfor 680 nodes. Though we probe five times less often, the
length when there are no failures. Even during 40% fail-steady-state bandwidth is five times greater for the same/que
ures, the majority of tuples can route around failures with
three extra overlay hops. The steady-state network load
is 12.5 Mbps (3.4 Mbps of which is heartbeat overhead)as it provides routing consistency and explicitly tests for
As a point of comparison, the same experiment withouthetwork disconnectioris Since SDIMS s a “snapshot”
aggregation incurred twice the network load (26 Mbps). in-network aggregation system, we continuously issue

Finally, while not precisely churn, a query should still Probes to emulate a streamed result.
be resilient to nodes cycling between reachable and un- Figure 16 shows query results and total network load
reachable states. Figure 15 shows results where we rafer an SDIMS experiment using 680 peers across the
domly disconnect 10% of the nodes. Then, every 10 secsame topology. We fail nodes in an identical fashion, but
onds, we reconnect 5% of the failed nodes and fail an adthe down time is 120 instead of 60 seconds. The SDIMS
ditional, random 5%. Mortar always reconnects all live update policy ensures that only the root receives the ag-
nodes before the 10 seconds are up. Result latency, negregate value, the ping neighbor period is 20 seconds,
work load, and tuple path length are similar to that seerthe lease period is 30 seconds, leaf maintenance is 10
in the rolling failures experiment. seconds and route maintenance is 60 seconds. SDIMS
nodes publish a value every five seconds and we probe
for the result every 5 seconds.

We compare Mortar to SDIMS [41], an information  Accurate results at the beginning of the experiment
management system built over the Pastry DHT [35]. Wesoon give way to highly variable results during even low
chose SDIMS because of considerable support from itfailure levels. Failures appear to generate over count-
authors, including providing us with a version that usesing as completeness exceeds 100%, hitting almost 180%
the latest FreePastry release (RX). This was critical, by the end of the experiment. Probe results remain in-

1000 1200

7.2.3 Comparing to a DHT-based system
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’_m\400 -e-PIar_med
£ 350 Dot As a proof of concept we have designed a Wi-Fi device
2 300 ‘ ] tracking service using the local Jigsaw wireless moni-

g 250 ] toring system [9] as the source for authentic workloads.
| Here Wi-Fi “sniffers” create tuples for each captured
802.11a/g frame, containing the relative signal strength
) indicator (RSSI) measured by the receiver. At each snif-
ol s . ferasel ect operator filters fra}mes for the target source
Branching factor MAC address. At opk query finds the three “loudest”
frames (largest RSSI) received by the sniffers. Finally,
Figure 17: Interconnecting operators across Internet-like a customt ri | at operator takes the resultingopK
topologies. This shows the average latency to the root fr th stream and computes a coordinate position based on sim-
90th percentile of nodes in the query. ple trilateration, given the coordinates of each snffffer
Unfortunately the Jigsaw sniffers have limited RAM,

) and cannot accommodate the footprint of our JVM. In-
accurate through the end of the experiment, even aftegiead, we emulate the 188 Wi-Fi network sniffers across
all npdes have re-conn_ected. _ Increasingly Iarg_e disconthe ModelNet testbed: each Mortar peer hosts a “Wi-Fi’
nections cause bandwidth spikes as the reactive reco\ensor that replays the captured frames in real time. The
ery mechanism engages Iarger. numbers of peers. Trl%pology is a star with 1 ms links (2 ms one-way delay
steady-state bandwidth usage is 67 Mbps (9 Mbps ofetween each sniffer). Here the primary benefit of phys-
which is Pastry overhead); this is 5.3 times as much agg) planning is path diversity, not result latency.

Mortar, which produces results with five times the fre- | our experiment, a user circled the four building
quency. We hypothesize that the large difference in bandfigor, from the fourth to the first, while downloading
width usage is due to a lack of in-network aggregation, a3, fjle to their laptop. Figure 18 plots the coordinate
nodes fail to wait before sending tuples to their parents. gyream &’s); our naive scheme had trouble distinguish-
As mentioned previously, SDIMS poor accuracy is ing floors, and we plot the points on a single plane. How-
likely due to its dependence on the underlying DHT for ever, this simple query returns the L-shaped path of the
adaptation. Aggressive leaf set and route table maintegser, even distinguishing hallways. Relative to a query

Averag

nance frequencies had little effect. that did not allow the TopK to aggregate (bf=188) (but
) still performing the distributed select), the Mortar query
7.3 Network-aware queries resulted in a 14% decrease in total network load. Without

) ) N ) such a selective filter, traditional summary traffic statis-
_This section evaluates the ability of our primary and jcs would yield savings similar to those seen in our mi-
sibling tree building algorithms (physical dataflow plan- . obenchmarks.

ner) to place data within a low-latency horizon around
the root operator. Experiments use an aggregate quely Related work
across 179 randomly chosen nodes over the Inet topol-
ogy. Vivaldi runs for at least ten rounds before inter- Mortar’s data model is related to prior work on paral-
connecting operators. We then generate 30 random, prlelizing operators, as it allows replicas to process differ
mary(planned), and derived (sibling) trees for branchingent portions of the same stream. For instance, Flux [37]
factors (bf) of 2, 4, 8, 16, and 32. For each tree we calimay partition the input for a hash-join operator using the
culate the latency, across the overlay, from each operatdrash of the join key. Other systems may try to auto-
hosting peer to the root operator. This represents the minmatically partition the data based on observed statistical
imum amount of time for a summary tuple from that peerproperties [6]. However, time-division data partitioning
to reach the query root. is independent of data content and operator type.
Figure 7.3 distills our data to make a quantitative as- A number of wireless sensor systems employ forms of
sessment of our planning algorithm. Across each set ofmultipath tuple routing for in-network aggregates. While
30 graphs, we calculate the average 90th percentile peefAG proposed statically striping data up a DAG [21], two
to-root latency. The amount of time the root must wait other wireless in-network aggregation protocols, synop-
before it can have a 90% complete value is proportionasis diffusion [28] and Wildfire [5] allow dynamic multi-
to this average. First, our recursive cluster planner im-path routes. Like Mortar, synopsis diffusion de-couples
proves upon random by 30 to 50%. Second, our siblingaggregation (for Mortar, merging) and tuple routing, al-
tree algorithm preserves the majority of this benefit for alowing tuples to take different paths towards the root
range of branching factors. operator. While diffusion allows tuples to be multicast



ance load and improve failure resilience. They ensure
the trees are IND by leveraging how the Pastry DHT per-
forms routing [7]. Like Mortar, SplitStream sends a sep-
arate data stripe down each tree, but the system drops
stripe data when encountering failed nodes. An area of
future investigation is determining dynamic tuple strip-
ing rules for multicasting across a static tree set.

Finally, Motiwala et al. recently proposed a technique,
Path Splicing, to improve end-to-end connectivity at the
network level [23]. In this scheme, nodes run multiple
routing protocol instances to build a set of routing trees;
the trees are made distinct by randomly permuting in-
put edge weights. Like Mortar, nodes are free to send
packets onto a different tree when a link fails. Their pre-
liminary results show that five trees extracts the majority
of the available path diversity, agreeing with ours. While
they hypothesize whether such a scheme eliminates the
need for dynamic routing in the general case, our exper-
iments indicate that it does for the many-to-one commu-
nication patterns in our stream processing scenarios.

along separate paths, Mortar’s data model requires the ]
absence of duplicate summaries. What Mortar offersd Conclusion

in its place is a straight-forward operator programming M | | desian f id |
interface. This is in contrast to the special duplicate ortar presents a clean-slate design for wide-scale

and order-insensitive operators required of both Wirelesgtreif_ml1 pr:)i_eSSIrr:g._ Wle(;‘mtdf'ihat dtyné\mlc strlplr}gla:cr(;]ss
routing schemes. multiple static physical dataflows to be a powerful tech-

. . o .
The role of Mortar's physical operator mapping is to nique, allowing up to 40% of the nodes to fail before

interconnect operators to create a set of efficient, yet di_severely impacting result streams. Because time-division

verse routing paths. Recentworkin“network—aware“op-data partitioning logically separates stream processing

L . . and tuple routing, Mortar sidesteps the failure resilience
erator placement tackles a similar problem: plaaimng

pinnedoperators, those that can be mapped to any nodssues that affect current data management systems built

in the network, to reduce network load [32, 1]. For exam-°V&' DHT-based overlays. Finally, by reducing the de-

ple, SBONs [32] use distributed spring relaxation acrosspendence on (.:IOCk §ynchr0n|zat|on, Mortar can accu-
rately operate in environments where such mechanisms

a cost space combining both network latency and oper- . : . o :
ator ban%width usage gOur scheme would b):anefit fr%mare mis-configured or do not exist. While it is certain that
L . - , new issues will arise when deploying a query across a
their insights in adapting to operator bandwidth usage. . . o )
The time management framework proposed in [38]mlll|0n nodes, Mortar is a significant step towards build-
: : L . ing a usable Internet-scale sensing system.
is close in spirit to our syncless mechanism. In that
model, a centralized stream processor sources extern
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