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I. INTRODUCTION

The design and operation of IP networks depends on a good
understanding of the offered traffic. Internet Service Providers
(ISPs) usually represent the traffic as a matrix of load from
each ingress point to each egress point over a particular time
interval. Although well-provisioned networks are designed to
tolerate some fluctuation in the traffic matrix, large variations
break the assumptions used in most designs. In this paper,
we investigate the causes of the traffic matrix variations.
Identifying the reasons for these disruptions is an essential step
toward predicting and planning for their occurrence, reacting
to them more effectively, or avoiding them entirely.

The traffic matrix is the composition of the traffic demands
and the egress point selection. We represent the traffic demands
during a time interval t as a matrix V , where each element
V (i, p, t) represents the volume of traffic entering at ingress
router i and headed toward a destination prefix p. Each ingress
router selects the egress point for each destination prefix using
the Border Gateway Protocol (BGP). We represent the BGP
routing choice as a mapping ε from a prefix to an egress point,
where ε(i, p, t) represents the egress router chosen by ingress
router i for sending traffic toward destination p. At time t each
element of the traffic matrix T M is defined as:

T M(i, e, t) =
∑

p∈P :ε(i,p,t)=e

V (i, p, t). (1)

where P is the set of all destination prefixes.
Figure 1 presents a simple network with one ingress router

i, two egress routers e and e′, and two external destina-
tion prefixes p1 and p2. Given traffic demands V (i, p1, t)
and V (i, p2, t) and a prefix-to-egress mapping ε(i, p1, t) =
ε(i, p2, t) = e, the traffic matrix for this network is
T M(i, e, t) = V (i, p1, t) + V (i, p2, t) and T M(i, e′, t) = 0.
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Fig. 1. Example of traffic matrix.

Fluctuations in the traffic demands and changes in the prefix-
to-egress mapping cause the traffic matrix to vary. This paper

considers the natural question: what are the causes of large
variations in the traffic matrix?

Most previous work on measuring [1–4] and analyzing
traffic matrices [5, 6] has assumed that the prefix-to-egress
mapping ε is stable. However, relying on periodic snapshots of
routing data runs the risk of associating some traffic measure-
ments with the wrong elements in the traffic matrix, obscuring
real variations in the traffic. In this paper, we study how
changes in ε impact the traffic matrix. A previous analysis of
five traces of 6–22 hours in duration on the Sprint network [7]
shows that most BGP routing changes do not lead to large
traffic shifts. However, given that large traffic variations are
infrequent (yet significant) events, we believe that longer traces
are necessary to draw meaningful conclusions.

In this paper, we study the impact of routing changes
on the traffic matrix over a seven-month period in a tier-
1 ISP network. Using Cisco’s Sampled Netflow feature [8]
and feeds of internal BGP (iBGP) messages, we compute
the traffic demands V and the prefix-to-egress mapping ε
for eight ingress routers, as discussed in Section II. We
also monitor the intradomain routing protocol to identify the
changes in ε caused by internal network events. In Section III,
we demonstrate that, although most routing changes do not
cause large traffic shifts, many of the large shifts are in fact
triggered by routing changes. We also show that changes in ε
caused by internal network events tend to have more impact
on the traffic matrix than the external BGP events. Section IV
concludes the paper with a discussion of our ongoing work.

II. MEASURING TRAFFIC MATRIX VARIATION

Studying the variation of traffic matrix elements over time
requires collecting fine-grained measurements of traffic and
routing. We analyze data collected from a tier-1 ISP network
for 173 days from March to September 2004. We collect
data from eight aggregation routers that receive traffic from
customers destined to peers and other customers. The eight
routers are located in major Points of Presence (PoPs) that are
spread throughout the United States.

We compute eight rows of the traffic matrix, considering
all traffic from these eight ingress aggregation routers to all of
the egress PoPs. This section describes how we compute the
prefix-to-egress mapping ε(i, p, t) from the BGP data and the
traffic demands V (i, p, t) from the Netflow data. Once we have
computed ε and V , we use Equation 1 to compute the elements
of the traffic matrix T M(i, e, t). The BGP monitor and the
Netflow collection servers are NTP-synchronized, allowing us
to use the timestamps to join the two datasets.
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A. Prefix-to-Egress Mapping

A BGP monitor collects internal BGP update messages di-
rectly from each vantage point. Configured as a route-reflector
client of each vantage point, the BGP monitor receives updates
reporting any change in the best BGP route at each router for
each destination prefix. The monitor records each BGP update
with a timestamp at the one-second granularity.

We group BGP updates that happen less than 70 seconds
apart to account for transient routing changes during the BGP
convergence process (as in previous studies [9, 10]). That is,
we focus on the changes from one stable route to another and
not on the short-lived routes that exist during the transition.

Based on an initial BGP table dump and a sequence of BGP
updates, we generate the prefix-to-egress mapping ε(i, p, t) for
any given time. The egress point corresponds to a PoP rather
than a specific router. We associate each egress router with a
PoP based on the router name and configuration data.

B. Traffic Demands

Every vantage point has the Cisco’s Sampled Netflow
feature [8] enabled on all links that connect to access routers
and exports flow records to a collection server at the same
location. The collection server samples the flow records using
the technique presented in [11] in order to reduce processing
overhead, and computes 10-minute aggregated traffic volumes
for each destination prefix. We use these aggregated reports
to extract V (i, p, t) for each vantage point i and destination
prefix p at every 10-minute interval. Consequently, a reference
to a time t indicates the end of a 10-minute interval1.

Because of sampling, the volumes V (i, p, t) are random
quantities that depend on the sampling outcomes. Through a
renormalization applied to the bytes reported in sampled flow
records, the quantities V (i, p, t) are actually unbiased estima-
tors of the volumes of the original traffic from which they
were sampled, i.e., their average over all possible sampling
outcomes is the original volume. The standard error associated
with an aggregate of size V is bounded above by

√

k/V for
some constant k that depends on the sampling parameters [11].
For the parameters employed in the current case, k < 21MB.
Note that the standard error bound decreases as the size of
the aggregate increases. This property aligns well with our
focus on the largest changes in traffic rates: these are the most
reliably estimated. As an example, for a 10-minute aggregate
of traffic at a rate of 10 MB per second, the standard error
due to sampling is no more than 6%.

III. CAUSES OF LARGE TRAFFIC VARIATIONS

In this section, we explore the contributions of changes in
the traffic demands V and prefix-to-egress mapping ε to the
variations in the traffic matrix elements T M. Our analysis

1If the mapping ε(i, p, t) changes more than once in a 10-minute interval,
then we cannot distinguish the volume of traffic affected by each of them
individually. Therefore, we exclude those cases from our analysis by ignoring
intervals with prefixes that have more than one stable routing changes in that
bin; this excludes 0.05% of the (i, e, t) tuples from our study. We also exclude
all traffic for the small number of flows that had no matching destination prefix
in the BGP routing tables or update messages; we verified that these flows
corresponded to an infinitesimal fraction of the traffic.

shows that, although most changes in ε have a small effect on
the traffic matrix, many of the large variations in the traffic
matrix are caused by changes in ε. Also, we show that, while
most changes in ε are caused by external routing events, the
small number of internal routing events are more likely to
cause larger shifts in traffic.

A. Definition of Traffic Variations

Figure 2 shows an example of how two traffic matrix
elements (with the same ingress point i) change over the
course of a day. The total traffic entering at the ingress point
varies throughout the day, following a typical diurnal cycle.
For the most part, the traffic T M(i, e1, t) has the same pattern,
keeping the proportion of traffic destined to e1 relatively
constant. For most of the day, no traffic travels from ingress
i to egress point e2. The most significant change in the two
traffic matrix elements occurs near the end of the graph. The
traffic leaving via egress point e1 suddenly decreases and, at
the same time, traffic leaving via egress point e2 increases.
This shift occurred because a routing change caused most of
the traffic with egress point e1 to shift to egress point e2. The
egress point e2 also starts receiving traffic that had previously
used other egress points (not shown in the graph), resulting
in an increase for e2 that exceeds the decrease for e1. In the
meantime, the total traffic entering the network at ingress i
remained nearly constant.

The traffic experiences other relatively large downward
spikes (labeled as load variation). These spikes may very well
be associated with a routing change in another AS in the
Internet that caused traffic to enter at a different PoP (this
kind of traffic variation was called an “ingress-shift anomaly”
in [6]). In this paper, we analyze traffic shifts caused by routing
changes experienced by our network. Finding a signature
of routing-induced traffic variations for one network is an
important first step to infer other traffic variations that are
caused by routing changes in other networks.
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Fig. 2. Sample traffic volume from one ingress to two egresses.

To analyze these kinds of traffic fluctuations, we define the
variation of a traffic matrix element at an interval t as:

∆T M(i, e, t) = T M(i, e, t) − T M(i, e, t − 1).
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B. Changes in Traffic Demands vs. Egress Points

The variation of a traffic matrix element (∆T M) is com-
posed of the load variation (∆L), which represents volume
fluctuations on the traffic demands V , and the routing shifts
(∆R), which accounts for changes in the prefix-to-egress
mapping ε:

∆T M(i, e, t) = ∆L(i, e, t) + ∆R(i, e, t)

∆L(i, e, t) represents the change in the volume of traffic for all
destination prefixes that did not change their egress point from
the previous time interval (i.e., ε(i, p, t) = ε(i, p, t− 1) = e):

∆L(i, e, t) =
∑

p ∈ P :
ε(i, p, t) = e

ε(i, p, t − 1) = e

V (i, p, t) − V (i, p, t − 1)

Fluctuations in the traffic demands may occur for a variety
of reasons, such as changes in user or application behavior,
adaptations caused by end-to-end congestion control, or even
routing changes in other domains.

The routing variation ∆R(i, e, t) considers the destination
prefixes that shifted to egress point e during time interval t or
shifted from e to another egress point in t:

∆R(i, e, t) =
∑

p ∈ P :
ε(i, p, t) = e

ε(i, p, t − 1) 6= e

V (i, p, t) −

∑

p ∈ P :
ε(i, p, t) 6= e

ε(i, p, t − 1) = e

V (i, p, t − 1)

Note that if a routing change occurs within the time interval
t, we associate all of the traffic associated with that prefix in
that time interval with the new egress point.

Not all traffic matrix elements carry the same volume
of traffic, and the volume of traffic from an ingress to an
egress PoP varies over time. How do we judge if a change
in the traffic is “large”? There is no absolute standard: one
approach might be to judge the size of the change in traffic
matrix element relative to the average traffic for that element.
However, this is not useful here, because the traffic process
itself is non-stationary. It has daily and weekly cycles, as well
as level shifts resulting from routing changes. On the other
hand, we should consider what type of process we observe,
namely, a difference process. Over short time periods, we can
approximate the traffic with a linear process yt = α+βt+xt,
where xt is a zero-mean stochastic process, with variance σ2.
We observe the differences ∆yt = yt −yt−1, which will form
a stationary process, with mean β and variance 2σ2. Thus we
can approximate the difference process by a stationary process,
and measure deviations from the mean, relative to the standard
deviation of this process. We measure 2σ(i, e)2 on the traffic
variation process ∆L(i, e, ·) (using the standard statistical
estimator), and use this to normalize the traffic variations,
i.e. we then observe ∆L̃(i, e, t) = ∆L(i, e, t)/

√
2σ(i, e), and

∆R̃(i, e, t) = ∆R(i, e, t)/
√

2σ(i, e).
If the variance of the process xt was time dependent, it

might make sense to use a moving average to estimate the
process variance at each point in time, i.e. σ(i, e, t)2, and

use this to normalize the traffic variations. We tried such an
approach, but it made little difference to the results, and so
we use the simpler approach described above.

Figure 3 presents a scatter plot of ∆ ˜T M(i, e, t) versus
∆R̃(i, e, t) for all the valid measurement intervals t. The high
density of points close to zero shows that large traffic vari-
ations are not very frequent (99.88% of the traffic variations
are in the [−4, 4] range). Points along the horizontal line with
∆R̃(i, e, t) = 0 correspond to traffic variations that are not
caused by routing changes, whereas points along the diagonal
line correspond to variations caused almost exclusively by
routing changes. Points in the middle are caused by a mixture
of routing changes and load variation. Figure 3 shows that
both load and routing are responsible for some big variations.
Routing changes, however, are responsible for the largest
traffic shifts. Indeed, one egress-point change made a traffic
matrix element vary more than 70 times the standard deviation.
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Fig. 3. Scatter plot of ∆ ˜T M versus ∆R̃ for all traffic matrix elements over
the seven-month period.

C. Internal vs. External Routing Changes

The prefix-to-egress mapping ε may change because of
either internal or external routing events. External routing
changes represent any changes in the set of egress points
that an AS uses to reach a destination prefix. For example,
in Figure 1, the neighbor AS might withdraw the route for
p2 from the router e, resulting in a change in ε. External
routing changes may be caused by a variety of events, such as
an internal routing change in another domain, a modification
to the local BGP routing policy, or a failure at the edge of
the network. In contrast, internal routing changes stem from
changes in the routing inside the AS, due to equipment fail-
ures, planned maintenance, or traffic engineering. These events
affect the prefix-to-egress mapping because the intradomain
path costs play a role in the BGP decision process through
the common practice of hot-potato routing.

When selecting a best BGP route, a router first considers
BGP attributes such as local preference, AS path length, origin
type, and multiple exit discriminator. If multiple “equally
good” routes remain, the router selects the route with the
“closest” egress point, based on the intradomain path costs.
Since large ISPs typically peer with each other in multiple
locations, the hot-potato tie-breaking step almost always drives
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the final routing decision for destinations learned from peers,
although this is much less common for destinations advertised
by customers. In the example in Figure 1, a link failure might
make router i’s intradomain path cost to e suddenly larger
than the path to e′. This would change the prefix-to-egress
mapping for p2, causing a shift in traffic from egress point e
to e′. Using the methodology described in [9], we identified
which changes in ε were caused by internal events.

Figure 4 shows the cumulative distribution functions of ∆R̃
caused by hot-potato routing and by external BGP changes.
For comparison, we also present the CDF of a normal dis-
tribution, which is drawn from randomly generated Gaussian
data with standard deviation equal 1. Although the routing
events are rare (only 0.66% of non-zero ∆ ˜T M are caused by
eBGP changes and 0.1% by hot-potato changes), this result
shows that there are significant cases where these events are
big, to very big. In particular, approximately 5% of traffic
shifts caused by hot-potato routing are at least one order of
magnitude bigger than normal variations. A single internal
change is more likely to affect a large number of destination
prefixes [9], including the popular destinations receiving large
amounts of traffic.
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Fig. 4. Cumulative distribution function of ∆R̃ caused by hot-potato routing
and eBGP.

By analyzing the source of traffic variation for individual
traffic matrix elements, we see that the likelihood of changes in
the prefix-to-egress mappings can vary significantly from one
ingress router to another. Some traffic matrix elements have no
traffic variation caused by routing changes, whereas other have
few very large egress shifts. This is because the likelihood
of hot-potato routing changes varies significantly from one
ingress point to the other [9], depending on the location in the
network and the proximity to the various egress points. For our
eight ingress points, the fraction of routing changes caused
by internal events varies from 1% to 40%. As a result, the
likelihood of large traffic shifts caused by hot-potato routing
varies significantly from one traffic matrix element to another.

This observation makes the analysis of the impact of routing
on the traffic matrix very dependent on where the data are
collected. For example, the study in [10] showed that popular
destination prefixes do not experience BGP routing changes
for days or weeks at a time. In addition to studying Route-

Views and RIPE BGP feeds, the analysis included iBGP data
from two of the eight routers used in our current study. In our
analysis, these two routers did not experience many hot-potato
routing changes. Had the analysis in [10] analyzed a router
that experiences several hot-potato routing changes a day, the
conclusions might have been quite different. In fact, hot-potato
routing changes can affect a large number of prefixes [9],
both popular and not, so we might reasonably expect popular
destinations to experience changes in their egress points. To
verify this hypothesis, we plan to repeat the analysis of [10]
using all eight vantage points.

IV. CONCLUSION

Our study shows that large traffic variations, while rare, do
sometimes happen. Although most routing changes typically
do not affect much traffic, routing is usually a major con-
tributor to large traffic variations. This implies that network
operators need to design the network to tolerate traffic varia-
tions that are much larger than standard traffic variations. In
addition, research on traffic engineering and anomaly detection
should take into account the impact of routing on the traffic
matrix. Since both the traffic demands V and the prefix-to-
egress mapping ε are necessary to compute an accurate traffic
matrix, we believe it is more accurate to operate on V and ε
directly, rather than simply on T M.

Our ongoing work focuses on quantifying the inaccuracies
introduced in studies of routing and traffic stability when
changes in ε are ignored. We are also studying the duration of
the traffic shifts. If traffic shifts are short-lived, then network
operators should just over-provision to tolerate them. If they
are long-lived, however, adapting the routing protocol config-
uration may be a better approach for alleviating congestion.
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