
Service Portability

Why http redirect is the model for the future

Sumeet Singh Scott Shenker George Varghese

Abstract
The Internet provides tremendous flexibility, in that it
can support a wide variety of services, and accessibil-
ity, in that these services can be invoked from anywhere.
However, the current Internet architecture does not eas-
ily support service portability. If users want their service
names to be persistent then they must stick with the same
service provider because service names, such as email
addresses, are tied to administrative domains.

In this paper we present a system called Permafind
that gives users a persistent name for their services while
allowing them to switch among service providers. Per-
mafind applies to a wide range of services, and is imme-
diately deployable. Serendipitously, Permafind also al-
lows dynamic service insertion thus permitting many of
the capabilities of more revolutionary proposals such as
i3. Permafind embodies no technical innovation, but it
does suggest that the notion of redirection, as embodied
in HTTP, is a crucial feature for future service protocols.

1 Introduction
The Internet, through the generality of its architecture
and the ubiquity of its deployment, provides a flexible,
and pervasive communication platform. This fertile elec-
tronic soil has given rise to today’s thriving ecosystem
of Internet services. This evolving ecosystem has gone
through at least three distinct developmental phases. In
the beginning of the web, most Internet content was pro-
vided by individuals and nonprofit organizations. It took
a few years for the commercial entities, such as news or-
ganizations and banks, to believe in the Internet but once
their doubts were allayed, they adopted the web with a
vengeance. Their adoption ushered in the second, more
commercial, phase of the Internet, which has seen a new
generation of corporate giants such as Yahoo!, Amazon,
and Ebay, arise de novo from the Internet froth.

In recent years it appears that we are entering a third
phase, sometimes called Web 2.0, in which an ever-
increasing variety of personal services and content are
being offered, though often hosted on commercial plat-
forms. For instance, Myspace and YouTube have become
extremely popular in recent years, and these are in addi-
tion to instant messaging, blogging, electronic mail, and
web pages. While it isn’t clear which category of con-

tent, commercial or personal, dominates the Internet, the
hallmark of the last few years is the dramatic emergence
of the latter.

The rise of these personal services presents a prob-
lem, one that already existed with ancient services such
as email and web pages, but is now exacerbated by the
proliferation of other modes of expression. While some
adventurous individuals host their own services, the vast
majority of these personal services are hosted by third
parties, such as commercial providers, employers, or
other organizations whose resources are not under con-
trol of the individual. There are a variety of reasons why
users would like to move their services to a different
hosting platform — such as pricing, change of employ-
ment, better service, etc. — but the current environment
makes this difficult. Put concretely, users would like to
easily switch their email from yahoo.com to gmail.com,
and their blogs from blogger.com to newblog.com, as
needed, without manually contacting all possible email
correspondents or blog readers.

There are two main barriers. First, the Internet naming
system ties services to administrative domains. Mail sent
to an email address of sally@company.com will be de-
livered to a mail server controlled by company.com, and
if Sally moves to a new company there is no way for this
email address to follow her there. Second, despite years
of effort there is no effective Internet directory that can
serve as the “phone book” of the Internet. Search services
do an amazing job with web pages, but for other services
they perform significantly less well.

Thus, when someone moves their blog from Apcala
to zoomshare, there is no way for a dedicated reader to
know unless the person leaves a forwarding message.
This also applies to email, which must be forwarded, and
web pages, which must be redirected. In each case, the
person must rely on the kindness of, or payments to, the
previous hosting platform to maintain their forwarding
address. This has created a significant barrier to service
portability. Users tend to keep their services where they
are, even when better opportunities appear, because of
the significant inconvenience of moving to a new plat-
form.

Given the role the Internet has played in disinterme-
diation, which greatly increased the transparency and di-
rectness of many services, it is both archaic and ironic
that for some of the Internet’s most basic services, such

1HotNetsV Session 3: The Masses 49



as email and web, individual users face such significant
barriers to movement.

There are myriad papers that describe changes to the
Internet architecture that would solve this problem (see,
for example, [1–3, 5–7, 9–11, 13]). For instance, porta-
bility could be provided by a level of indirection, so
that the name of a person’s service is persistent but al-
ways resolves to the current provider. Similarly, an ef-
fective directory service would greatly alleviate the prob-
lem. However, neither of these are likely to happen any
time soon, so our goal in this paper is to describe a so-
lution that, while neither ideal nor elegant, is deployable
in the short term. Beyond this short term focus, we are
also looking for an approach that will push the architec-
ture in a better direction in the long-term. To that end,
we explore the basic principles one would need to follow
when designing a protocol that would allow a service to
be more portable. It turns out that HTTP, with its ability
to redirect, is a model for such protocols [4].

We call the resulting system Permafind, and have a
prototype available for experimental use (we encourage
the reader to visit www.permafind.com and use the in-
vite code 222 to register; this system is similar to the IKI
web site http://http://www.iki.fi/index.html). While there
is no ingenuity in the component mechanisms (indirec-
tion, redirection, relaying, and proxying), our intent is to
turn a combination of these component mechanisms into
a more universal mechanism that can be seamlessly in-
voked for all applications.

A side benefit of this approach is that it naturally en-
ables a limited form of service insertion. For instance,
one can have one’s email sent through a spam filtering
service of one’s own choice.1 The ease with which users
can access third-party services might give rise to a much
richer set of such services, thereby enhancing user func-
tionality.

2 Designing for Portability
In this paper we set ourselves the following goals for our
solution to service naming:

• Persistence: Each user should have a persistent, and
therefore provider-independent, name for his/her
personal services, ensuring that others can always
reach them.

• Generality: To avoid separate ad hoc approaches for
every application, the solution should work with tra-
ditional applications, newer Web 2.0 applications,
and also future applications. In particular, future ap-
plications may run on top of other protocols than

1This feature is already available, such as in acm.org email, but our
emphasis here is that Permafind explicitly sets itself up as a broker for
these third-party services, allowing user-specified service insertion on
a per user-name basis, as opposed to offering a single inserted service
as a side-benefit.

TCP or HTTP, so that one cannot rely solely on
techniques embedded into these protocols (such as
HTTP redirect).

• Incremental Deployability: The solution should be
deployable without changing existing structures. In
particular, services using this solution should be ac-
cessible by users of existing browsers and unmodi-
fied hosts.

• Performance: The portability solution should not
cause significant loss in efficiency or increase in
cost, both of which might deter its use by providers
and users. Relevant performance measures include
user-perceived latency and server throughput.

• Ease of use: The service should be usable by naive
users, so it can’t require users to run their own
servers or configure their own DNS records.

These goals impose several constraints. Clean-slate
designs, such as those based on flat and self-certifying
names (e.g., [13]), are ruled out by the need to be incre-
mentally deployable. Thus we must provide persistent
service identifiers based on the current naming system
(domain names resolved by DNS). This would suggest
an approach where each user has a personal and persis-
tent domain name; e.g., Bob could have a domain name
bob.org (or, more likely, bob1753.org). To achieve gen-
erality, it must apply across all applications; for this we
could use a hierarchical naming scheme such as:.

web pages: http://www.person.domain/path
blog: blog.person.domain
email: name@person.domain
The use of naming conventions such as these does not,

by itself, solve the incremental deployability problem.
Take the case of Bob Smith’s blog, blog.bobsmith.org.
If we look it up in DNS, we can get an IP address,
but the requesting client (the one trying to reach Bob’s
blog) doesn’t want an IP address; it needs the result
to be translated (in the case of blogging) to a URL
such as blogger.com/bobthebuilder. The problem is that
the name given to Bob at blogger.com (e.g., bobthe-
builder) may be specific to the provider blogger.com and
is thus not invariant. Unfortunately, DNS as it exists to-
day only translates domain names to IP addresses, not
URLs. Application-specific hacks like MX records only
translate application-specific requests to an application-
specific IP address (e.g., returning the IP address of a
mail server rather than the IP address used for a web page
at that domain name). Such DNS modifications do not
allow translation to additional provider-specific service
tags such as usernames.

From a technical standpoint one could easily mod-
ify DNS so that it could return this additional infor-
mation. Unfortunately, this approach not only requires
substantial changes to DNS, it would also require all

250 Service Portability



clients (such as browsers) be modified in order to under-
stand this new information. For instance, an unmodified
browser trying to connect to Bob’s blog will try to resolve
bob.blogger.bobsmith.org and expect an IP address in
return. Even if DNS resolves bob.blogger.bobsmith.org
into blogger.com/bobthebuilder, the existing browser
will treat this returning data as an IP address and fail.

Given that we have to stick with current DNS se-
mantics, the next step in our search for a solution is
to continue to use service-specific DNS names (as in
bob.blogger.bobsmith.org), but instead of resolving them
at the DNS level (e.g., providing IP addresses), we
generate application-level responses. To illustrate, con-
sider the domain permafind.com which we have adopted
for use in our system. A user that wishes to deploy
a portable service (e.g., email, blog) is given a per-
sistent name bobsmith.permafind.com. Assuming Bob
wishes to deploy a blog and email, he does so us-
ing two separate names email@bobsmith.permafind.com
and blog.bobsmith.permafind.com.2

The trick is to have the Permafind server act as both
a regular DNS server (to translate standard service re-
quests to IP addresses) as well as an application server.
The Permafind DNS server resolves DNS requests to it-
self. When the application-level request is then sent to
the Permafind server, it attempts to direct the request to
the appropriate server name. To do this, Permafind builds
on three basic primitives: redirection, relaying, and prox-
ying. In redirection, the Permafind server responds to an
application request with a redirect message containing
the appropriate service invocation. The key here is that
this occurs at the application-level, which understands
the appropriate semantics (such as the inclusion of a user-
name in a URL). For applications that don’t understand
redirection, the Permafind server relays the request to the
appropriate location. For applications that support proxy-
ing, the user can choose to have the Permafind server act
as proxy; this will, as we will discuss later, allow the user
to invoke further processing on the returning data. The
Permafind server maintains a table, based on user input,
of the appropriate mappings between the persistent Per-
mafind service names and the current service locations.

We illustrate this with three concrete examples:
Redirection: Joan accesses Bob’s blog by typ-

ing in the URL blog.bobsmith.permafind.com into
her browser. The browser uses DNS to resolve
blog.bobsmith.permafind.com into the IP address of the
Permafind server. Joan’s browser then sends an HTTP
request, to which the Permafind server responds with
an HTTP redirect pointing to the current URL, blog-

2We use the formulation bobsmith.permafind.com as an exam-
ple; it is easy to extend this to allow bobsmith to have sev-
eral ”accounts” attached to the bobsmith name, for example bobs-
dog.bobsmith.permafind.com

ger.com/bobthebuilder.
Proxying: This is like relaying except that the Per-

mafind server, rather than returning an HTTP redirect,
forwards the request on as a proxy and receives the re-
turning data. Proxying allows a user to specify, in addi-
tion to the location of his current service, any additional
third-party functions that should be applied to the data.
For example, for Instant Messenger services this could
involve translating the IM request from one format (say
Yahoo) to another (say AOL).

Relaying: Joan sends email to Bob at
email@bobsmith.permafind.com. DNS resolves the
MX record to the Permafind server. When the email
arrives at this address the Permafind mail server re-
lays the mail to the appropriate mail address, say
bob@gmail.com.

Almost all current service interfaces support one of
these three primitives. Moreover, the series of indirec-
tions (whether redirection, proxying, or relaying) may
not be expensive in terms of throughput or latency. Thus,
this approach is general, incrementally deployable, and
reasonably efficient. It is also extensible; if a new breed
of application X uses its own protocol rather than HTTP,
Permafind will only have to add an application X server
to do application X level redirection, proxying, or relay-
ing. Since Permafind need only support a small subset of
application X (enough to invoke relaying, proxying, or
redirection), this is not very burdensome. We now dis-
cuss these mechanisms in more detail.

3 Detailed Design

The Permafind service allows users to sign up for sub-
domains of the permafind.com domain name, over which
they have autonomous control. For example bob may
register the sub-domain bobsmith, thus giving bob con-
trol over how the FQDN bobsmith.permafind.com is re-
solved at the permafind.com DNS server.

A Permafind name is processed in two steps.
DNS resolution: Clients use DNS to resolve the

FQDN into the IP address of the permafind.com server.
A easy and efficient solution to achieve this is to create
a wildcard DNS entry in the DNS zone file for the per-
mafind.com server. Using the wildcard DNS entry (al-
lowed by all popular DNS servers), all sub-domains of
permafind.com are automatically resolved to the IP ad-
dress of permafind.com. This ensures that there is no de-
lay for name resolution, so once a user reserves a partic-
ular sub-domain on the permafind.com server it is visible
instantaneously.

Application-level translation: After the client re-
ceives the IP address from the DNS resolution, it
then submits its application-level request to the per-
mafind.com server using the user’s service-specific
FQDN (such as email@bobsmith.permafind.com and

3HotNetsV Session 3: The Masses 51



blog.bobsmith.permafind.com) . The corresponding ser-
vice running on the Permafind server maps the service
request to one appropriate for the current service location
using information previously provided by the user. To
remain compatible with existing clients, Permafind only
maps an input name to an output name of the same type
(e.g., from URI to URI, or from email address to email
address). The mapping also indicates whether a redirect
or relay service is used.

If service insertion is used, the mapping provides the
next stage in the chain of inserted services. Once again,
redirect or relaying could be used to direct the data to
the first stage in the service chain. For email, there is
an elegant solution (that requires no changes at inter-
mediate service providers) using a different Permafind
name (per user) for each provider in the service chain.
Figure 1 shows an example of service insertion for a re-
ceiver R (with Permafind address R@P) who requires the
insertion of a spam filter (with Permafind address R1@P
for user R) and a Virus checker (with Permafind address
R2@P for user R)). R1@P and R2@P are internally as-
signed by Permafind to allow the same mapping database
to facilitate both portability and service insertion. Unlike
the insertion of Postini spam filtering by acm.org, the de-
sign allows user-specified service insertion on a granular
per-user basis.3

For HTTP based services, Permafind will need ar-
rangements with each service provider in the chain to
relay to the next service. Difficulties with end-to-end se-
mantics caused by mechanisms like cookies make it dif-
ficult to do general service insertion for HTTP based ser-
vices. However, service insertion based on the initial con-
trol messages (e.g., URL filtering) is easily possible.

In the actual implementation, the Permafind web-
server maintains a mapping table using a MySql server
for fast and uniform access. The current prototype has
only a URI server and an email server. For all incom-
ing HTTP requests, a local SQL query is made using the
FQDN supplied in the URI and the resulting mapping is
sent to the client using the HTTP-302 Found directive.
HTTP-301 (Permanently Moved) will not work because
clients would then bypass Permafind in the future. HTTP
redirection ensures reachability for all popular Web 2.0
services such as blog, rss, podcasts etc. as well as tra-
ditional web-pages and thus allows incremental deploy-
ment.

The Permafind email server uses relaying instead of
redirection. While redirect is part of SMTP, not all email
servers support redirection correctly. Relaying also hides
the final destination email address from the sender. Com-
mercial providers such as acm.org and gmail.com al-
ready support email relaying so we will not elaborate
further.

3Service insertion is not implemented in the current prototype.

Figure 1: Steps in processing an email message from S to receiver
R@G with spam filtering and virus checking as inserted services. ..@P
denotes a Permafind address. In Step 3 the message comes back from
Spam Checking with R1@P as the To address. Permafind uses the
mapping table (indexed by R1@P) to direct the message to the Virus
Checker with a To address of R2@P. This in turn causes the virus-
checked message to be forwarded to R@G via Permafind.

Besides redirection and relaying, we anticipate a Per-
mafind server being used as an application level proxy:
a gateway that intercepts and rewrites control and data
messages, thus providing additional services. For exam-
ple, one gateway could convert between Instant Messen-
ger protocols. A second gateway could translate between
entirely different protocols and modalities, for example
converting voice messages to email messages.

4 Looking Towards the Future

Permafind uses a set of standard mechanisms (relaying,
redirection, and proxying) and one level of indirection
(a very old idea in computer science). There are already
commercial email services, such as acm.org, which offer
relaying as a service and the IKI site offers both relaying
and redirection. So what was our point in writing this
paper?

In our defense, the current situation is far from ideal.
These techniques are currently configured, deployed, and
invoked on a per-application basis. For example, acm.org
does not provide a web redirection service for say blog-
ging or photo swapping. By contrast, Permafind places
these methods in a unified framework, requiring no con-
figuration on the client and straightforward account man-
agement (to keep mappings up-to-date) by the user.

Beyond this technical unification, the combination of
indirection with redirection at the indirection point ap-
pears to be more powerful than indirection or redirection
in isolation. Clearly, the intent of redirection was to al-
low portability, but redirection at the old service location
is more problematic than redirection at an indirection
point such as Permafind. Similarly, indirection followed
by relaying is less efficient (because all the data passes
through the relay) and less general (because many ser-
vices use mechanisms like HTTP Cookies that may not
work through indirect relays) than indirection followed
by redirection.

452 Service Portability



We also believe that Permafind can provide a much-
needed service. Even if technically boring, Permafind
might allow service mobility, which is infrequent and
painful today, to become commonplace and convenient.
Further, Permafind allows flexible service insertion today
without architectural changes, allowing users to compose
services such as spam filtering and virus checking. We
believe there is a great need for short term solutions to
mobility and service insertion, even if they are limited in
scope.

However, besides meeting present user needs, how
can Permafind foster movement towards a future general
architecture for service portability? We believe that the
appropriate end point of Internet evolution would, like
in [13], have persistent service identifiers and a flexible
resolution mechanism that would return metadata that
contained information about which application to use
(such as HTTP) and what control data (such as the de-
sired URL) should be issued. The Permafind server, al-
ready having all the appropriate metadata, can be seen as
a forerunner to this resolution service. While now it only
reveals this metadata through application-level actions,
the Permafind server could easily be modified to support
an interface that returns the metadata directly. This inter-
face could be invoked by a new host mechanism that re-
places the standard DNS query with one that recognizes
the Permafind domain and, when called to resolve such
domains, asks for the metadata directly and then issues
the appropriate application commands.

These two methods could coexist. Unmodified clients
would go through the two-step process described earlier
while modified clients would access the broader interface
and get the metadata directly. Such an approach, with
Permafind servers offering a broader interface to be used
by modified clients, could allow the Internet to gradu-
ally evolve towards a world with persistent identifiers and
flexible service invocation. We view our first deployment
of Permafind as an initial step in that direction.

Moreover, such a transition would help remove an in-
ternal contradiction. This paper is about service mobility,
but our approach requires users to stick with Permafind.
This involves committing to a redirection service (Per-
mafind) rather than particular application-level service
providers (Gmail, etc.). While this is less noxious, it is
still far from ideal. However, if we begin using modi-
fied clients that use the broader interface to request meta-
data, these modified clients could bypass permafind.com
altogether and do a direct lookup in another resolution
infrastructure. Beyond architectural cleanness, modified
clients can surmount two limitations of the current Per-
mafind: first, application names can be bound to arbi-
trary metadata including different types of names (e.g.,
binding URLs to phone numbers); second, general ser-
vice insertion is possible without some of the limitations

imposed by unmodified clients.
More specifically, the evolution path could be (a) Per-

mafind encourages user mobility, (b) to bypass the two-
step resolution (DNS plus Permafind) and add features,
users start deploying modified clients, (c) these modified
clients are pre-equipped to use resolution infrastructures
other than the Permafind resolver, and (d) such a new res-
olution infrastructure might come into being, given that
there is already a set of hosts ready to use it, and the Per-
mafind resolver is no longer a monopoly service. While
this evolution story is a long-shot, we aren’t aware of
more credible transition paths.

We now discuss various other issues that Permafind
must confront.

Security: We can conceive several threats (and possi-
ble solutions) to Permafind:

Spam: Malicious users could spam Permafind by cre-
ating names that fill the Permafind database. This can be
mitigated by mechanisms like Captchas [12].

Phishing: Phishers could use Permafind addresses
to hide the final destination from client browsers.
As a countermeasure, we could ensure a mini-
mum Hamming distances between Permafind names
so that citibank1.permafind.com cannot be registered
if citibank.permafind.com is used. Second, Permafind
could disallow mappings to names (supplied by Anti-
Virus companies) known to be bad. Third, instead of
transparent redirection or relaying, Permafind could re-
turn a temporary web page with an explicit link to the
destination URL.

Hijacking Redirects: While we argue that Redirects
allow service portability, the blind following of Redirects
in current browsers is also the source of many security
holes. One could anticipate browsers (or application level
gateways) blocking redirects in the future. As a counter,
we argue that redirects are the basis of too many pop-
ular applications today to be blocked. Second, observe
that the fragility of redirects is caused by browsers be-
lieving redirects sent by anyone. If Permafind or a simi-
lar resolver is considered a trusted agent then a security
association (using say https) can be used to authenticate
Permafind redirects.

Data and Meta Data Portability: Much of this paper
has been about service name portability. However, there
is also the issue of service data and metadata portabil-
ity. Examples of data include email archives and past
blogs; examples of metadata include address books and
buddy lists. Porting raw data without additional seman-
tic tags for structure is conceptually easy. Unfortunately,
consider email data with an associated date tag. When
moving from Gmail to Yahoo mail, a tool can easily read
Bobs 2 year old stored email at Gmail and write it to Ya-
hoo. Unfortunately, there is no way for a user tool (with-

5HotNetsV Session 3: The Masses 53



out help from Yahoo via some externally visible API) to
store old email with a specified 2 year old date.

This could be solved by introducing new APIs for
each application that allow data and metadata portability.
For example, if email providers decouple storage from
presentation, such that users choose their storage server
(e.g.., Amazon S3 [8]) and the email provider presents
email by reading from storage using standard, externally
visible standard APIs, then the data mobility problem be-
comes easier. To switch email presentation services, the
user can make the new email presentation point to the
appropriate storage server. If the user switches storage
servers, a simple tool can migrate the data using stan-
dard APIs. In general, we believe that a service like Per-
mafind must address data and metadata portability issues
to make service migration easier. There is a rich set of
problems in this space with both short-term and general
solutions.
Provider Countermeasures: So far we have assumed
that application-level service providers will stand idly by
while a redirection service such as Permafind allows cus-
tomers more mobility. However, there are countermea-
sures service providers could employ, especially to dis-
courage relaying.

For example, suppose a provider (say Gmail) adds
a one way (and secret) hash of the destination service
name to the message, and this secret hash is specific to
the provider Gmail. Then if the email arives back at a
Gmail receiver, the gmail receiver drops the mail if the
hash is incorrect. Permafind cannot compute the hash
when it changes the destination email address (it is a se-
cret hash), but leaving it unchanged condemns the packet
to be dropped. A provider of a service could certainly
cite security concerns for such a check while using this
measure as a deterrent to services such as Permafind.
Fortunately, this type of ”attack” is only possible for re-
laying, and relaying is only needed today for email, for
which relaying services such as acm.org already abound.
Thus adding such a countermeasure would likely result
in users crying foul. In general any countermeasure that
punishes email relaying via Permafind, should also pun-
ish email relaying via Gmail and acm.org which should
be too unpopular to contemplate.

For redirection, it appears that it is difficult for service
providers to take counter-measures because the redirec-
tion step is not visible to the provider: the behavior seen
by the provider is the same as if the user contacted the
provider directly.

5 Conclusions
By allowing users to switch to best of breed services at
will, service portability encourages competition amongst
service providers to provide better services. Service in-
sertion creates the further incentive of changing service

intermediaries at will. While there are clearly disincen-
tives for existing service providers (incumbents), there
are incentives for new aspirants to support a service like
Permafind to allow easy adoption.

In this paper, we have described the Permafind de-
sign as well as an initial prototype. The Permafind de-
sign combines two well-known mechanisms: redirection
and indirection (with relaying and proxying for com-
patibility). Redirection at the indirection point has ad-
vantages over redirection at the old destination, or in-
direction (and relaying). Besides portability, the design
offers a general and flexible form of service insertion
for email, and a limited form of service insertion for
HTTP services. While the current system has limitations,
it requires no changes to existing software or infrastruc-
ture while still providing service migration and service-
insertion functionality. Thus Permafind is immediately
deployable and not just incrementally deployable. Fur-
ther, it appears possible to gradually migrate to cleaner
approaches such as [13] via this approach.

References
[1] Adjie-Winoto, et al. The design and implementation of

an intentional naming system. In ACM SOSP, Kiawah
Island, SC, Dec. 1999.

[2] H. Balakrishnan, et al. A Layered Naming Architecture
for the Internet. In ACM SIGCOMM 2004, Portland, OR,
September 2004.

[3] D. Connolly. Naming and addressing: URIs, URLs, ...
W3C Architecture Document.

[4] Fielding, et al. RFC 2616 : Hypertext Transfer Protocol
– HTTP/1.1.

[5] B. Frankston. DNS: A safe haven.
http://www.frankston.com/public/
ESSAYS/DNSSafeHaven.asp.

[6] M. O’Donnell. Open network handles implemented in
DNS, Sep. 2002. Internet Draft,
draft-odonnell-onhs-imp-dns-00.txt.

[7] M. O’Donnell. A proposal to separate Internet handles
from names, Feb 2003. submitted for publication.

[8] Simple Storage Service - Amazon S3.
http://aws.amazon.com/s3.

[9] K. Sollins. Architectural principles of uniform resource
name resolution, Jan 1998. RFC 2276.

[10] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and
S. Surana. Internet indirection infrastructure. In Proc.
ACM SIGCOMM, Pittsburgh, PA, Aug. 2002.

[11] M. van Steen, F. J. Hauck, P. Homburg, and A. S.
Tanenbaum. Locating objects in wide-area systems.
IEEE Communications Magazine, 36(1):104–109, Jan.
1998.

[12] L. von Ahn, M. Blum, N. Hopper, and J. Langford.
Captcha: Using hard AI problems for security. In
Eurocrypt, 2003.

[13] M. Walfish, H. Balakrishnan, and S. Shenker.
Untangling the Web from DNS. In NSDI, San Francisco,
CA, March 2004.

654 Service Portability


