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ABSTRACT
Good performance under extreme workloads and isolation between
the resource consumption of concurrent jobs are perennial design
goals of computer systems ranging from multitasking servers to
network routers. In this paper we present a specialized system that
computes multiple summaries of IP traffic in real time and achieves
robustness and isolation between tasks in a novel way: by automat-
ically adapting the parameters of the summarization algorithms. In
traditional systems, anomalous network behavior such as denial of
service attacks or worms can overwhelm the memory or CPU, mak-
ing the system produce meaningless results exactly when measure-
ment is needed most. In contrast, our measurement system reacts
by gracefully degrading the accuracy of the affected summaries.

The types of summaries we compute are widely used by net-
work administrators monitoring the workloads of their networks:
the ports sending the most traffic, the IP addresses sending or re-
ceiving the most traffic or opening the most connections, etc. We
evaluate and compare many existing algorithmic solutions for com-
puting these summaries, as well as two new solutions we propose
here: “flow sample and hold” and “Bloom filter tuple set count-
ing”. Compared to previous solutions, these new solutions offer
better memory versus accuracy tradeoffs and have more predictable
resource consumption. Finally, we evaluate the actual implemen-
tation of a complete system that combines the best of these algo-
rithms.

Categories and Subject Descriptors
C.2.3 [Computer Communication Networks]: Network Opera-
tions—Network monitoring

General Terms
Measurement, Experimentation, Performance, Algorithms
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1. INTRODUCTION
In order to run networks efficiently, network administrators need

to have a good understanding of how their networks are used and
misused. Thus, an important tool in each network administrator’s
toolbox is the ability to monitor the traffic mix, especially on im-
portant links.

Increases in traffic volumes made possible by increases in line
speeds are one of the main driving forces behind the evolution of
traffic measurement. While capturing traces of packets or packet
headers is feasible at low speeds, at higher speeds aggregation is
necessary to reduce the amount of traffic measurement data. Most
routers report traffic measurement data in the NetFlow format [26]
that aggregates all packets belonging to the same flow into a flow
record. This kind of aggregation at the router makes traffic mea-
surement more fragile, because the assumptions on which aggrega-
tion is based do not hold in some traffic mixes. When small flows
predominate, NetFlow aggregation does not help at all. Anecdotal
evidence abounds about routers using NetFlow crashing because
a denial of service attack with randomly faked source addresses
makes them run out of memory. NetFlow uses packet sampling
at the router [27] to reduce processing memory usage and the size
of its output, but the aggressive sampling needed to keep resource
consumption under control under the most extreme traffic mixes
compromises the accuracy of the measurement results.

This paper presents a robust traffic measurement system that han-
dles unfriendly traffic mixes by gracefully degrading the accuracy
its results. Furthermore, the measurement results it produces are
concise traffic summaries and their accuracy is as high as possi-
ble with the resources available. The structure of the paper is as
follows. In Section 2 we describe the goals of our traffic measure-
ment system. In Section 3 we discuss related work, including prior
algorithms we incorporated into our system. In Section 4 we de-
scribe the algorithms for computing the summaries, including our
two new algorithms: Bloom filter tuple set in Section 4.1.2 and flow
sample and hold in Section 4.2.2. In Section 5 we describe our sys-
tem as a whole, including the adaptation methods we use to achieve
robustness with respect to memory and CPU usage. In Section 6 we
measure the performance of different configurations of our system
on real traces. We also evaluate how well they perform in response
to adverse network traffic. We conclude with Section 7.



2. MEASUREMENT SYSTEM GOALS
We set out to build a system that produces compact and timely

traffic summaries. Section 2.1 describes the summaries we are in-
terested in. In section 2.2, we identify four potential bottlenecks
and present the less tangible goals we set for our system such as
graceful degradation of the accuracy of summaries when faced with
unfriendly traffic mixes and isolation between the resource con-
sumption of the algorithms generating summaries.

2.1 Traffic Summaries
The traffic summaries we want our system to produce can be di-

vided into two categories: global traffic counters and “hog” reports,
which list heavy hitters by packets, bytes and flows. Both these
types of summaries are implemented by current systems [25, 1]
and widely used by network administrators. However, computing
accurate and timely hog reports for high speed links is challenging.
These summaries reflect the traffic of the monitored link over fixed
duration measurement intervals.

Our global counters measure the counts of the following entities
in each interval: packets sent, bytes sent, active flows, active source
IP addresses, active destination IP addresses, active protocol/source
port pairs, and active protocol/destination port pairs. Since some of
these numbers cannot be measured with simple counters, we need
more complicated “flow counting” algorithms.

We will refer to sources or destinations that send or receive many
packets or bytes as “packet hogs” or “byte hogs”. Sources or des-
tinations that have many flows are “flow hogs”. The measure-
ment system produces four types of hog reports keyed by specific
packet header fields: source IP, destination IP, source port and pro-
tocol, and destination port and protocol. The system produces byte,
packet and flow hog reports for each key. The system thus produces
a total of 12 hog reports. For example, we will have a report that
lists the source IP packet hogs, and how many packets each of those
sources sent.

In particular, these reports allow answering of many common
questions asked by network operators. For example, the port-based
reports provide information about application usage. Hosts which
are engaged in malicious activity are often visible on source IP flow
hog reports, since port scanning or spam relaying generates many
outbound flows. Because the total volume of this malicious traffic
is low, these hosts are not typically visible on packet hog or byte
hog reports.

Some network administrators may be interested in summaries
other than the ones presented in this paper. For example, one might
want to aggregate traffic by longest matching prefix or AS number
instead of IP address. Or one might want to measure the out-degree
of source IP addresses (number of destination addresses to which
they connect) or in-degree of destination addresses instead of flow
counts. The methods we use could be readily applied to those mea-
surements. Furthermore, with a software based architecture such
as ours, these changes are relatively easy to implement.

2.2 Robustness and Isolation
The underlying architecture of our system is a general purpose

computer with an OC-48(2.5Gbps) DAG capture card [30], as shown
in Figure 1. However, we expect most of our techniques to prove
useful on different architectures that have some of the same poten-
tial bottlenecks, for example devices built around a network pro-
cessor. We identify four potential bottlenecks: memory, CPU pro-
cessing power, bus bandwidth, and output network speed.

The simplest bottleneck for the system to avoid is output band-
width. By exporting only the compact summaries described above,
we minimize the amount of data to be sent over the network. Next,
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Figure 1: The underlying architecture of our system on a current
high-end PC motherboard [28, 20, 21]. Potential bottlenecks for mea-
surement exist in CPU processing, bus bandwidth, memory size, and
output network speed. Even in a specialized hardware deployment,
such as on a router blade, these same potential bottlenecks would exist.

we address the potential memory bottleneck by using memory-
efficient counting algorithms and accurate sampling techniques.

We present implementation techniques that reduce the CPU us-
age, but the CPU can still be overwhelmed by a large number of
packets, as can the system bus. As a last resort, we can protect
against this problem by performing some kind of sampling like
Sampled NetFlow [27] or packet selection [2] directly on the card.
Since the card we use does not currently support this but is likely to
in the future, we use simulations to evaluate how adaptive sampling
can provide robustness with respect with CPU usage.

Our system can overcome the potential bottlenecks because we
allow its results to be approximate. However, we want to achieve
the most accurate results possible with the existing resources. When
faced with atypical traffic that strains some system resources, the
system should continue providing summaries, though possibly at
a lower accuracy. For example, a distributed denial of service
(DDoS) attack with fake source addresses might exhaust the avail-
able memory by consuming too many entries in a source IP table.
The system could react by refusing to create new entries in that ta-
ble, but this is a poor response because big hogs that do not appear
until after this decision is made will be completely omitted from the
table. Small errors in the counters and the misordering of similar
entries in the hog reports are acceptable ways of degrading accu-
racy, but omitting a source whose traffic is significantly above that
of others included in the hog report is not.

Sharing memory and CPU resources between the components
computing the various summaries can result in cheaper and more
efficient systems when compared to the alternative of complete iso-
lation between the components. However, we do not want a traffic
mix that strains one of the components to starve the others of re-
sources. For example, it is acceptable that in response to a DDoS
attack the system decreases the accuracy of the source IP report,
but the destination IP report (which would not be affected by the
attack if implemented in isolation) should not be affected.

3. RELATED WORK
NetFlow [26] is a widely deployed general purpose measurement

feature of Cisco and Juniper routers. The volume of data produced
by NetFlow is a problem in itself [17, 10]. To handle the volume
and traffic diversity of high speed backbone links, NetFlow resorts
to packet sampling [27]. The sampling rate is a configuration pa-
rameter set manually and seldom adjusted. Setting it too low causes
inaccurate measurement results; too high can result in the measure-



ment module using too much memory and processing power, espe-
cially when faced with increased or unusual traffic, which can lead
to dropping data and thus very poor accuracy. Recently, Adap-
tive NetFlow [13] has been proposed to adaptively tune the sam-
pling rate to memory consumption. The advantage of flow records
over traffic summaries computed at the measurement device is that
they can be used for a wide variety of analyses after they reach
the remote collection station. However, when we know in advance
what aggregations we want, we can produce traffic summaries with
less error. The Gigascope project [8] exemplifies an approach that
maintains both the accuracy one can achieve by processing raw data
locally and the flexibility of a general SQL-like query language, but
without any guarantee of robustness to unfavorable traffic mixes.

The two algorithmic problems we need to solve to compute ac-
curate traffic summaries are (1) identifying and measuring in a
streaming fashion all addresses and ports with heavy traffic, and
(2) counting the number of flows for each. While existing solutions
address these problems for a subset of the measurements, none
provides the whole picture. Identifying heavy hitters has been ad-
dressed in both database [19, 16, 7] and networking [14] contexts.
Counting the number of distinct items has been addressed [18, 31,
3, 12] by the database community. The related problem of finding
the flow hogs and counting their flows have can be easily solved by
using hash tables that explicitly store all flow identifiers [23, 25],
but the memory cost can be excessive. This problem is algorithmi-
cally equivalent to the problem of finding superspreaders which has
been addressed by Venkataraman et al.[29] and they have indepen-
dently proposed techniques equivalent to our flow sample and hold
and Bloom filter tuple set counting. Efficient bitmap algorithms
for flow counting have been proposed [15]. Our system directly
uses some of them while improving on others. Bloom filters [4]
are a very useful data structure for testing set membership; in Sec-
tion 4.1.2 we use them to count flows. Kumar et al.[24] have used
a variation of the Bloom filter for the related but different problem
of counting packets in a flow.

4. ALGORITHMS FOR TRAFFIC REPORTS
The “global counters” that are part of the reports do not pose sig-

nificant issues: for the bytes and packets we use simple counters,
and for counting distinct addresses, ports, and flows we use mul-
tiresolution bitmaps[15]. Since these have low and constant CPU
and memory usage and well understood accuracy, the rest of the
paper will focus on the hog reports. A simple way of producing a
hog report for a given key is to keep a hash table with a counter for
each key in the traffic, and just report the top entries at the end of
the measurement interval. This approach has two problems: flows
can not be counted with simple counters, and the tables can get
too large. Section 4.1 discusses the algorithms we use for count-
ing flows and Section 4.2 those for identifying the entries worth
keeping in the tables.

4.1 Flow counting
Counting flows for each table entry is harder than counting bytes

or packets. We must distinguish between packets belonging to old
and new flows, and increment the flow counter only if the flow is
new. This is true for the global flow counter as well as flow counters
for individual table entries. After discussing existing algorithms for
counting flows, we propose two new ones, Bloom filter tuple set
counting and list-triggered bitmaps.

4.1.1 Background
An obvious method of counting flows (and bytes and packets)

by source address, destination address, source port and destination

port is to maintain a global “tuple table” keyed by flow ID and up-
date it for each packet. At the end of each measurement interval, we
aggregate the entries into the four target tables by the appropriate
keys. This algorithm is used by CoralReef’s [23] [25] crl flow.
It gives exact counts, but the tuple table uses a large amount of
memory, and much of the processing cost is concentrated at the end
of the interval. Under extreme conditions, such as a worm attempt-
ing to spread or a DDoS attack, the tuple table overflows exactly
when we are most interested in the results.

We can also estimate the number of active flows without explic-
itly storing all flow identifiers. Start with an empty bitmap, set the
bit in the bitmap corresponding to the hash value of the flow ID
of each packet, and at the end of the interval estimate the num-
ber of active flows based on the number of bits set. This algo-
rithm, called linear counting [31] or direct bitmap [15], provides
accurate estimates but its memory requirements scale almost lin-
early with the maximum number of active flows. The size of the
bitmap also depends on the required accuracy of the estimate. Sim-
ilar algorithms such as multiresolution bitmaps [15] and probabilis-
tic counting [18] use more complex mappings from flow IDs to
bits and their memory requirements scale logarithmically with the
maximum number of active flows. With a few kilobytes these algo-
rithms can give estimates with average errors of around 3% for up
to hundreds of millions of flows.

4.1.2 Bloom Filter Tuple Set
With the tuple table algorithm, we can spread out the expen-

sive end-of-interval aggregation by maintaining the four target ta-
bles during the interval, incrementing the flow counter in the cor-
responding entry of each whenever we add a new tuple table entry.
However this does not reduce the memory usage of the tuple table.

Note that the tuple table is now used only to decide whether a
packet belongs to a new flow. We can think of this as using the
tuple table to test whether the flow ID of a packet is in the set of
flow IDs already seen. If we are willing to accept an estimate of the
flow count for each entry, we can replace the tuple set with a more
compact fixed size structure designed for testing set membership:
a Bloom filter [4]. A Bloom filter is implemented as a bitmap of
b bits, initially empty, and k independent uniform hash functions
with range {0. . .b−1}. To insert a flow ID into the set, we compute
all k hash functions on the flow ID and set the bits corresponding to
each hash value. To test whether a flow ID is new, we test the bits
corresponding to each hash of the flow ID. If all the bits are set, we
assume the flow ID is not new; if any of the bits are 0, the flow ID
is definitely new and we increment the counters in the target tables.
If we have seen n flows so far, the probability of a false positive,
i.e. mistakenly concluding we have seen a flow before when we
actually have not, is (1 − (1 − 1/b)kn)k ≈ (1 − e−kn/b)k.

Even if the Bloom filter falsely indicates that we have seen a
particular flow ID before, we can still identify it as new if it has a
source address, destination address, source port or destination port
we have not seen before. Since we must already check these keys
for insertion in the corresponding tables, we have four additional
checks for newness with no additional cost, greatly reducing the ef-
fect of false positives from the Bloom filter. It is difficult to predict
theoretically how much this helps, but in practice a large fraction
of the entries in each table have very few flows, so most Bloom
false positives among that fraction will still be counted. For exam-
ple, consider a worm attacking a large number of destinations. For
many of those destinations the attack flow will be their only flow, so
many of the Bloom filter false positives are still counted, keeping
the attacker’s flow count relatively accurate. Similar logic holds for
DDoS attacks with a large number of spoofed source addresses.



As described, the Bloom filter tuple set algorithm always gives
lower bounds for flow counts, because the Bloom filter test and
table insertion tests will never incorrectly identify an existing flow
as a new flow. In many measurement contexts, it is useful to know
that the estimate is a lower bound.

4.1.3 List-Triggered Bitmaps
Instead of a global tuple table or Bloom filter and a simple flow

counter in each entry of the target tables, we can add a multiresolu-
tion bitmap (much smaller than the Bloom filter) to each entry. In
typical traffic mixes most of the IP sources and destinations have
very few flows, so per-entry flow counters do not need as much
memory as multiresolution bitmaps configured to work for up to
hundreds of millions of flows. The triggered bitmap algorithm [15]
saves memory by starting with only a small direct bitmap in each
new entry and allocating a multiresolution bitmap only when the
number of bits set in the direct bitmap exceeds a trigger value. To
avoid bias, the multiresolution bitmap is updated only for packets
that hash to bits not set in the direct bitmap. The direct bitmap
is not very accurate because it is small, and the multiresolution
bitmap loses accuracy because it only covers a sample of what it
would cover alone.

We propose an alternative to the triggered bitmap that avoids loss
of accuracy in its multiresolution bitmap while using comparable
amounts of memory: list-triggered bitmaps. We replace the direct
bitmap with a small list of up to g flow identifiers. The value of g
is small, typically between 2 and 8, so this list is most efficiently
implemented as an array. To further save space we do not store flow
IDs but 64 bit hashes of flow IDs. For each packet, we append the
hash value of the flow ID to the list if it was not already in the list.
If the list is full when we try to append a new value, we allocate a
multiresolution bitmap and insert the new hash value and all the old
hash values from the list into it. When the true number of flows n
is less than or equal to the maximum list size g, the multiresolution
bitmap is never allocated, and the estimate is exactly the number
of hash values in the list; the only source of error is collisions in
the hash function, which is negligible for the values of g we use.
Otherwise, we use the multiresolution bitmap algorithm, with one
refinement: if the multiresolution estimate is less than g + 1, we
say the list-triggered estimate is g + 1, because the multiresolution
bitmap would not have been allocated unless there were at least that
many hash values.

4.2 Identifying important entries
For a lightly loaded OC-48 with a favorable traffic mix, a mea-

surement system with a few hundred megabytes of memory and
efficient algorithms for counting flows can afford to keep an entry
for each source and destination IP. However, under adverse traffic
mixes such as massive DoS attacks with source addresses faked at
random or worms aggressively probing random destinations, keep-
ing even a small entry for each unique IP address can consume too
much memory for even a generously endowed workstation. Thus
while we want to keep state for the hogs, we cannot afford to keep
state for all entries. We need algorithms to identify the hogs.

4.2.1 Packet Sample and Hold
The sample and hold algorithm [14] can be used to identify and

accurately measure the packet hogs without keeping state for most
other entries. Packets are sampled at random; for each sampled
packet, an entry is created in the target table if one does not al-
ready exist, and all packets corresponding to that entry are counted
from then on. We will refer to this algorithm as “packet sample and
hold” or “PSH”, to distinguish it from another algorithm we intro-

duce later. The sampling probability is a “tuning knob” we can use
to trade memory for accuracy: a high probability gives accurate re-
sults, a lower one reduces memory usage but allows more packets
go uncounted before the entry is created.

The analysis of PSH [14] shows that it identifies the packet hogs
with high probability. Naive thinking suggests that PSH could also
be used to identify flow hogs, since a source can have many flows
only if it has at least as many packets in the traffic, but as the fol-
lowing example shows, PSH cannot always achieve this goal.

Consider a 5 minute interval of traffic on a saturated OC-48 con-
taining 60,000 flows, each made up of 1,000 packets of 1,500 bytes
each (say, 60,000 pairs of distinct hosts doing peer-to-peer sharing
of 1.5 MB files). Add to this a port scanner that sends a single 40-
byte scan packet to each of 50 destinations. Of course we want to
detect the port scanner, because it the largest flow hog. The mea-
surement system must assume that each packet might have a dif-
ferent source IP, so if the source IP table has space for only 50,000
entries, then with PSH we can sample at most one packet in 1,200
without risking filling up the table. At this sampling rate the prob-
ability of catching the port scanner is approximately 1/24. This is
so low because the probability of a source IP getting an entry in the
table depends on the number of packets it sends, not on the number
of flows it has. In general, traffic mixes dominated by very many
sources with few high-packet flows will make it hard for PSH to
detect early enough the sources that have many low-packet flows.
While the traffic mix from this example is not typical, this failure
mode is unacceptable; we want a system that is robust in the face
anomalous traffic.

4.2.2 Flow sample and hold
To accurately identify the flow hogs regardless of how many

packets they have, we introduce flow sample and hold (FSH). It is
similar to PSH but its sampling function favors entries with many
flows. We hash the flow identifier of every packet; if the hash value
is less than the control variable f (where f is in the range of hash
values), we create an entry in the target table. FSH with a 32-bit
hash function has a flow sampling probability of f/232. Note that
all packets of a flow have the same hash value, so the number of
packets in a flow does not affect its probability of triggering the
creation of an entry for its source IP. Furthermore, as the number
of flows a source has increases, the probability of it not getting
an entry decreases exponentially. Therefore big flow hogs will get
entries early, and the flow counter in those entries will count all
corresponding flows that are active after that point.

More formally, we can quantify the probability that a source
sending a certain number of flows evades detection. Let F be the
number of flows of a given source and p1 = f/232 be the flow sam-
pling probability. The probability that this particular source will not
have an entry is pmiss = (1 − p1)

F ≈ e−Fp1 . We can also bound
the expected number of a source’s flows that we miss before creat-
ing an entry for the source, which is equal to the absolute error in
the entry’s flow count estimate, since we accurately count all flows
after the entry is created. Thus E[missed] =

PF
i=0

i · p(miss ex-
actly i flows) =

PF
i=0

i · p1(1 − p1)
i ≤

P

∞

i=0
i · p1(1 − p1)

i =
. . . = 1/p1 − 1. For the example from the previous section, let’s
say we use FSH with a sampling probability of 0.1. The probabil-
ity that the port scanner gets an entry is (1 − 0.950) ≈ 99.5%. At
the same time the sources of peer-to-peer traffic that have one flow
each will have a probability of 0.1 of getting an entry. Thus the
peer-to-peer traffic will add only around 60,000*0.1= 6,000 entries
to the source IP table. So, FSH does a much better job than PSH
of finding flow hogs while reducing the number of ”noise” entries
with low flow counts.



Can FSH replace PSH? Is it guaranteed to catch packet hogs (or
byte hogs)? The answer is no. Extending the example above, imag-
ine that we also have a host sending only one 100 MB file through
a single TCP connection. This is by far the largest sender, but there
is a 90% probability that FSH will not sample its single flow, and
thus ignore this important source. The obvious answer for a system
that aims to detect both packet hogs and flow hogs is to use both
PSH and FSH to populate the tables with entries.

The question that arises naturally is whether we also need a “byte
sample and hold” (BSH) algorithm to detect the byte hogs. The
reason we need both PSH and FSH is that the ratio between the
number of packets in two flows can be in the thousands. However,
the ratio between the number of bytes in two packets does not ex-
ceed 38 in current traffic mixes, as packets range in size from 40 to
1500 bytes. While byte-based sampling as in [14] does give more
accurate results than PSH (which samples packets with equal prob-
ability), the difference is small, since the ratio between packet sizes
is bounded by a small constant and the number of entries we can
keep in the tables is much larger than the number of entries we re-
port. An implementation of the system could trivially make BSH
available and optional, and let the user decide whether the extra ac-
curacy in catching byte hogs is worth the extra CPU overhead. For
simplicity and efficiency, in the rest of the paper we rely on PSH to
identify the byte hogs.

5. SYSTEM DESCRIPTION
In this section we describe the actual measurement system we

implemented. We first describe in Section 5.1 how a component
that computes one hog report can adapt to the traffic mix to avoid
exhausting the memory or the CPU. In Section 5.2 we describe
how we integrate several such components to form the full system,
and show how components make better use of resources by shar-
ing them. In Section 5.3 we describe how we ensure that, despite
sharing, the components cannot starve each other of resources.

5.1 Robustness and adaptation
We now discuss how a component that computes a hog report can

be robust with respect to memory and CPU usage when faced with
adverse traffic. For simplicity, we focus on the packet hog report
for source addresses; it is easily generalized to the other 11 hog
reports, and we will point out the differences where they matter.

The basic idea is to keep a table with an entry for each source
and count the packets they send. Using PSH limits the number of
entries created, but we need to choose a good sampling rate: if too
high, we run out of memory; if too low, the results will be need-
lessly inaccurate. Our solution is to adaptively decrease the PSH
sampling rate based on how quickly memory is filling up. We start
each measurement interval with a sampling probability of 1, creat-
ing an entry for each distinct source IP in the traffic stream. If this
allocates entries too quickly, we decrease the probability to a value
that we estimate will keep the table size within the memory budget
until the end of the interval. Appendix A describes exactly how we
choose the new probability. When using the Bloom filter tuple set
algorithm to count flows on each table entry, the size of each table
entry is fixed, so using adaptive sample and hold to control the num-
ber of entries is sufficient to control memory use. But when using
triggered or list triggered bitmap, entries grow when the number of
flows triggers the allocation of a large multiresolution bitmap, so
sample and hold is less effective at controlling memory usage.

Decreasing the PSH sampling probability will reduce CPU us-
age somewhat, but since we still must do a table lookup for every
packet, it may not be enough. This is more of an issue for a soft-
ware implementation than an implementation on a router with spe-

cialized hardware. At OC-48 speeds the CPU has an average of 128
ns to process a 40 byte packet. Packet buffers can absorb bursts of
packets, but not long streams of back to back short packets that can
come for example from a massive DDoS attack. We control CPU
usage by adaptively pre-sampling the packets on the capture card
before they reach the CPU. See the technical report [22] for details
on how we adapt the packet pre-sampling probability. We com-
pensate for the pre-sampling when updating the counters. For ex-
ample, if the pre-sampling probability is 1/5, each sampled packet
is counted as 5 packets. The randomness of pre-sampling reduces
counter accuracy, but for packet hogs the relative error is small.

Pre-sampling also reduces the number of table entries, since many
of the sources with few packets will have all their packets dropped,
suggesting we could use it instead of PSH to control memory usage.
However, analysis [14] shows that PSH gives much more accurate
results than pre-sampling with the same sampling probability (and
thus the same memory usage).

For the byte counters, we can compensate for the pre-sampling
the same way we do for packets: we increment the counters by the
size of the packet divided by the pre-sampling probability. The sit-
uation is more difficult for flow counters. It has been shown that
for any flow estimator based on a random sampling of the pack-
ets belonging to a source IP, there is a traffic mix for which the
estimate is far off from the actual count[6]. Using additional infor-
mation such as TCP SYN flags in the pre-sampled packet headers
can lead to more consistently accurate estimates [11]. These meth-
ods apply only to TCP and rely on the end hosts correctly setting
the flags. Given that the problem is fundamentally hard and the
pre-sampling probability keeps changing to respond to changes in
the traffic mix, we adopt a simple solution for the flow counters:
we do not compensate for the pre-sampling. While this does result
in underestimating the number of flows when the pre-sampling rate
is low and the mix contains short flows, we at least know that our
flow estimates are a lower bound on the actual flow counts.

Because of the inaccuracies introduced by pre-sampling, our sys-
tem relies on sample-and-hold to control memory usage, and only
lowers the pre-sampling rate below 1 when necessary to control
CPU usage. Note that many existing systems do the equivalent of
fixed-rate packet pre-sampling all the time, so the effect on them of
the problems described above is much worse.

5.2 Structure of the system
When we integrate the modules that compute the various sum-

maries, sharing between them often saves memory and CPU cycles
allowing us to maintain higher sampling rates and thus achieve bet-
ter accuracy. Note that there are three reports for each of the four
key types: byte hogs, packet hogs, and flow hogs. Instead of keep-
ing three separate tables for each key type we can use a single table
for each, with each entry having all three counters. This makes the
entries larger, but since many keys would appear in two or even all
three of the reports, having them share a single table entry results
in a net reduction of memory use. A clear win of merged tables is
that we have to perform only four table lookups per packet instead
of twelve, significantly reducing CPU usage. Figure 2 shows how
a combined table operates.

We choose the Bloom filter tuple set algorithm for counting flows.
One reason is that our experiments from Section 6 show that for
most configurations its accuracy is equal to or better than that of
any of the bitmap algorithms. The other reason is that we can bet-
ter control its memory usage because we need to control only the
number of entries in the tables. Sharing a single Bloom filter among
all four tables is a major reduction in memory and CPU usage. Fur-
thermore, because we use one Bloom filter instead of four, it can be
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Figure 2: Tables keyed on various fields combine the algorithms for se-
lecting entries (PSH and FSH) with the Bloom filter tuple set algorithm
for counting flows. Dynamically adapting the PSH and FSH sampling
rates ensures that the system never tries to allocate more entries than
memory can hold.

larger, so the flow counters are actually more accurate because this
larger shared Bloom filter has fewer errors due to collisions.

The summaries produced by our system also include various
global counters (total distinct source IPs, flows, etc.). The total
flow count can be estimated by treating the tuple set Bloom filter as
a very large direct bitmap generalized to multiple hash functions,
so no additional memory is needed. The other global counters are
implemented with multiresolution bitmaps. We use an efficient im-
plementation of the H3 hash function family[5], which has the use-
ful property that it can be computed piecewise. When calculating
the hash value for the global flow counter, we can save CPU time
by reusing the hash values already calculated for the source IP and
destination IP counters, since their keys are subsets of the flow key.

For our estimates to be accurate, the hash functions for the Bloom
filter and bitmaps must produce uniformly distributed values for
any input. H3 hash functions satisfy this requirement. Addition-
ally, we want the hash function to be unpredictable to an exter-
nal observer so it is impossible to maliciously craft traffic that will
subvert our system by causing hash collisions in the Bloom filter,
bitmaps, or hash tables, as described by Crosby and Wallach[9].
We achieve this by randomly generating H3 functions.

5.3 Isolation
Isolating the resource consumption of various components of the

system ensures that a strain on one component does not hurt the ac-
curacy of the others. Memory is dynamically allocated only by the
four tables used to compute the hog reports. Isolating their mem-
ory consumption is easy: we divide among them the number of
entries we can allocate. Thus while a DoS attack with faked source
IP addresses will strain the source IP table and cause a decrease in
its PSH and FSH sampling probabilities leading to reduced accu-
racy of its hog reports, the other tables will be unaffected and the
other reports will not lose accuracy. Our current system divides
the memory equally among the tables, but this can be overridden

through configuration. There is a simple improvement over this
strategy, which we have not yet implemented: if some of the tables
do not use up their share of the memory (e.g. the port tables), in the
next interval we can redistribute the surplus among the others.

We have two algorithms, PSH and FSH, adding table entries.
We protect them from each other by dividing the memory budget
of each table equally between the two algorithms and adjusting the
sampling probabilities of PSH and FSH independently (see Fig-
ure 2). If both algorithms sample a packet that causes the creation
of a new entry, they each get charged for half an entry.

The packet processing of the modules producing the various sum-
maries is severely intertwined, thus performing packet pre-sampling
to separately control the CPU usage of each module is impractical.
Fortunately it is also unnecessary for two reasons. Firstly, the aver-
age per packet CPU usage of each of the modules is a constant share
of the total CPU usage, so no module can take a disproportionate
share of the CPU. Therefore all modules need to reduce their CPU
usage at the same time: when there are too many packet headers
to process. Secondly, for packet pre-sampling to most effectively
protect the CPU and the bus it must be implemented on the capture
card1.

6. MEASUREMENT RESULTS
In this section, we use experiments to evaluate various system

configurations and validate our design. We present our experimen-
tal setup and then describe the experiments to test specific system
components. We first compare the two algorithms for identifying
important entries, PSH and FSH, to see whether each has its own
advantages as predicted by the theoretical analysis. Second, we
compare the three flow counting algorithms: triggered bitmap, list-
triggered bitmap and Bloom filter tuple set. Third, we investigate
the behavior of our adaptation methods and test whether they pro-
vide robustness and isolation. Finally, we test the fully configured
system with a variety of data sets and PRNG seeds to show that it
behaves consistently.

6.1 Experimental setup
We first present our metrics and experimental datasets. The met-

rics we use to evaluate our system are:

• overall memory usage - how much memory was used by the
entire process over the 5 minute interval

• CPU run time - user and system CPU time usage

• top N selection error - measures how far the system was
from correctly selecting the top N entries (by packets, bytes,
or flows, in a given table). The exact definition and detailed
results of this metric are given in the technical report version
of this paper [22].

• RMS relative error - measures the average error for all of the
byte, packet, or flow estimates in a table, giving more weight
to values with greater average error:

RMS rel. err. =

v

u

u

t
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N
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„

n̂i − ni
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«

2

• normalized absolute error - measures the absolute error for
all of the byte, packet, or flow estimates in a given table, thus

1Since the capture card used in our experiments does not support
random packet sampling, we can only simulate pre-sampling.



Dataset Start Time (UTC) Duration Packets (pkts/sec) Bytes (bits/sec) Flows (flows/sec)

Robustness testing:
Backbone Wed Aug 14, 2002 16:00 5 min. 22.5 M ( 74.9 k) 12.8 G (342. M) 1.21 M ( 4.03 k)
Backbone + DDoS Wed Aug 14, 2002 16:00 5 min. 32.5 M (108. k) 13.2 G (352. M) 11.2 M (37.3 k)

Validation: Averages of 5 min. samples
OC48-A Wed Aug 14, 2002 16:00 1 hour 22.8 M ( 76.2 k) 13.1 G (349. M) 1.22 M (4.08 k)
OC48-B Wed Aug 14, 2002 16:00 1 hour 34.9 M (116. k) 22.8 G (608. M) 2.62 M (8.74 k)
Campus Fri May 16, 2003 16:48 1 hour 17.5 M ( 58.5 k) 11.1 G (297. M) 0.59 M (1.98 k)

Table 1: Datasets used in study. The “Backbone” test dataset consists of the first 5 minutes of the OC48-A trace. The “Backbone + DDoS” dataset
adds 10 million simulated DDoS packets spread over the 5 minutes.
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Figure 3: Trading memory for accuracy with sample-and-hold rates. Counting done on Backbone with DDoS with tuple set algorithm.

giving more weight to more important (larger) entries, and
normalizing by the sum of the entries:

norm. abs. err. =

PN
i=1

|n̂i − ni|
PN

i=1
ni

The last three metrics, which measure entire groups of counter es-
timates, are applied only to the top N counter estimates.

Recall (see Section 2.1), we have 4 table types (src IP, dst IP,
src ProtoPort, and dst ProtoPort), each of which has 3 counters
(packets, bytes, and flows). We evaluate each of these 12 sets of
estimates with the three error metrics above, giving 36 values. We
also evaluate relative error for each of the 3 global counters. So, in-
cluding memory and CPU, we measure 41 values for each system
configuration. For brevity, when comparing different system con-
figurations in this paper we will focus on the subset of values that
are significantly different between those configurations. Tables
of all of the values for all system configurations discussed in this
paper are available in the technical report version of the paper [22].

Although we have tested the system with multiple data sets, for
simplicity we have chosen a few representative sets for the results
we present here:

• “OC48-A” - an hour trace from Aug 2002 of one direction of
traffic on an OC48 link located at Metromedia Fiber Network
(MFN) in San Jose.

• “OC48-B” - an hour trace of one direction on another OC48
link at MFN in San Jose.

• “Campus” - an hour trace of inbound and outbound traffic at
a large university campus, in May 2003.

• “Backbone” - a 5 minute trace of one direction of traffic on
an OC48 IP backbone link, with an average rate of approxi-
mately 400 Mbps (the first 5 minutes of “OC48-A”).

• “DDoS” - 10 million artificially generated 44 byte packets
spread over 5 minutes (about 12 Mbps) with fixed dst IP and
dst ProtoPort and random src IP and src ProtoPort, simulat-
ing a random-source distributed denial of service attack on a
single victim. The DDoS data can be mixed with any of the
other datasets.

Table 1 presents summarized characteristics of these traces.

6.2 Comparing Sample and Hold Variants
To compare the two algorithms for identifying important entries,

PSH and FSH, we run them separately. Since the sampling rates of
both algorithms can be used to trade off memory for accuracy, we
repeat the experiments with a number of sampling rates. To sepa-
rate the errors introduced by entries being allocated too late from
those due to flow counting algorithms, we use exact flow counting
algorithms based on hash tables. Figure 3 illustrates this trade-
off for each algorithm on the IP tables with the backbone + DDoS
dataset. Metrics for the byte counters are omitted for brevity; they
are similar to those for packet counters, as expected. The accu-
racy of flow summaries is generally better than that of packet sum-
maries for FSH and worse for PSH. Also as expected, FSH alone
is worse than PSH alone; but we will use them together to can-
cel out each other’s weaknesses. The normalized absolute errors
in the dst IP graphs are much smaller than the corresponding RMS
relative errors because the system counted the flows of the single
DDoS victim very accurately and its flow count dwarfs that of other
destination hosts.
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Figure 4: Comparison of flow counting algorithms: Multi-resolution bitmap (MRB), triggered bitmap (TRB), list-triggered bitmap (LTRB), and
Bloom filter tuple set (Bloom), with fixed PSH rate of 1/128 and fixed FSH rate of 1/16. Memory use for MRB is off the graph at 1062 MB. Data:
Backbone + DDoS.

6.3 Counting Algorithms and Configurations
To compare the various flow counting algorithms, we use fixed

sampling rates of 1/128 for PSH and 1/16 for FSH; these appear
reasonable from visual inspection of Figure 3. Once we have cho-
sen a counting algorithm, we will switch to adaptive sampling rates.

Now we compare the different flow counting algorithms. Packet
and byte counter estimates are plain integers, so their accuracy is
determined entirely by the sampling rates; flows are the only val-
ues counted by our counting algorithms, so we analyze the accuracy
and memory usage of only the flow reports here. We configure the
bitmap algorithms so that their multiresolution bitmaps should give
an error of about 3%. We expect the triggered and list-triggered
bitmap algorithms to use less memory than the MRB algorithm,
but because PSH and FSH will cause the omission of many small
entries that would not trigger the creation of an MRB, this mem-
ory saving will be less dramatic than it would be without sampling.
The trigger value g of the list-triggered bitmap algorithm will have
no effect on the accuracy of large entries, so we try several reason-
able values to see which uses the least memory. A list-triggered
bitmap with g = 2 and 64 bit hash functions has 128 bits of trig-
ger overhead. Since [15] gives no procedure for choosing triggered
bitmap’s direct bitmap size d or trigger value g, we start by match-
ing the memory usage of the list-triggered bitmap just described by
setting d = 128 and g = 2, then try several higher values of g
which should save memory by avoiding allocation of some MRBs,
but increase error. Finally, we try the Bloom filter tuple set algo-
rithm with bit array sizes ranging from 226 to 229. Thus the Bloom
filters themselves use a fixed amount of memory between 8 MB
and 64 MB, and the only variable affecting memory for a given
configuration is the number of table entries.

First we consider the results shown in Figure 4 for the bitmap-
based algorithms: multi-resolution bitmap (MRB), triggered bitmap
(TRB), and list-triggered bitmap (LTRB). As expected, the mem-
ory usage of MRB is impractically large under attack situations, but
the other two bitmap algorithms have much lower memory usage.
TRB and LTRB perform roughly the same most of the time, but the
error of TRB increases significantly under some conditions. On the
other hand, LTRB’s accuracy is very consistent and not susceptible
to parameter choice; a bad choice would affect only memory, and
that only slightly. These reasons, plus the fact that LTRB is slightly
faster, make LTRB preferable over TRB.

For the Bloom filter tuple set algorithm, if the Bloom filter is too
small, it becomes too densely filled under attack and gives inaccu-
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Figure 5: Flow estimates for src IP table by rank (zoomed in to show
detail), using the same g=2 LTRB and 2

28 Bloom runs as Figure 4. The
Bloom curve is nearly monotonic, but starting at true rank 18, there are
several significantly non-monotonic sections in the LTRB curve which
would result in incorrect rankings.

rate results. But with a reasonably sized Bloom filter, say 228 bits,
it gives quite accurate results even under extreme conditions, while
using significantly less memory than any of the bitmap-based al-
gorithms. Bloom filter tuple set appears more accurate than LTRB
in these graphs, but they are both reasonable choices; indeed, un-
der different traffic mixes or variations of this system with different
tables, LTRB might do slightly better. However, the Bloom filter
tuple set algorithm has several additional advantages. The table
entries are smaller because they have a 64-bit counter whereas the
bitmap algorithms have a 128-256 bit trigger and a many-hundred
bit MRB, so its memory usage grows more slowly with increased
traffic. The table entries are fixed size, unlike in TRB and LTRB
which allocate large multiresolution bitmaps when triggered; this
makes Bloom’s memory usage closely related to the number of ta-
ble entries, which is easier to control. The Bloom algorithm’s sig-
nificantly lower memory usage, less than half of other approaches
with 228 bits, makes it able to stand up better than the other al-
gorithms under conditions even more extreme than our simulated
DDoS attack. Additionally, the plot of errors by rank in Figure 5 is
nearly monotonic for Bloom filter tuple set, meaning it is much bet-
ter at correctly ranking the results. Finally, Bloom is significantly
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Figure 6: Effect of total table entries limit of adaptive algorithm on the accuracy of results and total number of entries allocated. Counting done
with 2

28-bit Bloom filter with adaptive sample and hold rates.
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Figure 7: Adaptive sampling rate over the course of a measurement interval, with a 480k table entry limit and a 2
28-bit Bloom filter. Normal traffic

causes very little reduction in sampling rates, but the system reacts quickly and accurately to tables filling due to a DDoS attack. (Note the y-axes
have different scales.)

faster than any of the other algorithms; with a 228 bit array it ran in
193 seconds, compared to 255 seconds for the fastest bitmap-based
configuration (TRB with g = 4). For all these reasons, we chose
Bloom filter tuple set as the counting algorithm for our system.

6.4 Adaptivity
Our system achieves robustness and resource isolation with re-

spect to memory usage by adjusting the sampling rates of the PSH
and FSH algorithms (see Appendix A for details) that are respon-
sible for creating table entries (the only instance of allocating new
memory). If that is not enough to also keep CPU usage under con-
trol, we adapt the pre-sampling rate (see the technical report [22]
for details). In this section we will first see how different mem-
ory limits affect the accuracy of the results under a DDoS scenario.
Next we fix the memory limit and measure how smoothly the sam-
pling rates adapt and how they achieve isolation under DDoS traffic
adverse to only some tables. Finally we look at how pre-sampling
adaptation works under extreme attack scenarios.

In Figure 6, we see that error is kept low even during the simu-
lated DDoS attack for a wide range of memory limits. At higher
limits, the actual number of entries is somewhat lower than the
limit, partially because our equal division of entries among the 8
table-samplers is not quite optimal, and partially because our mem-
ory usage prediction is not perfect. In future work, we plan to re-

allocate entry limits to each table for each interval based on how
many entries they used in the previous interval. Above the 480,000
limit, the number of actual entries for normal backbone traffic (not
shown) is nearly constant, because it was able to get all the entries it
needed without reducing sampling rates below 100%. Even at very
low limits, all metrics were rather good, with the obvious excep-
tion of the src IP flows in the DDoS test, since the DDoS creates an
extremely large number of src IP entries. With limits of 240,000 or
higher, even this hardest-hit metric is rather good, and at 480,000
and above, all error metrics are below 1%.

Figure 7 shows how the system has dynamically adapted the
sample and hold rates over time to meet the memory constraint.
With the backbone dataset, the number of entries allocated to most
of the table-samplers was only slightly less than they wanted, so the
system had to reduce their sampling rates only a little. On the other
hand, DDoS traffic quickly created many entries in the src Proto
Port and src IP tables, and the system reacted in less than a second
(when each of the tables reached 1/4 capacity) by reducing their
sampling rate. With just one more correction 20-30 seconds later,
each of these samplers settled on a rate it was able to sustain for the
remainder of the interval. The dst IP and dst Proto Ports samplers
maintained the same high sampling rate in both situations, because
the DDoS had little effect on them (the apparent difference in the
dst IP curves is due to the change in the scale of the y-axis).
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Figure 8: The system behaves consistently with different datasets. The
(comparatively) large spikes in several intervals of OC48-B were due
to an unusual network event, not a deviation in the system. Counting
done with 2

28-bit Bloom filter and adaptive sample and hold rates with
a 480k table entry limit.

We fix 480,000 entries as the limit for further runs of the system,
since the error rates are very good here and this keeps memory
usage for the tables within 32MB of RAM with our current C++
STL implementation. Combined with the 228-bit Bloom filter and
miscellaneous overhead, this keeps total memory usage of the stack
and heap below 64MB.

To handle much higher traffic rates, the system must resort to
packet pre-sampling. Since there is nothing new about packet
sampling, and our system can often avoid using it, detailed mea-
surement of its effects are deferred to the technical report version
of this paper [22].

6.5 Validation
Finally, we measured the system with different random seeds and

different datasets to verify that its behavior is consistent.
We tested different seeds for the random number generator used

to create the H3 hash functions, with a DDoS attack. Even the most
stressed counter, src IP flows, maintained an RMS relative error of
less than 2% with all seeds, and less than 1% with most seeds.
The dst IP table is even more consistent. The results of the Proto
Port tables are similar to those of the IP tables. More details of
this experiment are available in the technical report version of this
paper [22].

In Figure 8 we show the results of running the system with 12
different 5 minute samples of 3 different real traffic traces. Again
the system demonstrates remarkable consistency; almost all of the
error metrics are under 0.05%, even for the OC48-B dataset which
contains approximately twice as much traffic as the Backbone dataset
used up to now in this paper. The comparatively large (but still
quite acceptable) RMS relative errors for flows in the fourth and
fifth intervals of OC48-B are not a deviation in our system, but are
in fact due to an unusual traffic event: whereas most of the intervals
of OC48-B had around 2 million flows, intervals 4 and 5 had 6.7
million and 4.3 million.

7. CONCLUSIONS
In this paper we present a system that produces real-time sum-

maries of Internet traffic. The main novelty of our system is that
it achieves robustness to anomalous or malicious traffic mixes and
isolation between the resource consumption of the modules com-

puting different traffic summaries by adapting the parameters of
algorithms. The types of summaries produced by our system are
widely used by network administrators monitoring the workloads
of their networks: the ports sending the most traffic (gives infor-
mation about the applications in use); the IP addresses sending or
receiving the most traffic (gives information about heavy users);
the IP addresses with the most flows (reveals the victims of many
denial of service attacks and computers performing aggressive net-
work scans); etc.

We evaluate many algorithmic solutions to the problem of identi-
fying and accurately measuring sources and destinations with many
flows. We propose two novel solutions, “flow sample and hold” and
“Bloom filter tuple set counting”, that present specific advantages
over prior solutions. In particular, flow sample and hold improves
accuracy for traffic mixes for which packet sample and hold alone
would be inaccurate. Compared to the next best flow counting al-
gorithm, Bloom filter tuple set is faster, uses approximately half the
memory, and is generally more accurate.

The summaries produced by our measurement system are more
concise and accurate than the measurement results of current sys-
tems. Anomalous network behavior such as denial of service at-
tacks or worms that could push resource consumption beyond the
limits of the hardware is handled by our system through graceful
degradation of the accuracy of the summaries. Our system was
able to maintain an error rate of less than 2% for all summaries on
trace data from a lightly loaded OC-48 (2.5Gbps) combined with
simulated denial of service attack, while using less than 1/20th the
memory of a traditional system. With a 750 MHz processor, our
system can handle up to OC-12 speeds without pre-sampling packet
headers. If the traffic is larger, or malicious, pre-sampling protects
the CPU, without drastically affecting the accuracy of summaries
reporting byte counts and packet counts.

The evaluation of our system shows that it is feasible to build
robust systems for computing accurate Internet traffic summaries
in real time. In particular, by combining appropriate identification
and flow counting algorithms with adaptive control, our system is
able to compute multiple useful traffic summaries within affordable
memory and CPU budgets at OC-48 speeds.
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APPENDIX

A. ADAPTING THE PSH SAMPLING RATE
To control memory usage, [14] adjusts the sampling rate from

one measurement interval to the next based on actual memory us-
age. This approach is vulnerable to memory overflowing during in-
dividual measurement intervals when the traffic mix changes sud-
denly. When the memory overflows, no new entries can be cre-
ated for the remainder of the measurement interval, and important
sources of traffic can go unnoticed. We aim to build a more robust
adaptation mechanism that achieves good results even within the
intervals in which the traffic gets suddenly worse2. We achieve this
goal by adjusting sampling rate within measurement intervals.

We first describe our algorithm for adapting the sampling rate
within a measurement interval assuming we have a single table, say
keyed on the source IP address, and a single algorithm, say PSH,
creating the entries. Later we discuss how we generalize it to mul-
tiple parallel sample-and-hold algorithms and to multiple tables.

Assuming that our system has enough memory to handle every
packet of “normal” traffic without exceeding its memory limit, we
begin each interval with the sampling rate set to 1. This means
that for every packet we create a new entry in the src IP table if that
packet’s src IP does not already exist in the table. Our first goal is to
make sure that if the traffic mix changes, we stay within our avail-
able memory by decreasing the sampling rate. Furthermore, we
want to achieve this goal with minimal loss of accuracy. Therefore
we want to reduce the sampling rate no further than is necessary to
ensure that we will not exceed our available memory.

One way of approaching this problem is to divide the measure-
ment interval into multiple smaller subintervals, and based on the
observed behavior in earlier subintervals adjust the sampling rates.
This is not a robust solution because a sudden spike of malicious
traffic could use all of the available memory before the current
subinterval ends. We could defend against this problem by mak-
ing the subintervals very small, but we are still vulnerable in the
last few subintervals unless we put aside big chunks of the table as
a safety buffer. Additionally, very small subintervals would be too
sensitive to random short bursts in the traffic and could cause us to
adapt the sampling rate erratically.

Instead, we address the adaptation of sampling rates by divid-
ing the available memory into smaller budgets. When the number
of allocated entries reaches the current budget, we look at the rate
at which entries have been allocated and decide whether we need
to adjust the sampling rate: we decrease the sampling rate if and
only if we expect the memory to run out before the end of the mea-
surement interval, based on the growth rate of the table since the
last rate adjustment. Thus when the traffic mix suddenly changes
and PSH starts allocating entries very quickly, the table will exhaust
the budget quickly and the algorithm will promptly reduce the sam-

2[14] uses 5 second measurement intervals, not 5 minute intervals
like we do, which makes the problem of having incomplete data for
a couple of measurement intervals less grave.



PREDICT FILL TIME(halftimes[ ])
if halftimes[2] > halftimes[1]

slowdown = halftimes[2] − halftimes[1]
else

slowdown = 0
endif
oneeighthfilltime = halftimes[2]
timeleft = 0
for i = 3 to 8

oneeighthfilltime += slowdown
timeleft +=oneeighthfilltime

endfor
return timeleft

Figure 9: Estimating the time it takes to fill up the other six eighths
of memory based on the times it took to fill up the first two eighths (i.e.
the two halves of the budget).

pling rate. In choosing the sizes of the budgets we need to balance
two competing considerations: if they are too small the algorithm
can overreact to small random spikes in the traffic, but if they are
too large the algorithm will react too slowly. Furthermore, near
the end of the interval we want to react more promptly because we
have less memory left and unfriendly traffic can consume it faster.
Our algorithm solves this problem by using budgets that are one
quarter of the remaining available memory3. So the first budget is
one quarter of the available memory, the next is one quarter of the
remaining memory (three sixteenths of the total memory), and so
on. Also, to avoid using very small budgets towards the end of the
measurement interval, we perform the adaptation so that memory
should run out slightly after the end of the measurement interval.
When we adapt the sampling rate we pretend that the time the mem-
ory must last is 10% longer than it actually is, so that we will still
have some memory left by the end of the actual memory interval.
The size of the last budget will be no smaller than one quarter of
this remaining memory which is the amount of memory we expect
to fill up during the 10% “extension” to the measurement interval.
The full adaptation algorithm is presented in the technical report
version of the paper [22].

This adaptation algorithm needs to make a prediction of the rate
at which table entries are going to fill up at the current sampling
rate. This prediction is implemented by the “predict fill time()”
function in Figure 9. While the prediction need not (and can not)
be exact, the adaptation is more efficient if the prediction is close
to the actual behavior: predicting that the memory will run out a lot
sooner than it actually would will prompt the adaptation algorithm
to decrease the sampling rate unnecessarily thus reducing the ac-
curacy of the results, whereas predicting that the memory will run
out much later than it actually would can consume the memory pre-
maturely, forcing the algorithm to drastically reduce the sampling
rate later on. Since we never increase the sampling rate within a
measurement interval, we want to be especially careful that we do
not severely underestimate the time it will take for the memory to
fill up.

The simplest way of predicting when the memory will run out is
to assume that the rate at which entries were allocated during the
current budget period will continue. Figure 10 shows the number
of entries created (without sampling) during a typical measurement
interval. The figure clearly shows that linear prediction is very far

3We also experimented with other fixed fractions such as one half
or one eighth, but one quarter seemed to offer the best balance be-
tween responsiveness and stability.

Figure 10: Using a linear prediction that assumes that the rate at
which entries will be created is the same as the rate at which they were
created during the current budget underestimates the time it takes to
fill the memory. Accounting for the fact that it takes progressively
longer to fill up the memory as we advance in time gives a much better
prediction.

from reality, because the rate at which entries are created slows
down as the time progresses because there are fewer and fewer new
source IP addresses in the traffic mix. However, with higher sam-
pling rates, the memory usage curve is much closer to a straight
line. We need a simple predictor that works for both cases. Our
predictor achieves this by measuring the rate of the slowdown in the
memory usage: we measure the time it takes to use up the first and
second halves of the budget and store these times in halftimes[1]
and halftimes[2]. The difference between the two is the slowdown.
We predict that the time it takes the algorithm to consume each
eighth of memory is slowdown longer than the time to use the pre-
vious eighth. Therefore the third eighth should take halftimes[2] +
slowdown, the fourth should take halftimes[2] + 2 ∗ slowdown, and
so on, and the total time to use up all six of the remaining eighths
should be 6 ∗ halftimes[2] + 21 ∗ slowdown. Figure 10 also plots
this new prediction which is much closer to reality. Note that our
prediction algorithm enforces that the slowdown is nonnegative (so
it is never a “speedup”). If the second half of the budget is used up
more quickly than the first half (due to an attack, for example), we
use a slowdown of zero and thus base the prediction linearly on the
rate at which only the second half of the budget was used.

Remember that our actual measurement system has four tables,
not one, and two algorithms, PSH and FSH, operating on each ta-
ble. We extend the algorithm presented here in a straightforward
manner to this situation. The available entries are divided equally
among the tables (but this can be overridden by the user through
configuration), and furthermore the entries of each table are divided
equally among the two algorithms. If both algorithms sample a
packet that causes the creation of a new entry, they each get credit
for half an entry. The rate adaptation for the eight samplers (two
for each of the four tables) proceeds independently, thus achieving
isolation between the measurement tasks.


