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Abstract
Pipelined forwarding enginesare used in core routers

to meetspeeddemands. Tree-basedsearchesare pipelined
across a numberof stages to achieve high throughput,but
this resultsin unevenlydistributedmemory. To addressthis
imbalance, conventionalapproachesuseeither complex dy-
namicmemoryallocation schemesor over-provision each of
the pipelinestages. This paperdescribesthe microarchitec-
ture of a novel networksearch processorwhich providesboth
high executionthroughputandbalancedmemorydistribution
by dividing thetreeinto subtreesandallocatingeach subtree
separately, allowingsearchesto begin at anypipelinestage.

Thearchitecture is validatedby implementingandsimulat-
ing stateof theart solutionsfor IPv4 lookup,VPNforwarding
andpacket classification.Thenew pipelineschemeandmem-
ory allocator canprovidesearcheswith a memoryallocation
efficiencythat is within 1% of non-pipelinedschemes.

1 Intr oduction
The rapid growth of the Internethasbroughtgreatchal-

lengesin deploying high-speednetworks.Oneparticularchal-
lenge is the need to provide high packet forwarding rates
throughtherouter. Thispaperpresentsanovelarchitecturefor
a network processorwhich featuresa complexity-effectiveor-
ganizationof pipelinedcomputationalcores.Thisarchitecture
allows the problemto be partitionedin a way that balances
both computationandmemory, allowing the entirearchitec-
tureto computeat high rates.

Network searchenginescapableof providing IP lookup,
VPN forwarding,or packet classificationarea majorcompo-
nentof everyrouter. With theincreasein link speeds,increase
in advertisedIP prefixes,anddeploymentof new network ser-
vices,thedemandsplacedonthesenetwork searchenginesare
increasinglycausingthem to becomea potentialbottleneck
for the router. This paperconsidersthe architectureof pro-
grammablenetwork searchengines.Other, moreexpensive,
customsolutionsarediscussedin Section5.

Memory accesstimesandcostsbecomedominantfactors
in a high-speednetwork processor. While network processors
havereceivedconsiderableattentionin thecommercial[1] and
in the research[23, 6] communities,mostof the commercial
implementationhave useda collectionof multithreadedCPU
cores.Thisallowsasinglememoryto hold theentiredatabase

(thusno memorybalanceor fragmentationissues),but do not
scaleto thebandwidthsrequiredfor futureprocessors.

Mostalgorithmic-basedsolutionsfor network searchescan
be regardedassomeform of treetraversal,wherethe search
startsat the root node, traversesvarious levels of the tree,
and typically endsat a leaf node. This computationis eas-
ily pipelinedontomultiple computationalelements,allowing
differentlevelsof thetreeto bepartitionedontoprivatemem-
oriesassociatedwith theprocessingelements– no datashar-
ing is required,exceptfor the statethat follows the threadof
computationthroughthepipeline.Unfortunately, thisarrange-
mentresultsin highly unbalancedmemories,to accommodate
databases(trees)thataretypically unbalancedin unpredictable
ways.For example,binarytrieson typical IP prefix tablesare
highly unbalanced.As a result,despitea wide varietyof aca-
demicandcommercialsolutions,only a few solutionsdo well
in termsof performance,efficiency, andcost,andnoneof them
providea generalsolutionfor all threetypesof searches.
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Figure 1. An example of a basic tree based search structure.

The tree is split into four subtrees �����
	�	�	
��� . Each subtree has

up to 4 levels. We call ���� the level � into the subtree � � .
Basuet al. [8] identify memorybalanceasa critical issue

in the designof IP lookup engines. Their techniqueto re-
ducememoryimbalanceis to designthetreestructureto min-
imize the stagethat hasthe largestmemory. Even with their
new algorithm,thememoryallocatedto onestagevariesfrom
nearly0 to 150Kbytesfor variousIP tables(of sizes100,000to
130,000prefixes).Theworstcaseboundfor amillion prefixes
is 11 Mbytes per stage(88 Mbytes acrossall eight stages).
This more than doublesthe total amountof memorythat is
usedin a non-pipelinedimplementation.

To addressthis imbalance,conventionalapproachesuseei-
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ther complex dynamicmemoryallocationschemes(dramat-
ically increasingthe hardwarecomplexity) or over-provision
eachof thepipelinestages(resultingin memorywaste).The
useof large,poorly utilized memorymodulesresultsin high
systemcostandhighmemorylatencies,whichcanhaveadra-
maticeffect on thespeedof eachstageof thepipelinedcom-
putation,andthuson thethroughputof theentirearchitecture.

By contrast,this paperdescribesa novel memoryalloca-
tion algorithmthatallows searchesto logically startfrom any
stagein thepipeline. This eliminatesthememoryimbalance,
becauseany subtreeof the searchstructurecanbe allocated
acrossthepipelinestartingat any stage.This degreeof free-
dom greatly reducesmemory imbalancecomparedto prior
schemesandenablessmaller, cheaper, fasterprocessingele-
ments.Thus,while previousschemeshadvirtually unbounded
imbalance,wepresentoneschemethatis within 1%of perfect
balance,evenfor highly imbalancedtrees.

Therestof thispaperis organizedasfollows. Section2 in-
troducesour solutionfor solvingthememoryallocationprob-
lem for eachpipeline stagewithout generatingaccesscon-
flicts. We introducea linear algorithmfor subtreeallocation
which we show can allocatethe subtreeswith at most 1%
memorywaste;however, asshown in AppendixB, the prob-
lem of optimallyallocatingsubtreeson a pipelinering is NP-
complete.Section3 providesan overview of network search
applications:IP lookup, VPN forwarding,andpacket classi-
fication. In Section4 we evaluateour solution on all three
applicationtypesintroducedin Section3, usingboth real life
andsyntheticallygeneratedroutingtablesandclassifiers.Sec-
tion 5 presentsrelatedwork in thepipelinedesignof network
processorsaswell asin network searchapplications.Section6
concludes.

2 Towards a BalancedMemory Distrib ution in
a Pipelined Search Ar chitecture

Memorydistributionperpipelinestagevarieswidely in the
caseof a conventionaltree basedsearchimplementationof
IP lookupsandVPN searches(asshown by Basuet. al [8],
andby our resultsin Figure3). Further, the resultsshow no
correlationbetweenthepositionof a particularpipelinestage
andthe amountof memorythat needsto be allocatedto that
stage.

Prior pipelined network search algorithms require all
searchesto start from the first pipeline stage,going next to
thesecond,andsoon. Instead,weintroduceourfirst contribu-
tion: anadditionaldegreeof freedomfor thesearchoperation.
We allow the searchto startat any stagein the pipeline. For
everysearch,thestartingpositionis pickedusingahashfunc-
tion basedoninformationin thepacketheader. For IP lookups
thehashfunctionis madeupof asetof variablelengthIP pre-
fixes. For decision-treebasedpacket classification,the hash
function may usesomeof the mostsignificantbits in two or
threedifferentfieldsof thepacketheader.

Figure1 shows a treebasedsearchstructure.To keepthe
explanationsimple, let us assumethat the treehasfour sub-
trees,called ������������� . Furthermore,thedepthof eachsubtree

is four levels. We assumethat this searchstructureis imple-
mentedonafour stagepipeline.Thestagesof thepipelineare
called � � ������� � . The first level of the subtree� � , called � �� ,
is storedandprocessedby thepipelinestage� � . Thesecond
level, ���� , is storedandprocessedby thepipelinestage� � , and
soon. Thesecondsubtreeis processedstartingwith stage� � ,� �� on � � , � �� on � � , � �� on � � and � �� on � � , respectively.

Similarly, the third subtree� � startson pipelinestage� � ,
while the fourth subtree��� startson pipelinestage�!� . This
allocation schemetries to balancethe load on eachof the
pipeline stages. By doing so, the pipeline allocatesnearly
equalamountsof memoryto eachstage,by virtually allocating
a “subtree”in eachof thestages.E.g., thefirst pipelinestage
storesthe first level in the first subtree( � �� ), the secondlevel
in the fourth subtree( � �� ), the third level in the third subtree
( � �� ), andthefourth level in thesecondsubtree( � �� ).

In practice,we relax thesetwo simplificationsin this il-
lustration.We allow moresubtreesthanpipelinestages(pro-
cessingelements),thusimplying multiple subtreesmay have
the samestart node. We also allow the maximumdepthof
eachsubtreeto belessthanor equalto thenumberof pipeline
stages.

However, introducingthis new degreeof freedomthat al-
lowssearchtasksto startexecutionfrom any pipelinestageim-
pactsthethroughputof thesystem.Thisis becauseof potential
conflictsbetweenthe new tasksandthe onesthat arein exe-
cution. In theory, the numberof conflictscanbeunbounded.
However, next we will presentan alternative to the conven-
tionalpipelinedorganizationthateliminatesall conflicts.

2.1 Our Solution to GuaranteePipelineThr oughput

IN

OUTP P P P
1 2 3 4

data path active during odd slots

data path active during even slots

Figure 2. A random ring pipeline architecture with two data

paths: first path is active during the odd clock cycles, used dur-

ing the first traversal of the pipeline; second path is active during

the even cycles to allow a second traversal of the pipeline.

Weneedto dealwith two problemsthatcreateconflicts:(1)
sincelevelsareassignedto our pipelinedprocessingelements
in acircularfashion,mostthreadsmustwraparoundto thebe-
ginningof thepipelineto completeexecution;(2) computation
for anew taskcanstartat any processor.

We want to guaranteethat for any streamof tasks,in each
interval of time " the tasksthat are alreadypresentin the
pipelineprogressto thenext stagewhile ensuringthatthenext
incomingtaskcanalsobeaccommodated.

Our solution,which representsthe secondcontribution of
this paper, is shown in Figure 2. It modifies the regular
pipelinestructureandbehavior asfollows.
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Eachpipelinestageworksata frequency #%$'&)(+* , where
* is themaximumthroughputof the input. All taskstraverse
thepipelinetwiceandareinsertedat thefirst pipelinestage,ir-
respectiveof theirstartingstage(for execution)in thepipeline.

Eachpipelinestageaccommodatestwo datapaths(virtual
datapaths– they can sharethe samephysicalwires). The
first datapath (representedby the top lines) is active during
the odd clock cyclesandit is usedfor a first traversalof the
pipeline. During this traversala task ,.- traversesthepipeline
until its startingstage/ andcontinuesthe executionuntil the
laststageof thepipeline.Theexecutionof a taskalwaysstarts
on the first traversalthroughits startprocessor. The second
datapathis traversedduring even cyclesandallows the task
to continueits executionon the pipelinestagesthat are left.
Onceataskfinishesexecuting,its resultsarepropagatedto the
outputthroughthefinal stage.

Thenumberof stagesin thepipelinemustbeat leastequal
to the maximumnumberof stagesthat are requiredfor the
executionof any task.

For example,considerthe four stagepipelinein Figure2.
A taskthatmuststartexecutingin pipelinestage0 is inserted
in pipelinestage 1 . It traversesthe pipelineonly in the odd
cycles until it reachesstage0 whereit startsexecuting. Its
resultsare forwardedto pipelinestage2 also during an odd
cycle. However, the resultsof the executionon stage2 are
moved forward to pipeline stage 1 for executionduring the
next even cycle. The task finishesits executionon pipeline
stage& . Thefinal resultsaremovedto theoutputvia pipeline
stages0 and 2 duringevencycles.

Oursolutionguaranteesthefollowing features:1)anoutput
rateequalto theinput rate,2) all thetasksexit in order, and3)
all thetaskshaveaconstantlatency throughthepipelineequal
to 34( �5 where 3 is thetotalnumberof pipelinestages.

In summary, weprovideanew pipelinearchitecturethatal-
lowstheinjectionandremovalof taskseachfrom asinglepro-
cessor, while communicationbetweenprocessorsoccursonly
betweenneighborsin a linearorderingof theprocessors;this
eliminates(1) theneedfor a schedulerfor bothinput andout-
putof thetaskand(2) thecommunicationcomplexity. Wealso
addressthe memory imbalancebetweenthe pipeline stages
by allowing theexecutionof the tasksto startat any position
in the pipeline. Section4 evaluateshow our new allocation
schemereducesthememoryimbalancein theimplementation
of differentnetwork searchapplications.

This architecturerequiresthat thetime perprocessingstep
behalf thatof a moreconventionalpipelinedconfigurationto
maintainthesamethroughput.We show in Section4 that the
reductionin memorysizeeasilyallows thosegains.
2.2 Selectingthe Subtrees

To apply this new allocationschemewe needto first par-
tition the tree into subtrees. Ideally, the subtreesto be al-
locatedshouldhave relatively equalsize (approximatelythe
samenumberof nodes).

We provide an iterative algorithm that takes as input the
original trie 1 andat eachstepidentifiesonesubtriethatcon-

1A trie is abinaryprefix tree.

tainsanumberof nodeswhich is theclosestto adesiredvalue
(threshold).Thesubtrieis entirelyeliminatedfrom theorigi-
nal trie andsavedinto a list togetherwith theprefixassociated
with its root node. Thealgorithmcontinuesuntil thenumber
of nodesleft in thetrie is lessthanthethreshold.

Theresultof thealgorithmis a list of tuples.Eachtuple is
madeupof therootnodeof asubtrietogetherwith thelongest
matchingprefixof this node.
2.3 The Allocation of the Subtrees

Thealgorithmabovesplitstheoriginal treeinto subtreesof
relatively equalsize.Thenext stepis to allocatethesesubtrees
to thecircularpipelinesuchthat theamountof memoryused
by eachof the pipelinestagesis relatively equal. As shown
in AppendixB, the problemof finding an optimalallocation
of eachof the subtreeson the pipeline stagesis intractable.
Therefore,the best one can do is to develop heuristicsfor
“good enough”subtreeallocationon pipelinestages.

We proposea simple linear time solution for the alloca-
tion problem. In Section4 we experimentallyshow that our
solution leadsto a very small memorywaste,within 176 of
thetotalmemorysize.Ourheuristicconsidersonesubtreeata
time,randomlypickedfrom thesetof subtreesidentifiedusing
thealgorithmdescribedin theprevioussection,andallocates
it suchthatthelevel in thenew subtreethatrequiresthemini-
mumamountof memorycorrespondsto thepipelinestagethat
alreadyusesthelargestamountof memory.

3 Network Search Applications
We evaluateour new pipeline architectureand task allo-

cationalgorithmusingstateof the art solutionsfor different
typesof network searchesthataretypically donein a router:
IP lookups,VPN forwardingand packet classification. The
featuresof thesesearchesaresummarizedin Table1.

In AppendixA we give detailsof eachof theIP lookupal-
gorithmsthat we implementandevaluatein Section4. The
VPN forwardingalgorithmsusethesamedatastructuresasin
thecaseof IP lookup. In essencea routerthatprovidesVPN
forwardingmust executetwo IP lookup operationsfor each
search,as is given in RFC2547[20]. It first executesan IP
lookupbasedon the sourceIP field. The resultof this deter-
minesthe routing tablethat is usedfor the secondIP lookup
basedon thedestinationIP field.

In packet classificationeachpacket is matchedagainsta
prioritizedsetof rulesmadeup usingtwo or morefields(e.g.
IP sourceand destinationfields, port fields, etc.). A packet
canbe matchedby several rules. The searchdeterminesthe
highestpriority rule thatmatcheseachpacket.

Decision-treebasedpacket classificationalgorithms [28,
15, 26] appearto bethemostpromisingcategory of algorith-
mic solutionsto thepacket classificationproblem.We imple-
mentHyperCuts[26], arecentdecisiontreebasedpacketclas-
sificationalgorithmintroducedby Singh,et al. The scheme
is basedon a pre-computeddecisiontree which is traversed
for eachpacket that needsto be classified.The computation
at eachstagein thetreeusesseveralbits in thepacket header
asan index into anarrayof child pointersto identify thenext
child nodeto betraversed.
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Application Numberof Entries Numberof fields Typeof Matches

IP Lookup 891;:7<!= 1 >?�A@
VPNForwarding 8B:7<7<!= & CD@FEG>H�A@
PacketClassification IJ1K<�L�<M<7< 8B& CD@FEG>H�A@NE'OP@

Table 1. Network Search Applications. Q R+S stands for “longest prefix match”, TUS for “exact match”,a nd V�S for “range match”.

4 Evaluation

In this sectionwe evaluateour Ring Pipelinearchitecture
usingthenetwork searchalgorithmsdescribedin theprevious
section.Ourarchitectureusesprivatesingleportmemoriesfor
eachof thepipelinestages.This contributesto an increasein
theamountof memoryneededdueto increasedfragmentation.
We seekto balancememoryfor two reasons,to minimizecost
(memorywaste)andto maximizeperformance(minimize the
accesstimeof thelargestmemory).Thus,thissectionfocuses
on thefollowing two critical questions:1) Whatis theoverall
wastein the memoryspacedueto our new model? 2) What
is themaximumthroughputandexpectedlatency our scheme
canprovide?We startwith thelatterquestion.

4.1 Search Latency and Thr oughput

Each pipeline stagerequiresa computationphaseand a
memoryaccessphase.Although the memoryis uniport, our
designallows two wordslocatedat a smalldistanceonefrom
anotherto bereadin onememoryaccess,asin [4]. Themem-
ory accesstimeissimilarto theaccesstimeof aregularuniport
memory. We first investigatethe relationshipbetweenper-
stagememoryallocationand the memoryaccesstime. Ta-
ble 2 shows that the memoryaccesstime increasessignifi-
cantlywith thesizeof memory. Whenourbalancedallocation
algorithmis applied,we find thatall searchesanalyzedin this
research,except one, can be implementedwith memoryla-
tency lessthan &XW?Y . Theoneexceptioncorrespondsto a VPN
forwardingapplicationthat containsa large numberof small
destinationIP routing tables. Even in this casethe memory
accesstime is lessthan0ZW?Y .

MemorySize(Kbits) Area([]\ � ) AccessTime(ns)
1K&7^ <!� <M<7: <!� :M_7:
&M:7_ <!� <M<7` <!� _M: 1
:�1;& <!� <M&7< <!� ^M&7^
1;<M&72 <!� <M0 a <!� `�1;`
&7<M27^ <!� <M_7` 1Z� &M27&
27<M`7_ <!�
1K072 1Z� :M&7<
^ 1K`7& <!� &�a;: &!� 2M^ a

Table 2. The memory access time and area estimates for dif-
ferent sizes of on-chip SRAM using bM	 b;cKd7e technology. The
estimates are obtained using the memory generator application
CACTI [24].

In orderto determineboththesearchlatency aswell asthe
throughputof thesearchesusingour architecture,we synthe-
sizedin Verilogthecomputationallogic for eachpipelinestage
for both Eatherton’s IP lookup algorithmandthe HyperCuts

algorithmusing <!�
1K0Xf�\ technology. The longestpathdelay
in thecomputationof thenext nodeaddressin bothalgorithms
is smallerthan 1UW?Y . This combineswith a &)W?Y memoryac-
cesstime to a allow a 0gW?Y executiondelayperpipelinestage.
Thesizeof all thecomputationlogic for all 8 stagesis smaller
than <��h1;&M:X\%\ � .

Given the architectureof Section2, a pipelinerunningat070M<�@9ikj (3nsperstage)achievesasearchthroughputof _UW?Y
perpacket. This valueis adequatefor OC-768(40Gbps)links
that requirea throughputof ^lW?Y per packet for a minimum
size(27< bytes)packet.

All thesearchesthroughthepipelinehave a latency that is
constantandis doublethelatency of aonewaypipelinetraver-
sal.Theoverall latency of asearchoperationusingtheEather-
tonalgorithm[11] for theIPv4 lookupis ^P(.&P(.0gW?Y)$'27^mW?Y
assuminganeight-stagepipelinewith 0XW?Y perstage.Wemea-
suredthemeanpacket latency for differentloadson a CISCO
GSR router. In our evaluationthe smallestmeanpacket la-
tency wasapproximately:7<Zf?Y . Thusoursearchlatency is less
than <!�
1M6 of thetotal meanpacket latency. Consequentlywe
concludethat the searchlatency of our solutionhasvirtually
no impacton theoverallpacket latency.
4.2 Memory Distrib ution per PipelineStage

We next evaluatethe efficiency of our pipelineschemeto
equallydistributememoryacrosspipelinestages.We do this
by simulating the behavior of our architecturefor all three
typesof applications: IP lookups,VPN basedlookups,and
packetclassification.Weevaluatethesemodelsusingbothreal
life routingtablesandclassifiers,aswell assyntheticallygen-
eratedonesthatallow us to simulatelargeconfigurations.In
thefiguresthat follow all thememoryvaluesareexpressedin=on]/qp�Y .
4.2.1 Evaluation of IP Lookup

We first evaluate our pipeline architectureby a software
simulation of the memory requirementsfor Eatherton’s IP
lookup algorithm[11]. The real life routing tableswereex-
tractedusing instancesof the BGP routing tablesavailable
at RIPE [21] and RIR [16] on Sept. 22, 2003 and parsed
using the (r�s�" p�t n]p�sXu ) software available at [17]. We ex-
tracted the routing tables associatedwith ATT (AS7018),
Sprint (AS1239), Level 3 Communications(AS3356) and
FranceTelecom(AS5511).Becausetheresultsarevery simi-
lar, we only displaytheresultsfor ATT. To testthescalability
of the algorithm we syntheticallygeneratetablesusing two
different modelsof routing table growth: one developedby
theNetwork ProcessingForum(NPF) [2], andonedeveloped
by Narayan,et al. [18].
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The graphon the left in Figure3 shows the resultsof us-
ing the Eathertonalgorithmwith a regular pipelinein which
the searchstartswith the first pipelinestage,continueswith
thesecond,andsoon. Theseresultsmotivateour schemeby
showing that one cannotidentify a clear patternof memory
sizeallocationperpipelinestages.

Table3 andFigure3 show thatour pipelineschemehasa
doublebenefit.It eliminatestheneedfor dynamicmemoryal-
locationperpipelinestageandit providesabetterthroughput.
For example,an IP prefix table with about :7<M<�L
<7<7< entries
requiresalmost 1M1X@9nv/vp�Y of memoryfor onestage(the sixth
pipelinestage).As a resultthememoryaccesstime increases
to about0�� :XW?Y . In comparison,our new pipelineschemehas
amaximumof &�� `�@9n]/qp�Y of memoryallocatedperstage.As a
resultthememoryaccesstime is reducedto 1Z� 2ZW?Y .

In all thesesimulationsweusearelatively naivesplit of the
originalsearchtrie into 07& subtries(usingthefirst : bits in the
IP addressfield). Thesesubtriesareallocatedto the pipeline
stagesstartingfrom variouspositions. In this casethe total
memoryacrossthepipelinestagesis within 0M< 6 of the ideal
memoryallocationspace(Table3). Note that in the caseof
a conventionalpipelinewith staticallyallocatedmemorythe
total amountof memoryto be usedincreases206%over the
non-pipelinedimplementation.

IP Table Total BPW CPW
ATT aZLwaK& aX= 0M< 6 &7<M_ 6
A100K 2!L�:M:7<�= _!� &M: 6 &7<M_ 6
A200K 1K<�L�_�a;2!= 1K: 6 &7<M_ 6
A300K 1K0�L�:M^7:!= ^�� ^ 6 &7<M_ 6
A400K 1K^�L�2M27<!= 2�� ` 6 &7<M_ 6
A500K &M0�L�&M&7_!= ` 6 &7<M_ 6
NPF &M0�L�:M^70!= 1K<�� 2 6 &7<M& 6

Table 3. Eatherton Algorithm on a random access pipeline
model - Total memory utilization and the percentage of wasted
memory if each of the pipeline stages has allocated the maxi-
mum amount of memory that is required by the pipeline stages.
The third column shows our balanced pipeline waste (BPW)
while the fourth column shows the memory waste in a conven-
tional pipeline (CPW).

Reducingthe wastedue to over-provisioning: Although
our results above show that the total memory acrossthe
pipelinestagesis within 07<�6 of the idealmemoryallocation
space,we would like to provide even tighter boundson the
amountof memorythatis wasteddueto over-provisioning.

Our allocationalgorithmassumesthe trie is madeup of a
numberof relativelyequalsubtries.Findingtheperfectcombi-
nationfor allocatingeachof thesubtriesonthepipelinestages
hasanexponentialcomplexity asweshow in AppendixB. In-
stead,we proposea muchsimplerlinearsolutionin which at
eachsteponesubtrieis consideredfor allocation. The sub-
trie is allocatedsuchthat the level in thesubtriethat requires
the minimumamountof memorycorrespondsto the pipeline
stagethatcurrentlyusesthelargestamountof memory.

To reducethedegreeof waste,we find it is sufficient to in-
creasethenumberof subtrees,allowing finer-grainplacement

into memory. Thus,therearetwo questionto beasked:1) how
to split thetrie into relatively equalsizedsubtriesand2) what
is asufficientnumberof subtriessuchthattheamountof waste
dueto over-provisioningis lessthan,for example,1M6 .

We split the original trie into subtriesof relatively equal
size using the algorithm describedin Section2.2. We de-
terminethe minimumnumberof subtriesthatarerequiredto
achieve an overall wastedueto over-provisioningthat is less
than 176 througha seriesof evaluationsusing both real life
routing tablesaswell assyntheticallygeneratedones. In the
caseof a balancedtrie this numberis small and it is equal
to the depthof the trie. This numberincreaseswhenthe trie
shapebecomesmoreirregular. Themulti-bit trie, with strides
of size 2 that is usedin the Eathertonalgorithmhasa more
regularstructurethana regularunibit trie. Therefore,for this
experiment,we usetheunibit trie searchstructure,which we
expect to have the largestdegreeof irregularity. Our results
shown in Table4 canbe directly extendedto the equivalent
multi-bit tries. We usea 24-stagepipeline to accommodate
the larger depthof the unibit trie. The third column repre-
sentsthe numberof subtriesthat we create.The subtriesare
distributed amongthe 24 stagesof the pipeline. The maxi-
mum numberof nodesallocatedfor a pipelinestageis given
in the4thcolumn.The5thand6thcolumnsrepresenttheaver-
ageandmaximumpercentageof memorywasteddueto over-
provisioning. This over-provisioningis a resultof allocating
for eachpipelinestagetheamountof memoryneededby the
largeststage.

The resultsshow that, in the worst case,the original trie
needsto besplit into 2�L
<7<7< subtriesto reducetheoverallwaste
to below 1M6 .

Update Operations. This analysis assumesa static
database,but balancewill be impactedover time by update
operations.We next considertheeffectof theseupdateopera-
tionson theoverallmemorybalanceperpipelinestage.In our
evaluationwe usethesameworst-caseuni-bit trie datastruc-
tures.

Weconsideraroutingtableassociatedwith AS9177(NEX-
TRANET, Switzerland),collectedby RIPE rrc00 [21]. The
originalroutingtableis collectedat thebeginningof Aug. 9th,
2003. Updatesarerecordedthroughthe endof Aug 15th. at
00:00UTC.

The routing tableis representedusinga trie which is split
into 2�Lx1;<M& subtriesthat wereallocatedto a &72 stagepipeline
usingour algorithm.During theupdateprocess&M& a new sub-
tries were created. Eachsubtriewas associatedwith a new
branchin thetrie. Eachnew subtrieis insertedinto thepipeline
in sucha way as to try to avoid having any memoryalloca-
tion in thepipelinestagewith thelargestnumberof entriesal-
readyallocated.Our resultsshow thatat any momentin time
themaximum“waste”perpipelinestageremainssmallerthan
<�� : 6 .
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Figure 3. The memory utilization per pipeline stage using the Eatherton Algorithm [11] on a conventional pipeline architecture (left) and
our balanced architecture (right). The values represent the amount of memory in bits that is used in each pipeline stage. A100K - A500K
are synthetically generated routing tables using the model described by Narayan et al [18] while NPF is a 500K entries synthetic routing
table generated using the model proposed by the NPF Forum.

IP Table No. of Prefixes No. of Subtries Max. No. Nodes AMW MMWz ,g, 1K&7&�L
_70M_ 2�L�<M`7< 1;2�L
_70M& <�� &70 % <�� 0 a %

*{, 1K&70�L
^ aK: 2�L�<�a7a 1;2�Lxa;_M0 <��h1;` <!� &�a
>�0�| 1K&70�L
& aM1 2�Lw1K<7: 1;2�Lxa;<M< <�� &7: <!� 0M`
�?�AO?}�3~, 1K&7&�Lxa;:M< 2�L�<M` a 1;2�L
_7_M& <�� &7< <!� 0M0z :7<!= :M0�L
07&70 2�Lw1K&7< _�Lxa;07` <�� <7` <!�
1K^z 1;<M<�= 1K<7<�L
0 1K& 2�L�&M0 1 1;&�L
_7_M2 <��h1;^ <!� 0M:z &7<M<�= &�171XL
<70M0 2�L�&�a;& &7_�L
_70M: <�� 27_ <!� _M&z 07<M<�= &M`7<�L
`7`M: 2�L�<�17a 07_�L
`7^M: <�� :7` <!� ^M_z 27<M<�= 2�171XL
27_M` 2�L�&�a7a : 1XL
_70M2 <�� &7^ <!� 0M`z :7<M<�= :�171XL
_70M2 0�L�`M:7< _72�L
&7^M2 <�� 070 <!� :M2
3o�A* :M&72�L
& 1K^ 2�Lw1K27_ :7`�L
07&M< <�� 07: <!� _�1

Table 4. IP lookup using a single-bit trie search structure. The trie is split into a number of subtries, each subtrie with a number of
nodes close to a given threshold. The number of subtries is shown in column 3. The maximum number of nodes allocated for a pipeline
stage is given in column 4. Columns 5 and 6 show the average memory waste (AMW) and maximum memory waste (MMW) due to
over-provisioning.

4.2.2 Evaluation of VPN Forwarding

We simulatea VPN forwardingengineusinga similar search
structureasin regular IP lookup. The only differencein this
caseis that the driver of the searchenginemust computea
hashfunction basedon a tag value that is provided by the
VPN application.Thecomputedvaluedeterminesthepipeline
stagefrom which the searchstarts. The searchstructureand
thesearchitself is implementedusingthesamealgorithmde-
signedby Eatherton[11].

No publicly availableVPN forwardingtablesexist. As are-
sult,wedotheevaluationusingasetof synthetictablesthatare
generatedusingsimilartechniquesto theonesusedto generate
theIP lookuptables.Our resultsshown in Table5 correspond
to threedifferentcases:1) all thesetsof tablescontainabout
1;<M<7< entriesperset(AllSmall), 2) all thesetsof tablescontain
about 1;<!L�<7<M< entriesperset(AllLarge)and3) thesetcontains
a mix of smallsizetablesandlargesizetables(Mixed). Each

setcontainsaboutonemillion prefixentries.

VPNSet Total BPW CPW
AllSmall :7:!L�:M`7`�L
: 1K& 2!� ^�6 ^7&�6
AllLarge 2 1ZL�2M27<�L
^72M^ aZ� &�6 ^7`�6
Mixed 27^!L�_�a;2�L
:7:M& 0!� &�6 1K&7`�6

Table 5. VPN forwarding using a random access pipeline
model - Total memory utilization and the percentage of wasted
memory for our balanced pipeline (BPW) and conventional
pipeline (CPW).

Our resultsin Table5 show thatby usingour new pipeline
architecturefor VPN applications,thetotal amountof wasted
memorydoesnotexceedaX� & 6 . It correspondsto asituationin
which thesetcontainsonly a smallnumberof relatively large
VPN tables. In contrasta conventionalpipelinearchitecture
contributesto anincreasein thememoryof up to 1;&M` 6 .
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4.2.3 Evaluation of the Packet Classification Algorithm
(HyperCuts)

We next evaluate how a decision tree basedclassification
schemebehaves on our new pipeline schemeusing five-
dimensionalclassifiers. We simulate the HyperCutsalgo-
rithm [26] on syntheticallygeneratedclassifierswith up to
20,000rules. The classifiersthat we useare generatedus-
ing themethodologydescribedby Singh,et al. [26]. We con-
siderclassifierswith 5,000(L5K), 10,000(L10K) and20,000
(L20K) rules.

Unlike in IP lookup, in tree basedpacket classification
the largestamountof memoryis allocatedtoward the earlier
stagesin thepipeline.Also thememoryallocationperpipeline
stagevarieswidely. For example,in thecaseof a20,000rules
classifier the amountof memory allocatedper stagevaries
from 2M^7<!=onv/vp�Y to 1X=on]/qp . Our new pipeline schemebrings
down the maximumamountof memorythat needsto be al-
locatedper pipeline stageby a factorgreaterthan two. For
examplein thecaseof a &M<�L
<7<7< rulesclassifier, themaximum
amountof memorythat is allocatedper pipelinestagedrops
to &�1;:�=�nv/vp�Y from 2M^7<�=�nv/vp�Y . In our simulationwe usedthe
subtreesoriginatedin thesecondlevel nodes(theroot nodeis
at level 0).

Theresultsin Table6 show thataconventionalpipelinear-
chitectureimplementationmayrequiremorethanthreetimes
theamountof memoryusedby thenon-pipelinedversion. In
contrastour pipelined schemeincreasesthe memory usage
by only 30%. This amountof wastedmemorydue to over-
provisioningmaybefurtherreducedby usinga largernumber
of subtrees.

DB Total BPW CPW
>.:!= 1ZLw1;^M^�= 07<�6 :7: 6
>{1K<�= &!L�27`M_�= 07&�6 &M07^ 6
>.&M<�= &!L�:7`M&�= 07&�6 &M07^ 6

Table 6. HyperCuts algorithm using a random access pipeline
model - Total memory utilization and the percentage of wasted
memory for our balanced pipeline (BPW) and conventional
pipeline (CPW).

5 RelatedWork

Extensive work hasbeendoneon processorring commu-
nication [9, 10, 7, 3, 19]. Hierarchicalring busesas an al-
ternative to the scalabilityandcostproblemsof the crossbar
switchesare addressedin [3, 19]. In both caseseachele-
ment in their architectureis capableof controlling the inser-
tion of dataon thering througha systemof FIFOs.Coffman,
et al. [10] further analyzethe featuresof the processor-ring
communicationfor largeringsandproveboundaryconditions
for thetaskwaiting times.

Packet forwarding in high speedroutershasbeena well
studiedarea.Therehasbeenextensive researchbothin theIP
lookupproblem[11, 22] aswell aspacketclassification[5, 14,
15, 28, 26, 27]. Most of this work dealswith non-pipelined

architectures,and the focus is to minimize the depthof the
searchstructures.

BasuandNarilkar [8], in the context of a specificlookup
algorithmthat usesfixed stridemulti-bit tries, show that the
memoryin somestagesvariesdramaticallyacrossdatabases,
evenin thefaceof their proposedalgorithmsto minimize the
variation.For example,assuminganeightstagepipeline,their
resultsshow casesin which for two different databasesthe
memoryspaceto be allocatedto a pipelinestagevariesfrom
almost < up to 1;:M<�=o� while in the caseof anotherpipeline
stagethe memoryspacevariesfrom about 1;:M<�=�� to up to
07<M<�=�� .

Thereis little work thataddressesthememorylimitation in
the caseof network searchengines.The problemwasintro-
ducedby Sikka,et.al [25] in thecontext of trieswhereit was
left asanopenproblem.BasuandNarilkar [8] proposeanap-
proximatesolutionto the problemof trie memoryallocation
acrossstages,but they are lessthansuccessfulat solving it.
They proposeaway to reducethememoryimbalanceby min-
imizing thestagethathasthe largestmemory. Baer, et al. [6]
proposea cachebasedsolutionto reducethe memorycapac-
ity andthe amountof memorymultibanking. However, their
solutioncannot providedeterministicthroughputfor any pat-
ternof input packetsandcannot provide tight boundsfor the
worst case.Sherwood,et.al. [23] investigatethe useof wide
wordpipelinedmemorythatallowsconcurrentaccesses.None
of thesearchitecturespipelinethecomputationacrossmultiple
processors.

HardwarebasedsolutionsbasedonTernaryCAMs provide
an attractive solution to ASIC-baseddesignsthat implement
treebasedalgorithmicsolutionsfor searches.TCAMs arecon-
tentaddressablememoriesin whicheachbit is allowedto store
a < , 1 or a “don’ t care” value. A TCAM essentiallycompare
eachpacketaddresswith everyaddressthesearchengineholds
in its database,usingparallellookupson associative memory.
However TCAMs have limitations: ��17� largecell size(about
1;_ transistorsperbit), ��& � highpowerconsumption�
1;<���1;:��
at 1;070!@9Y
� YZ� , �h0 � very high costperchip �
�;&7<M<����;0M<7< � and�h2�� cannotprovideageneral,efficient,singlechipsolutionfor
all of thealgorithmsoursolutionaddresses[13].

6 Conclusion

In this paperwe proposea general,pipelined,multiproces-
sorarchitecturefor treebasedalgorithmicsolutions.This ar-
chitecturecanbeimplementedusingequalsizedmemoriesfor
eachpipelinestage,limiting the needfor over provisioning.
This allows computation,evenon highly unbalancedtrees,to
bepartitionedinto piecesthatequalizebothcomputationand
memoryallocation. This resultsin minimizedmemorycost
andmaximizedpacket throughput.

Thissolutionachievesverylow communicationcomplexity
becauseeachpipelinestagecommunicatesonly with its imme-
diateneighborsandall tasksenterandexit thepipelinethrough
a single stage. It doesnot requireany centralizedschedul-
ing mechanism.Our architecturealsoprovidestight latency
boundsfor searches.
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We evaluate our pipeline task allocation algorithm and
our new multiprocessorpipeline architectureby implement-
ing state-of-the-arttree-basednetwork searchalgorithmsfor
IP lookup, VPN forwarding, and packet classification. We
demonstratea memoryallocationheuristicwhich can,in lin-
eartime,allocatesubtreeswith only 1%waste.

Our implementationcanbeusedonhighspeedrouterswith
OC-768 links that run at 40Gbpsand require a throughput
of ^ZW?Y per packet. We show that we canprovide IP lookup,
VPN forwarding,andpacketclassificationat a rateof _XW?Y per
packetwhile theoverall latency is constantat 2M^XW?Y .
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A IP Lookup

�{r�tw#�/v� ��u���"+t
��� <7<7<M<7<M< 1Z(
� � <7<7<M<7<M<7<7<M<!(
�!� < 171K< 1M1;<7< (
�!� < 171K< 1M1;< 1K<7< (
�!� < 171K< 1M1;< 1K< 17(
�!� 171;<M< 17(
�!� 17171M1;<�1;<7<M<!(
�!� 17171M1;<�1;< 17(
�!� 17171M1;<�1;< 1M171K<!(
� ��� < 171K<7< (
�+��� < 171K< 1M1Z(
� � � (

Table 7. A simple example of a routing table with �q� prefixes.

TheIP lookupoperationrequiresa longestmatchingprefix
computationatwire speeds.In IPv4 for example,ateveryhop
(router), for eachpacket the 32 bit IP destinationaddressis
matchedagainsta databasesof IP prefixes. Eachprefix entry
consistsof a prefix anda next hopvalue. For a betterunder-
standingof theproblem,let’sconsiderthefollowing toy exam-
plebasedonanIP lookupdatabaseconsistingof thefollowing
12 prefixesshown in Table7. If the routerreceivesa packet
with thedestinationaddressthatstartswith 1M171M1;< 1K< 1M171;< then
thenext hopvalueassociatedwith theprefix � � is selected.

Therearemany solutionsin theliteraturefor theIP lookup
problemrangingfrom binarysearchto trie lookup[22]. In the
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Figure 4. The trie lookup structure associated with the routing

table given in Table 7.

evaluationof our new pipelineschemewe usethe algorithm
inventedby Eatherton[11]. This algorithmoffersbothexcel-
lent throughputaswell asfastupdaterates.

Eatherton’s algorithmusesa trie asthebasicsearchstruc-
ture. The trie is organizedinto subtrieswith fixed depth(for
example2 ) markedwith dottedlines in Figure4. As a result,
theinitial trie is now representedasa treein which eachnode
is associatedwith a subtriein theoriginal representation.

PBV

CBV

Next Hop Table Ptr.

Child Node Array Ptr.

0 1

1

10

0

P10

P3

P

0 1 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

11

Figure 5. Each subtrie in the original trie may be represented

as it is shown here. This picture shows the representation of the

subtrie ��� from Figure 4.

Eachsubtrieis representedwith thehelpof two bit vectors.
Figure5 shows therepresentationof thesubtrie, � from Fig-
ure4 andtwo arraysthatstorethechild nodesandthenext hop
informationassociatedwith thecurrentnode.

A first bit vectorthatwe call �A��� describesthedistribu-
tion of the nodesassociatedwith valid prefixesinsideof the
subtrie. This bit vectorrepresentsa linearizedformat of the
originalsubtree:eachrow of thesubtreeis capturedtop-down
from left to right. Eachbit is associatedin orderwith thepre-
fixes: *, 0*, 1*, 00*, 01*, 10*, 11*, ����� , 111*. Two bits are
setin PBV; they correspondto thevalid prefixes � ��� and � �
�
existent in the subtrieas it is shown in Figure 5 (The node
associatedwith the prefix � � doesnot belongin this subtrie.
Insteadit is therootnodeof oneof its child subtrie).Thenext

hop informationassociatedwith eachof the valid prefixesis
keptin a table.

The secondbit vectorwhich we call |A��� describesthe
child distribution. Thereareatmost& � childrenandabit is set
wheneverachild existsat theendof thatpaththroughthetrie.
Thus,in Figure5 we only have two bits setcorrespondingto
two child subtriesassociatedwith theprefixes 1M1;<M< and 171;<�1 ,
respectively.

In summary, thesearchstructurein theEathertonalgorithm
is a treewhich in everynodestores:two bit vectors,a pointer
to the block of child nodes,anda pointerto an arrayof next
hopdata.In orderfor theschemeto work efficiently all child
nodesof a givenparentmustbestoredcontiguouslyin mem-
ory, to maximizelocality, andminimizememoryaccesstime.
Similarly, all the next hop informationassociatedwith valid
prefixnodesin theassociatedsubtrieis storedasa contiguous
block in memory.

A searchoperationexecutesas follows. Assumethat we
needto identify the longestmatchingprefix associatedwith
a destinationaddress< 1M1;<�171;<�1;<�1;< . Thealgorithmconsiders
stridesof 4 bits of addressat a time. It startsby readingthe
child bit vectorassociatedwith therootnodeandit determines
if thereis a child subtriewith the root at the position < 171K< .
Thiscorrespondsto theseventhbit in theCBV beingset.This
bit is set which meansthat the searchcontinuesto the next
nodeby using the next four bits of the address. In parallel
it determinesif thereis any matchingprefix in this node. If
thereis a match, the algorithm remembersit and continues
thesearchrecursively by going to thenext child node.When
thesearchfails, thelastmatchingprefix representsthelongest
matchingprefix for thesearch.

B Optimally Allocating Subtreeson a Pipeline
Ring is an NP-CompleteProblem

We hereshow the intractability of the problemof optimal
placementof subtreeson a pipeline ring. In fact, we show
that the simplerproblemof decidingwhether @ given trees
of height i canbe allocatedon a ring of i cells suchthat
eachcell containsanequalnumberof nodesis NP-complete.
Here the completetree information, i.e., the parentsof each
node, is not needed;only the numberof nodesper level is
neccessaryto scheduleaplacement.Therefore,atreeof height
i is encodedas i numbers�����;L�� � L�������L��¡ ¢� in therange1Z��� &   .
Hence,oneonly needs£��]i � � spaceto storea tree,despite
thefact that theweightof thetree,that is, thetotal numberof
nodes���UE'� � E'¤�¤�¤ME'�¡  , canbeexponentialin i .

Problem: OPTIMAL-RING-PLACEMENT

Input: A height i¦¥o§?¨ , anumber@©¥�§?¨ , and @
binarytreesof height i .

Output: Canthesetreesbe scheduledon a ring of i
cellssuchthateachcell containsexactly �«ªMi
nodes,where� is thetotalweight(numberof
nodes)of all the @ trees?

OPTIMAL-RING-PLACEMENT is thereforea decisionprob-
lem (outputs“yes” or “no”) takinganinput of size £���@9i � � .
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Our goal is to show that OPTIMAL-RING-PLACEMENT is an
NP-completeproblem,thus motivating our focus on search-
ing goodpracticalsubtreeallocationheuristics,ratherthanon
findingprovablyoptimalsolutions.Wethereforeneedto show
that the problemis in the classof NP problemsandthat it is
NP-hard. While the first task is almostimmediate,the NP-
hardnessis not trivial. We will usea reductionto a modified
versionof aknown NP-completeproblem.Thefollowing par-
tition problemis a well-known NP-completeproblem,evenin
thestrongsense,asshown in Garey andJohnson[12]:

Problem: 3-PARTITION

Input: A finite set
z

of 0X\ elements, a bound�¬¥4§{¨ , and a “size” YZ��u­�k¥4§{¨ for each
u9¥ z

, such that each YZ�]u�� satisfiesthe re-
lation �¢ª�2¯®°YX��u��±®²�¢ª�& and such that
³Z´Xµ YZ�]u��+$«\¶� .

Output: Can
z

be partitioned into \ disjoint sets
���;L�� � L�������L��!· such that ³Z´X¸�¹ YZ�]u��'$©�
for each1Pº¶/»º«\ ?2

Unfortunately, the3-PARTITION problemletstherelationship
between\ and � unspecified,so onemay wrongly assume
thatthehardnessof thisproblemcomesfrom certainbadclose
relationshipsbetween\ and � . To avoid this kind of wrong
assumptionandto settlethegroundfor our maintheorem,we
considera moregeneralversionof this problem. Given any
arbitrarybut fixed“ratio” r , we definethefollowing problem.

Problem: 3-PARTITION[ r ]3

Input: A finite set
z

of 0Z\ elements,a bound �¼¥
§?¨ with \¶ªM�¾½¿r anda “size” YZ�]u��~¥À§H¨
for each u'¥ z

, suchthat each YZ�]u�� satisfies
therelation ��ª�2Á®9YX��u��U®9�¢ª�& andsuchthat³Z´Xµ YZ�]u��+$«\¶� .

Output: Can
z

be partitioned into \ disjoint sets���;L�� � L�������L��!· such that ³Z´X¸�¹ YZ�]u��'$©�
for each1Pº¶/»º«\ ?

Lemma 1 For anygivenr , 3-PARTITION[ r ] is NP-complete.

Proof: Since3-PARTITION[ r ] differesfrom 3-PARTITION

by just a moreconstrainedinput, 3-PARTITION[ r ] is alsoin
NP. We show that3-PARTITION[ r ] is NP-hardby reducingit
to 3-PARTITION. Let us consideran input of 3-PARTITION:
a set

z
of 0Z\ elements,a bound �Â¥Ã§?¨ , anda sizefunc-

tion YÅÄ z¬Æ §H¨ . We needto constructan input for 3-
PARTITION[ r ] , consistingof a set

z?Ç
of 0Z\ Ç

elements,bound� Ç ¥È§H¨ suchthat \ Ç ª7� Ç ½Ãr , andsizefunction Y Ç Ä zHÇmÆ
§?¨ with � Ç ª�2~®ÅYZ�]u Ç �+®J� Ç ª�& for all u Ç ¥ z?Ç

, andthenshow
that3-PARTITION hasapositiveanswerontheinput \ ,

z
, � ,Y if andonly if 3-PARTITION[ r ] hasa positive answeron the

input \ Ç
,
z?Ç

, � Ç , Y Ç . If \¶ªM�É½«r thenonecanclearlytake \ Ç
,z?Ç

, � Ç , Y Ç to bejust \ ,
z

, � , Y , respectively. Supposenow the
difficult case,namelythat \«ª7�9®'r .

2Notice that theseconstraintson the item sizesimply that every such � �
mustcontainexactlythreeelementsfrom Ê .

33-PARTION[ Ë ] definesaclassof problems,onefor eachË .

Let � Ç beprecisely� . Onecanbuild theset
zHÇ

by adding
enough“fresh” elementsto

z
, so that their total number, \ Ç

,
hasthe property\ Ç ª7�Ì½Ér : let us first take \ Ç

to be Í�r��gÎ ,
i.e.,thesmallestnaturalnumberlargerthanorequalto r�� , and
thenletsustake

z Ç
to betheset

z Ï � � L]� � L�������L�� �XÐ ·»Ñ�Ò!·HÓKÔ ,
for somearbitraryelements� � L]� � L������.L]� �XÐ · Ñ Ò!·HÓ which do
not occurin

z
. We now needto constructanappropriatesize

function Y Ç Ä zHÇ?Æ §{¨ . Thecrucial ideahereis to build it in
sucha way thatall theelementsof

z
have sizesvery closeto

��ª�0 while theelements��- havesizesfarenoughfrom �¢ª�0 , so
thattheonly way to geta positive answerto 3-PARTITION[ r ]
is to actuallygetasolutionto 3-PARTITION andgrouptheele-
ments��- amongthemselves.For example,let Y Ç ��u­� bedefined
as �¢ª�0�E~�]YZ��u­�K�¢�¢ª�0��]ª�1K<7<M< for eachul¥ z

, and Y Ç �
� �;Õ ¨ �x�+$Y Ç �
� �;Õ ¨ � �P$Ö�¢ª�0~����ª�1;<7< and Y Ç �
� �;Õ ¨ � �×$4��ª�0~E±��ª�:M< .
It is now easyto seethat 3-PARTITION[ r ] admits a solu-
tion on the input

zHÇ L���L�Y Ç if and only if 3-PARTITION ad-
mits a solution on the input

z L��¢L�Y . That happensbecause� � L]� � L������.L]� �XÐ · Ñ Ò!·HÓ canonly begroupedwith themselvesin
any solutionof 3-PARTITION[ r ] . Ø

We cannow proveourmaintheorem.

Theorem2 OPTIMAL-RING-PLACEMENT is NP-complete.

Proof: Let usfirst notethat OPTIMAL-RING-PLACEMENT

is in NP. Indeed,if one is given an input and a placement,
thatis a map

Ï 1XL�������L�@ Ô Æ¾Ï 1ZL�������L�i Ô , assigningeachtree
to a pipeline(ring)stagefrom whereit startsbeingallocated,
then the only thing one hasto do is to checkwhethereach
pipelinestagehasexactly �«ª7i nodes.Thiscanbeobviously
accomplishedin polynomialtime.

We next show that OPTIMAL-RING-PLACEMENT is NP-
hard by reducingit to 3-PARTITION[ r ] for someappropiate
r . Let us consideran input of 3-PARTITION[ r ] : someset

z
of 0X\ elements,somebound �Ù¥Ú§?¨ with \«ª7�Ù½±r , anda
sizefunction Y�Ä zÛÆ §H¨ suchthat ��ª�2k®¿YX��u��»®¿��ª�& for
each uÜ¥ z

andsuchthat ³Z´Xµ YZ�]u���$É\«� . We canthen
build an input of the OPTIMAL-RING-PLACEMENT problem
as follows. Let i be \ , let @ be 0X\ , and let us consider
onetree, p ³ , for eachelementuÚ¥ z

, having 1 nodeon the
first level, 2 on the secondlevel, 4 on the third, ����� , & ·PÒ �
on level \¾�É1 , and YX��u�� on the last level. In otherwords,
eachtree p ³ hasheight iÝ$±\ , is completeon thefirst iÙ�
1 levels andhas YX��u�� nodeson the last level. Our treesare
binary, thereforethis canhappenonly if \ is largeenoughso
that YZ��u­�lº¿& ·×Ò�� . Since YZ�]u���®Ì��ª�& , we cantake r large
enoughsothat �Éº'& · . Notethat,with theabstractview of a
treeasa list of numberssymbolizingthenodeson eachlevel,
p ³ $Ã�h& � L�& � L�& � L�������L�& ·PÒ � L�YZ�]u��
� for eachul¥ z

. Let usnow
calculatethetotalweightof all thetrees:

� $ ³Z´Xµ �h& � Ek& � Ek& � EG�����MEo& ·PÒ � E'YZ�]u����$ 0Z\G��& ·PÒ.� �È17��EÞ\¶�¢�
Thuswe createdin polynomialtime an instanceof the prob-
lemOPTIMAL-RING-PLACEMENT – thetimeneededto create
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all thetreesp ³ is indeedpolynomial,because& Õ canberepre-
sentedon \J��& bits for all <�ºJß~º«\J�D& . Theonly thingleft
is to show that the original input

z L���L�Y of 3-PARTITION[ r ]
admitsasolutionif andonly if thecreatedinputof OPTIMAL-
RING-PLACEMENT admitsa solution. The “only if ” part is
easy. Indeed,if thereis somepartitionof

z
into \ disjointsets

� � L�� � L�������L�� · , eachof 3 elements,suchthat ³Z´X¸ ¹�$Ù� ,
thenonecanallocatethecorrespondingtrees

Ï p ³ Ô ³7´X¸ ¹ of each
partitionstartingwith thesamecell. Theneachcell will con-
tain 0 groupsof 1XL
&�L�������L
& ·PÒ � elements(respectively) plus³Z´X¸�¹ YX��u�� for some 1�½J/D½à\ , that is, 0��h& ·PÒ�� �à1M��E��
elements.Thering is balancedwith this allocation.

Let us next considerthe ”if ” part, that is, let us assume
thattheinputof OPTIMAL-RING-PLACEMENT createdabove
admitsonesolutionandlet usprove that theoriginal input of
3-PATRITION[ r ] ,

z L���L�Y , also admitsa solution. Note first
that eachstagein the balancedpipeline will containexactly
0 ��& ·PÒ.� �J1M��EÈ� nodes.It is enoughthento show thatany
allocationof the 0X\ treeson thering requirespreciselythree
treesto beallocatedstartingwith eachstagein thering. If that
is the case,thenwe cangrouptogetherthe itemsin

z
corre-

spondingto eachof thesetreesandobtainapartitionsatisfying
theinput of the3-PARTITION[ r ] problem.

Let us assume that the solution to the input of
OPTIMAL-RING-PLACEMENT allocates the trees ,�- $Ï p ³Má¹ L]p ³;â ¹ L�������L]p ³7ã ¹¹ Ô startingwith thestage/ , for <Ü½à/D½à\ .

Thenclearly
·-¡äH� ß - $'0X\ ; all whatwe needto show is that

ß � $�ß � $������!$àß · $G0 . Sinceeachstagecontainsprecisely
0 ��& ·PÒ.� �å17�XEÁ� nodes,wecanwrite thefollowing equations:

Stage1: ß��¶EÌ&�ß � E¦& � ß � EÂ������E¦& ·PÒ � ßX·PÒ.�¶EÕwæç äH� YZ�]u ç· �?$«0 ��& ·PÒ.� �È17��E'�
Stage2:

Õ áç äH� YZ�]u ç � �!E�ß � EÁ&!ß � E������XEè& ·PÒ � ßx·PÒ.��E
& ·PÒ � ßx·Û$«0 ��& ·PÒ.� �È17��E'�

Stage3: ...

...

Multiplying theequationStage2 by 2 andthensubtracting
theequationStage1 from it, we get:

�h&
Õ á
ç äH� YZ�]u

ç � �;�lß � �KE)& ·PÒ.� ß · �
Õwæ
ç ä{� YX��u

ç· �U$G0 ��& ·PÒ.� �é17��E��¢�

Sincer is chosensuchthat � is muchsmallerthen & · , it fol-
lows that the dominanttermsin the two sidesof the above
equalityare& ·PÒ.� ß · and0P¤ê& ·PÒ.� , respectively. Thisdirectly
implies that ß · $ë0 . Iterating the previous stepsover the
differentstages,weget ß � $àß � $±�����!$àß · $G0 . Ø
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