A TreeBasedRouter Search Engine Ar chitecture
With SinglePort Memories

Florin Baboescly DeanM. Tullseri, GrigoreRosu, SumeeSingh

TDepartmenbf ComputerScienceandEngineering

Universityof California,SanDiego
{baboescutullsen,susingh @cs.ucsd.edu

Abstract

Pipelined forwarding enginesare usedin core routers
to meetspeeddemands. Tree-basedseachesare pipelined
acrossa numberof stages to achieve high throughput, but
this resultsin unevenly distributed memory To addressthis
imbalance corventionalapproadesuse either complex dy-
namic memoryallocation schemesor over-provision eac of
the pipeline stages. This paper describeshe microarchitec-
ture of a novel networksearh processomwhich providesboth
high executionthroughputand balancedmemorydistribution
by dividing the treeinto subteesandallocating eact subtee
sepaately, allowing seachesto begin at anypipelinestege.

Thearchitecture is validatedby implementingand simulat-
ing stateof theart solutionsfor IPv4 lookup,VPN forwarding
and padket classification. Thenew pipelineschemeand mem-
ory allocator can provide seacheswith a memoryallocation
efficiencythatis within 1% of non-pipelinedscemes.

1 Intr oduction

The rapid growth of the Internethasbroughtgreatchal-
lengesn deploying high-speedhetworks. Oneparticularchal-
lenge is the needto provide high paclet forwarding rates
throughtherouter This papermpresent@novel architecturdor
anetwork processowhich featuresa compleity-effective or-
ganizatiorof pipelinedcomputationatores.This architecture
allows the problemto be partitionedin a way that balances
both computationand memory allowing the entire architec-
tureto computeat high rates.

Network searchenginescapableof providing IP lookup,
VPN forwarding,or packet classificatiorarea major compo-
nentof everyrouter With theincreasen link speedsincrease
in adwertised P prefixes,anddeploymentof new network ser
vices,thedemandglacedonthesenetwork searctenginesare
increasinglycausingthem to becomea potential bottleneck
for the router This paperconsidersthe architectureof pro-
grammablenetwork searchengines. Other more expensve,
customsolutionsarediscussedn Sectionb.

Memory accesgimes and costsbecomedominantfactors
in ahigh-speedetwork processarWhile network processors
haverecevedconsiderablattentionin thecommercia[1] and

‘Departmenbf ComputerScience
Universityof lllinois, Urbana-Champaign
grosu@cs.uiuc.edu

(thusno memorybalanceor fragmentatiorissues)put do not
scaleto the bandwidthgequiredfor future processors.

Most algorithmic-basedolutionsfor network searchesan
be regardedas someform of treetraversal,wherethe search
startsat the root node, traversesvarious levels of the tree,
andtypically endsat a leaf node. This computationis eas-
ily pipelinedonto multiple computationaklementsallowing
differentlevelsof thetreeto be partitionedonto privatemem-
oriesassociateavith the processinglements- no datashar
ing is required,exceptfor the statethat follows the threadof
computatiorthroughthepipeline.Unfortunatelythisarrange-
mentresultsin highly unbalancednemoriesfo accommodate
database@rees)thataretypically unbalancedh unpredictable
ways. For example,binarytriesontypical IP prefix tablesare
highly unbalancedAs aresult,despitea wide variety of aca-
demicandcommerciakolutionsonly afew solutionsdo well
in termsof performanceegfficiency, andcost,andnoneof them
provide a generakolutionfor all threetypesof searches.

Figure 1. An example of a basic tree based search structure.
The tree is split into four subtrees Si,...S4. Each subtree has
up to 4 levels. We call Sf the level j into the subtree S;.

Basuet al. [8] identify memorybalanceasa critical issue
in the designof IP lookup engines. Their techniqueto re-
ducememoryimbalances to designthetreestructureto min-
imize the stagethat hasthe largestmemory Evenwith their
new algorithm,the memoryallocatedo onestagevariesfrom
nearly0to 150Kbytedor variouslP tables(of sizes100,000to
130,000prefixes). Theworstcaseboundfor amillion prefixes
is 11 Mbytes per stage(88 Mbytes acrossall eight stages).

in theresearcl23, 6] communitiesmostof the commercial This more than doublesthe total amountof memorythat is

implementatiorhave useda collectionof multithreadedCPU
cores.Thisallowsasinglememoryto hold the entiredatabase

usedin anon-pipelinedmplementation.
To addresshisimbalancegcornventionalapproachesseei-

ther complex dynamic memoryallocationschemegdramat-
ically increasingthe hardware complexity) or over-provision
eachof the pipeline stageqresultingin memorywaste). The
useof large, poorly utilized memorymodulesresultsin high
systemcostandhighmemorylatencieswhich canhave adra-
matic effect on the speedof eachstageof the pipelinedcom-
putation,andthusonthe throughputof the entirearchitecture.

By contrast,this paperdescribesa novel memoryalloca-
tion algorithmthatallows searcheso logically startfrom any
stagein the pipeline. This eliminatesthe memoryimbalance,
becauseary subtreeof the searchstructurecanbe allocated
acrossthe pipeline startingat ary stage. This degreeof free-
dom greatly reducesmemory imbalancecomparedto prior
schemesand enablessmaller cheaperfasterprocessingele-
ments.Thus,while previousschemes$advirtually unbounded
imbalanceywe presenbneschemehatis within 1% of perfect
balancegvenfor highly imbalancedrees.

Therestof this paperis organizedasfollows. Section2 in-
troducesour solutionfor solvingthe memoryallocationprob-
lem for eachpipeline stagewithout generatingaccesscon-
flicts. We introducea linear algorithmfor subtreeallocation
which we shav can allocatethe subtreeswith at most 1%
memorywaste;however, asshovn in AppendixB, the prob-
lem of optimally allocatingsubtreesn a pipelinering is NP-
complete. Section3 providesan overview of network search
applications:IP lookup, VPN forwarding,and paclet classi-
fication. In Section4 we evaluateour solutionon all three
applicationtypesintroducedin Section3, usingbothreallife
andsyntheticallygeneratedoutingtablesandclassifiers Sec-
tion 5 presentselatedwork in the pipelinedesignof network
processoraswell asin network searchapplications Sectioné
concludes.

2 Towards a BalancedMemory Distrib ution in
a Pipelined Search Ar chitecture

Memorydistribution perpipelinestagevarieswidely in the
caseof a corventionaltree basedsearchimplementationof
IP lookupsand VPN searchegasshavn by Basuet. al [8],
andby our resultsin Figure 3). Further the resultsshov no
correlationbetweerthe positionof a particularpipelinestage
andthe amountof memorythat needsto be allocatedto that
stage.

Prior pipelined network search algorithms require all
searchego startfrom the first pipeline stage,going next to
thesecondandsoon. Insteadwe introduceour first contribu-
tion: anadditionaldegreeof freedomfor the searchoperation.
We allow the searchto startat any stagein the pipeline. For
every searchthestartingpositionis picked usinga hashfunc-
tion basedninformationin thepacletheaderFor IP lookups
thehashfunctionis madeup of a setof variablelengthIP pre-
fixes. For decision-treeébasedpaclet classification the hash
function may usesomeof the mostsignificantbits in two or
threedifferentfields of the pacletheader

Figure 1 shows a tree basedsearchstructure. To keepthe
explanationsimple, let us assumethat the tree hasfour sub-
treescalleds;Sy. Furthermorethedepthof eachsubtree

is four levels. We assumehat this searchstructureis imple-

mentedon afour stagepipeline. The stagef the pipelineare
called P; ... Py. Thefirst level of the subtreeS;, called S,

is storedandprocessedby the pipelinestageP,. The second
level, S?, is storedandprocessety the pipelinestageP,, and
soon. Thesecondsubtreds processedtartingwith stagepP;,

Si on P, S2 on P, S3 on P, andS3 on P, respectiely.

Similarly, the third subtreeS; startson pipelinestagepPs,
while the fourth subtreeS, startson pipelinestageP;. This
allocation schemetries to balancethe load on eachof the
pipeline stages. By doing so, the pipeline allocatesnearly
equalamountof memoryto eachstageby virtually allocating
a“subtree”in eachof the stages.E.g., thefirst pipelinestage
storesthefirst level in the first subtree(S7), the secondevel
in the fourth subtree(S?), the third level in the third subtree
(S3), andthefourth level in the secondsubtreg(S3).

In practice,we relax thesetwo simplificationsin this il-
lustration. We allow more subtreeghanpipelinestageqpro-
cessingelements)thusimplying multiple subtreesnay have
the samestartnode. We also allow the maximumdepth of
eachsubtredgo belessthanor equalto the numberof pipeline
stages.

However, introducingthis new degreeof freedomthat al-
lows searchaskso startexecutionfrom ary pipelinestagem-
pactsthethroughpubf thesystem Thisis becausef potential
conflictsbetweenthe new tasksandthe onesthatarein exe-
cution. In theory, the numberof conflictscanbe unbounded.
However, next we will presentan alternatve to the corven-
tional pipelinedorganizatiorthateliminatesall conflicts.

2.1 Our Solutionto GuaranteePipeline Thr oughput

IN

4 ouT

data path active during odd slots
data path active during even slots

Figure 2. A random ring pipeline architecture with two data
paths: first path is active during the odd clock cycles, used dur-
ing the first traversal of the pipeline; second path is active during
the even cycles to allow a second traversal of the pipeline.

We needto dealwith two problemghatcreateconflicts: (1)
sincelevelsareassignedo our pipelinedprocessinglements
in acircularfashionmostthreadsmustwraparoundto thebe-
ginningof thepipelineto completeexecution;(2) computation
for anew taskcanstartat any processar

We wantto guaranteghatfor arny streamof tasks,in each
interval of time u the tasksthat are already presentin the
pipelineprogresgo thenext stagewhile ensuringhatthe next
incomingtaskcanalsobeaccommodated.

Our solution, which representshe secondcontribution of
this paper is shovn in Figure 2. It modifies the regular
pipelinestructureandbehaior asfollows.

Eachpipelinestageworksatafrequeny f = 2 x F', where
F is the maximumthroughputof theinput. All taskstraverse
thepipelinetwice andareinsertedcatthefirst pipelinestageir-
respectie of their startingstage(for execution)in thepipeline.

Eachpipeline stageaccommodatetvo datapaths(virtual
datapaths— they can sharethe samephysicalwires). The
first datapath (representedby the top lines) is active during
the odd clock cyclesandit is usedfor a first traversalof the
pipeline. During this traversala task T; traverseshe pipeline
until its startingstage: and continuesthe executionuntil the
laststageof thepipeline. Theexecutionof ataskalwaysstarts
on the first traversalthroughits startprocessar The second
datapathis traversedduring even cyclesand allows the task
to continueits executionon the pipeline stageshat are left.
Onceataskfinishesexecutingiits resultsarepropagatedo the
outputthroughthefinal stage.

Thenumberof stagesn the pipelinemustbe at leastequall
to the maximum numberof stagesthat are requiredfor the
executionof ary task.

For example,considerthe four stagepipelinein Figure2.
A taskthatmuststartexecutingin pipelinestage3 is inserted
in pipelinestagel. It traversesthe pipelineonly in the odd
cyclesuntil it reachesstage3 whereit startsexecuting. Its
resultsare forwardedto pipeline stage4 alsoduring an odd
cycle. However, the resultsof the executionon stage4 are
moved forward to pipeline stagel for executionduring the
next even cycle. The taskfinishesits executionon pipeline
stage2. Thefinal resultsaremovedto the outputvia pipeline
stages3 and4 duringevencycles.

Oursolutionguaranteethefollowing features:) anoutput
rateequalto theinputrate,?) all thetasksexit in order and3)
all thetaskshave a constantateng throughthepipelineequal
to NV x % whereN is thetotal numberof pipelinestages.

In summarywe provide anew pipelinearchitecturghatal-
lowstheinjectionandremoval of taskseachfrom asinglepro-
cessorwhile communicatiorbetweerprocessorgccursonly
betweemeighborsn alinear orderingof the processorsthis
eliminates(1) the needfor a schedulefor bothinput andout-
putof thetaskand(2) thecommunicatiorcompleity. We also
addresghe memory imbalancebetweenthe pipeline stages
by allowing the executionof the tasksto startat arny position
in the pipeline. Section4 evaluateshow our new allocation
schemeaeducegshe memoryimbalancen theimplementation
of differentnetwork searchapplications.

This architecturaequiresthatthe time perprocessingtep
be half that of a morecorventionalpipelinedconfigurationto
maintainthe samethroughput.We shaw in Section4 thatthe
reductionin memorysizeeasilyallows thosegains.

2.2 Selectingthe Subtrees

To apply this new allocationschemewe needto first par
tition the tree into subtrees. Ideally, the subtreesto be al-
locatedshouldhave relatively equalsize (approximatelythe
samenumberof nodes).

We provide an iterative algorithm that takes as input the
original trie 1 andat eachstepidentifiesonesubtriethat con-

1A trie is abinary prefix tree.

tainsanumberof nodeswhichis theclosesto adesiredvalue
(threshold).The subtrieis entirely eliminatedfrom the origi-
naltrie andsavedinto alist togethemvith the prefix associated
with its root node. The algorithmcontinuesuntil the number
of nodedeft in thetrie is lessthanthethreshold.

Theresultof the algorithmis alist of tuples. Eachtupleis
madeup of theroot nodeof a subtrietogethemwith thelongest
matchingprefix of this node.

2.3 The Allocation of the Subtrees

Thealgorithmabove splitstheoriginal treeinto subtreeof
relatively equalsize. The next stepis to allocatethesesubtrees
to the circular pipeline suchthatthe amountof memoryused
by eachof the pipeline stagess relatively equal. As showvn
in AppendixB, the problemof finding an optimal allocation
of eachof the subtreeson the pipeline stagesis intractable.
Therefore,the bestone can do is to develop heuristicsfor
“good enough”subtreeallocationon pipelinestages.

We proposea simple linear time solution for the alloca-
tion problem. In Section4 we experimentallyshowv that our
solutionleadsto a very small memorywaste,within 1% of
thetotal memorysize.Our heuristicconsideronesubtreeata
time, randomlypickedfrom thesetof subtreesdentifiedusing
the algorithmdescribedn the previous section,andallocates
it suchthatthelevel in the new subtreethatrequiresthe mini-
mumamountof memorycorrespondso thepipelinestagethat
alreadyusesthe largestamountof memory

3 Network Search Applications

We evaluateour new pipeline architectureand task allo-
cation algorithmusing stateof the art solutionsfor different
typesof network searcheshataretypically donein a router:
IP lookups, VPN forwarding and paclet classification. The
featuref thesesearchesresummarizedn Tablel.

In AppendixA we give detailsof eachof the IP lookupal-
gorithmsthat we implementand evaluatein Section4. The
VPN forwardingalgorithmsusethe samedatastructuresasin
the caseof IP lookup. In essence routerthat providesVPN
forwarding must executetwo IP lookup operationsfor each
search,asis givenin RFC2547[20]. It first executesan IP
lookup basedon the sourcelP field. The resultof this deter
minesthe routing tablethatis usedfor the secondP lookup
basednthedestinatiorP field.

In paclet classificationeachpacket is matchedagainsta
prioritized setof rulesmadeup usingtwo or morefields(e.g.
IP sourceand destinationfields, port fields, etc.). A paclet
canbe matchedby several rules. The searchdetermineghe
highestpriority rule thatmatchesachpaclet.

Decision-treebasedpaclet classificationalgorithms [28,
15, 26] appeatto be the mostpromisingcategory of algorith-
mic solutionsto the paclet classificatiorproblem. We imple-
mentHyperCutq26], arecentdecisiontreebasedacletclas-
sification algorithmintroducedby Singh, et al. The scheme
is basedon a pre-computediecisiontree which is traversed
for eachpaclet that needsto be classified. The computation
at eachstagein thetreeusesseveralbits in the paclet header
asanindex into anarrayof child pointersto identify the next
child nodeto betraversed.

[Application | Numberof Entries | Numberof fields | Typeof Matches |
IP Lookup > 150K 1 LPM
VPN Forwarding > 500K 2 EM +LPM
Packet Classification ~ 10,000 > 2 EM + LPM + RM

Table 1. Network Search Applications. L P M stands for “longest prefix match”, EM for “exact match”,a nd RM for “range match”.

4 Evaluation

In this sectionwe evaluateour Ring Pipelinearchitecture
usingthenetwork searchalgorithmsdescribedn the previous
section.Ourarchitecturaisesprivatesingleportmemoriesor
eachof the pipelinestages.This contributesto anincreasan
theamountof memoryneedediueto increasedragmentation.
We seekto balancanemoryfor two reasonsto minimize cost
(memorywaste)andto maximizeperformancégminimize the
accesdime of thelargestmemory).Thus,this sectionfocuses
onthefollowing two critical questions:1) Whatis the overall
wastein the memoryspacedueto our nev model? 2) What
is the maximumthroughputandexpectedateng our scheme
canprovide?We startwith thelatterquestion.

4.1 Search Latency and Thr oughput

Each pipeline stagerequiresa computationphaseand a
memoryaccesgphase. Although the memoryis uniport, our
designallows two wordslocatedat a smalldistanceonefrom
anotherto bereadin onememoryaccessasin [4]. Themem-
ory accessimeis similarto theaccessime of aregularuniport
memory We first investigatethe relationshipbetweenper
stagememory allocationand the memory accesgime. Ta-
ble 2 shows that the memory accesstime increasessignifi-
cantlywith thesizeof memory Whenour balancedllocation
algorithmis applied,we find thatall searchesinalyzedn this
researchgexcept one, can be implementedwith memoryla-
teng/ lessthan2ns. Theoneexceptioncorrespond$o a VPN
forwardingapplicationthat containsa large numberof small
destinationlP routing tables. Evenin this casethe memory
accesdimeis lessthan3ns.

MemorySize(Kbits)| Aream?) | Accesslime(ns)
128 0.005 0.565

256 0.009 0.651

512 0.020 0.828

1024 0.037 0.919

2048 0.069 1.242

4096 0.134 1.520

8192 0.275 2.487

Table 2. The memory access time and area estimates for dif-
ferent sizes of on-chip SRAM using 0.09um technology. The
estimates are obtained using the memory generator application
CACTI [24].

In orderto determineboththe searchHateng aswell asthe
throughputof the searchesisingour architecturewe synthe-
sizedin Verilogthecomputationalogic for eachpipelinestage
for both Eathertons IP lookup algorithm andthe HyperCuts

algorithmusing0.13um technology The longestpathdelay
in thecomputatiorof thenext nodeaddressn bothalgorithms
is smallerthan1 ns . Thiscombineswith a2 ns memoryac-
cesgimeto aallow a3 ns executiondelayperpipelinestage.
Thesizeof all thecomputatioriogic for all 8 stagess smaller
than0.125mm?.

Given the architectureof Section2, a pipeline running at
330M H z (3 nsperstageachievesasearctthroughpubf 6 ns
perpaclet. This valueis adequatdéor OC-768(40Gbps)inks
that requirea throughputof 8 ns per paclet for a minimum
size(40 bytes)paclet.

All thesearcheshroughthe pipelinehave alateng thatis
constanandis doublethelateng of aoneway pipelinetraver-
sal. Theoveralllateng of asearcloperatiorusingthe Eather
tonalgorithm[11] for thelPv4 lookupis 8 x 2 x 3 ns = 48 ns
assumingneight-stageipelinewith 3ns perstage We mea-
suredthe meanpaclet lateng for differentloadsona CISCO
GSRrouter In our evaluationthe smallestmeanpaclet la-
teng/ wasapproximatelyp0us. ThusoursearcHateng is less
than0.1% of the total meanpacketlateng. Consequentlyve
concludethat the searchlateng of our solutionhasvirtually
noimpactontheoverall pacletlateng.

4.2 Memory Distrib ution per Pipeline Stage

We next evaluatethe efficiency of our pipeline schemeto
equallydistribute memoryacrosspipeline stages.We do this
by simulatingthe behaior of our architecturefor all three
typesof applications: IP lookups, VPN basedlookups,and
pacletclassification We evaluatethesemodelsusingbothreal
life routingtablesandclassifiersaswell assyntheticallygen-
eratedonesthat allow usto simulatelarge configurations.In
thefiguresthatfollow all the memoryvaluesareexpressedn
Kbits.

4.2.1 Evaluation of IP Lookup

We first evaluate our pipeline architectureby a software
simulation of the memory requirementsfor Eathertons 1P
lookup algorithm[11]. The real life routing tableswere ex-
tracted using instancesof the BGP routing tablesavailable
at RIPE [21] and RIR [16] on Sept. 22, 2003 and parsed
using the (route_btoa) software availableat [17]. We ex-
tracted the routing tables associatedwith ATT (AS7018),
Sprint (AS1239), Level 3 Communications(AS3356) and
FranceTelecom(AS5511).Becauseheresultsarevery simi-
lar, we only displaytheresultsfor ATT. To testthe scalability
of the algorithm we syntheticallygeneratetablesusing two
differentmodelsof routing table gronth: one developedby
the Network Processindg-orum (NPF)[2], andonedeveloped
by Narayangtal. [18].

The graphon the left in Figure 3 shaws the resultsof us-
ing the Eathertonalgorithmwith a regular pipelinein which
the searchstartswith the first pipeline stage,continueswith
the secondandsoon. Theseresultsmotivateour schemeby
shaving that one cannotidentify a clear patternof memory
sizeallocationper pipelinestages.

Table 3 andFigure 3 show thatour pipelineschemehasa
doublebenefit.It eliminatesheneedfor dynamicmemoryal-
locationperpipelinestageandit providesa betterthroughput.
For example,an IP prefix table with about500, 000 entries
requiresalmost11Mbits of memoryfor one stage(the sixth
pipelinestage).As aresultthe memoryaccesgime increases
to about3.5ns. In comparisonpur new pipelineschemehas
amaximumof 2.9M bits of memoryallocatedperstage As a
resultthememoryaccesdimeis reducedo 1.4ns.

In all thesesimulationswe usearelatively naive split of the
original searchtrie into 32 subtrieusingthefirst 5 bitsin the
IP addresdield). Thesesubtriesareallocatedto the pipeline
stagesstartingfrom various positions. In this casethe total
memoryacrossthe pipeline stagess within 30% of the ideal
memoryallocationspace(Table 3). Note thatin the caseof
a corventionalpipeline with statically allocatedmemorythe
total amountof memoryto be usedincrease®06% over the
non-pipelinedmplementation.

IP Table Total | BPW | CPW
ATT 7, 727K 30% | 206%
A100K 4,550K | 6.25% | 206%
A200K 10,674 K 15% | 206%
A300K 13,585K | 8.8% | 206%
A400K 18,440K | 4.9% | 206%
A500K 23,226 K 9% | 206%
NPF 23,583K | 10.4% | 202%

Table 3. Eatherton Algorithm on a random access pipeline
model - Total memory utilization and the percentage of wasted
memory if each of the pipeline stages has allocated the maxi-
mum amount of memory that is required by the pipeline stages.
The third column shows our balanced pipeline waste (BPW)
while the fourth column shows the memory waste in a conven-
tional pipeline (CPW).

Reducingthe wastedue to over-provisioning: Although
our results above shov that the total memory acrossthe
pipelinestagess within 30% of theideal memoryallocation
space,we would like to provide even tighter boundson the
amountof memorythatis wasteddueto over-provisioning.

Our allocationalgorithmassumeshe trie is madeup of a
numberof relatively equalsubtries Findingtheperfectcombi-
nationfor allocatingeachof the subtriesonthepipelinestages
hasanexponentialcompleity aswe shav in AppendixB. In-
steadwe proposea muchsimplerlinear solutionin which at
eachstepone subtrieis consideredor allocation. The sub-
trie is allocatedsuchthatthe level in the subtriethatrequires
the minimum amountof memorycorrespondso the pipeline
stagethatcurrentlyusesthe largestamountof memory

To reducethe degreeof waste we find it is sufficient to in-
creaseéhe numberof subtreesallowing finer-grain placement

into memory Thus,therearetwo questiorto beasled: 1) how
to split thetrie into relatively equalsizedsubtriesand2) what
is asufficientnumberof subtriessuchthattheamountof waste
dueto overprovisioningis lessthan,for example,1%.

We split the original trie into subtriesof relatively equal
size using the algorithm describedin Section2.2. We de-
terminethe minimum numberof subtriesthat arerequiredto
achieve an overall wastedueto over-provisioningthatis less
than 1% througha seriesof evaluationsusing both real life
routing tablesaswell assyntheticallygeneratednes. In the
caseof a balancedtrie this numberis small andit is equal
to the depthof thetrie. This numberincreasesvhenthetrie
shapebecomesnoreirregular. The multi-bit trie, with strides
of size4 thatis usedin the Eathertonalgorithmhasa more
regular structurethana regular unibit trie. Therefore for this
experiment,we usethe unibit trie searchstructure which we
expectto have the largestdegreeof irregularity. Our results
shavn in Table 4 canbe directly extendedto the equivalent
multi-bit tries. We usea 24-stagepipelineto accommodate
the larger depthof the unibit trie. The third columnrepre-
sentsthe numberof subtriesthatwe create. The subtriesare
distributed amongthe 24 stagesof the pipeline. The maxi-
mum numberof nodesallocatedfor a pipeline stageis given
in the4th column.The5thand6th columnsrepresentheaver-
ageandmaximumpercentag®ef memorywasteddueto over-
provisioning. This over-provisioningis a resultof allocating
for eachpipeline stagethe amountof memoryneededy the
largeststage.

The resultsshaw that, in the worst case,the original trie
needso besplitinto 4, 000 subtriedo reducetheoverallwaste
to belowv 1%.

Update Operations. This analysis assumesa static
databasebut balancewill be impactedover time by update
operationsWe next considetthe effect of theseupdateopera-
tionsontheoverallmemorybalanceperpipelinestage.In our
evaluationwe usethe sameworst-caseuni-bit trie datastruc-
tures.

We consideraroutingtableassociateevith AS9177(NEX-
TRANET, Switzerland),collectedby RIPE rrc00 [21]. The
originalroutingtableis collectedatthebeginningof Aug. 9th,
2003. Updatesarerecordedthroughthe endof Aug 15th. at
00:00UTC.

The routing tableis representedisinga trie which is split
into 4, 102 subtriesthat wereallocatedto a 24 stagepipeline
usingour algorithm. During the updateproces227 new sub-
tries were created. Eachsubtriewas associatedvith a new
branchin thetrie. Eachnew subtrieis insertednto thepipeline
in sucha way asto try to avoid having ary memoryalloca-
tionin the pipelinestagewith thelargestnumberof entriesal-
readyallocated.Our resultsshowv thatat any momentin time
themaximum“waste”perpipelinestageremainssmallerthan
0.5%.

Memory Distribution Per Pipeline Stage (Regular Model) - IP Forwarding
100000 T T T T T T

10000

1000

100

Memory Size (Kbits)

10

0% L L L L L 1
1 2 3 4 5 6 7 8

Pipeline Stage

Memory Distribution Per Pipeline Stage (Random Model) - IP Forwarding
100000 T T T T T T

10000 | |

1000 %---

100 1

Memory Size (Kbits)

10 B

ATT ——
A100K ---
ATT200K ---
ATT300K
ATT400K ---m-—
ATT500K -

b3

somunk

0.1 L L ! ! ! h
1 2 3 4 5 6 7 8

Pipeline Stage

Figure 3. The memory utilization per pipeline stage using the Eatherton Algorithm [11] on a conventional pipeline architecture (left) and
our balanced architecture (right). The values represent the amount of memory in bits that is used in each pipeline stage. A100K - A500K
are synthetically generated routing tables using the model described by Narayan et al [18] while NPF is a 500K entries synthetic routing

table generated using the model proposed by the NPF Forum.

IP Table No. of Prefixes | No. of Subtries || Max. No. Nodes | AMW | MMW

ATT 122,636 4,090 14,632 0.23% | 0.37 %
| FT [123,875] 4,077 I 14,763 | 019 | 027]|
[L3C [123,271] 4,105 I 14,700 | 025 [039 |
[SPRINT [122,750] 4,097 I 14,662 [020 | 033 |
[A50K [53,323] 4,120 [6,739 [0.09] 018 |
[A100K [100,312 | 4,231 I 12,664 | 018 | 035]
[A200K [211,033] 4,272 [26,635 [046 | 0.62 |
[A300K [290,995] 4,017 [36,985 | 059 [086 |
[A400K [411,469 | 4,277 I 51,634 | 028 [039 |
[A500K [511,634 | 3,950 I 64, 284 | 033 | 054]
| NPF [524,218] 4,146 I 59, 320 | 035 | 0.61]

Table 4. IP lookup using a single-bit trie search structure. The trie is split into a number of subtries, each subtrie with a number of
nodes close to a given threshold. The number of subtries is shown in column 3. The maximum number of nodes allocated for a pipeline
stage is given in column 4. Columns 5 and 6 show the average memory waste (AMW) and maximum memory waste (MMW) due to

over-provisioning.

4.2.2 Evaluation of VPN Forwarding

We simulatea VPN forwardingengineusinga similar search
structureasin regular IP lookup. The only differencein this
caseis that the driver of the searchenginemustcomputea
hashfunction basedon a tag value that is provided by the
VPN application.Thecomputedraluedetermineshepipeline
stagefrom which the searchstarts. The searchstructureand
the searchitself is implementediusingthe samealgorithmde-
signedby Eathertor{11].

No publicly availableVPN forwardingtablesexist. As are-
sult,wedotheevaluationusingasetof synthetidablesthatare
generatedisingsimilartechniqueso theonesusedo generate
the P lookuptables.Our resultsshovn in Table5 correspond
to threedifferentcases:1) all the setsof tablescontainabout
1000 entriesperset(AllISmall), 2) all the setsof tablescontain
about10, 000 entriesperset(AllLar ge)and3) thesetcontains
amix of smallsizetablesandlarge sizetables(Mix ed). Each

setcontainsaboutonemillion prefix entries.

VPN Set Total | BPW | CPW
AllSmall | 55,599,512 | 4.8% | 82%
AllLarge | 41,440,848 | 7.2% | 89%
Mixed 48,674,552 | 3.2% | 129%

Table 5. VPN forwarding using a random access pipeline
model - Total memory utilization and the percentage of wasted
memory for our balanced pipeline (BPW) and conventional
pipeline (CPW).

Ourresultsin Table5 show thatby usingour new pipeline
architectureor VPN applicationsthetotal amountof wasted
memorydoesnotexceed?.2%. It correspond$o asituationin
which the setcontainsonly a smallnumberof relatively large
VPN tables. In contrasta corventionalpipeline architecture
contributesto anincreasen the memoryof upto 129%.

4.2.3 Evaluation of the Packet Classification Algorithm
(HyperCuts)

We next evaluate how a decision tree basedclassification
schemebehaes on our new pipeline schemeusing five-
dimensionalclassifiers. We simulate the HyperCutsalgo-
rithm [26] on synthetically generatecclassifierswith up to
20,000rules. The classifiersthat we use are generatedis-
ing the methodologydescribedy Singh,etal. [26]. We con-
siderclassifierswith 5,000(L5K), 10,000(L10K) and20,000
(L20K) rules.

Unlike in IP lookup, in tree basedpaclet classification
the largestamountof memoryis allocatedtoward the earlier
stagesn thepipeline.Also thememoryallocationperpipeline
stagevarieswidely. For example,in the caseof a 20,000rules
classifierthe amountof memory allocatedper stagevaries
from 480K bits to 1K bit. Our new pipeline schemebrings
down the maximumamountof memorythat needsto be al-
locatedper pipeline stageby a factor greaterthantwo. For
examplein the caseof a 20, 000 rulesclassifier themaximum
amountof memorythatis allocatedper pipeline stagedrops
to 215K bits from 480K bits. In our simulationwe usedthe
subtreeriginatedin the secondevel nodes(theroot nodeis
atlevel 0).

Theresultsin Table6 shav thata corventionalpipelinear
chitectureimplementatiormay requiremorethanthreetimes
the amountof memoryusedby the non-pipelinedversion. In
contrastour pipelined schemeincreaseghe memory usage
by only 30%. This amountof wastedmemorydueto over
provisioningmay befurtherreducedoy usingalargernumber
of subtrees.

DB Total | BPW | CPW
L5K | 1,18K | 30% | 55%
L10K | 2,496K | 32% | 238%
L20K | 2,592K | 32% | 238%

Table 6. HyperCuts algorithm using a random access pipeline
model - Total memory utilization and the percentage of wasted
memory for our balanced pipeline (BPW) and conventional
pipeline (CPW).

5 RelatedWork

Extensve work hasbeendoneon processoring commu-
nication[9, 10, 7, 3, 19]. Hierarchicalring busesas an al-
ternative to the scalability and cost problemsof the crossbar
switchesare addressedn [3, 19). In both caseseachele-
mentin their architectureis capableof controlling the inser
tion of dataon thering througha systemof FIFOs. Coffman,
et al. [10] further analyzethe featuresof the processoring
communicatiorfor largeringsandprove boundaryconditions
for thetaskwaiting times.

Packet forwardingin high speedroutershasbeena well
studiedarea.Therehasbeenextensive researcibothin the P
lookupproblem[11, 22] aswell aspacletclassificatior5, 14,
15, 28, 26, 27]. Most of this work dealswith non-pipelined

architecturesand the focusis to minimize the depthof the
searchstructures.

Basuand Narilkar [8], in the context of a specificlookup
algorithmthat usesfixed stride multi-bit tries, shav that the
memoryin somestagesvariesdramaticallyacrossdatabases,
evenin thefaceof their proposedalgorithmsto minimize the
variation.For example,assumingneightstagepipeline,their
resultsshov casesin which for two different databaseshe
memoryspaceto be allocatedto a pipeline stagevariesfrom
almost0 up to 150K B while in the caseof anotherpipeline
stagethe memoryspacevariesfrom about150K B to up to
300K B.

Thereis little work thataddressethe memorylimitation in
the caseof network searchengines. The problemwasintro-
ducedby Sikka, et.al[25] in the context of trieswhereit was
left asanopenproblem.BasuandNarilkar [8] proposeanap-
proximatesolutionto the problemof trie memoryallocation
acrossstagesput they arelessthan successfult solving it.
They proposeaway to reducethe memoryimbalanceby min-
imizing the stagethat hasthe largestmemory Baer, etal. [6]
proposea cachebasedsolutionto reducethe memorycapac-
ity andthe amountof memorymultibanking. However, their
solutioncannot provide deterministichroughputfor ary pat-
ternof input paclketsandcannot provide tight boundsfor the
worst case. Sherwood, et.al.[23] investigatethe useof wide
word pipelinedmemorythatallowsconcurrenaiccessedNone
of thesearchitecturepipelinethe computatioracrossmultiple
processors.

Hardwarebasedsolutionsbasedn TernaryCAMSs provide
an attractve solutionto ASIC-baseddesignsthat implement
treebasedalgorithmicsolutionsfor searchesTCAMs arecon-
tentaddressablmemoriesn which eachbit is allowedto store
a0, 1 ora“don’'tcare” value. A TCAM essentiallycompare
eachpacletaddressvith everyaddresshesearchengineholds
in its databaseysingparallellookupson associatie memory
However TCAMSs have limitations: (1) large cell size (about
16 transistorperbit), (2) highpowerconsumptio{10—15W
at133M sps), (3) very high costperchip ($200 — $300) and
(4) cannotprovide ageneral efficient, singlechip solutionfor
all of thealgorithmsour solutionaddressefL3].

6 Conclusion

In this papermwe proposea general pipelined,multiproces-
sorarchitecturefor treebasedalgorithmicsolutions. This ar-
chitecturecanbeimplementedisingequalsizedmemoriegor
eachpipeline stage,limiting the needfor over provisioning.
This allows computationgvenon highly unbalancedrees,to
be partitionedinto piecesthat equalizeboth computationand
memoryallocation. This resultsin minimized memory cost
andmaximizedpacletthroughput.

This solutionachiezesverylow communicatiorcomplexity
becauseachpipelinestagecommunicatesnly with itsimme-
diateneighborsandall tasksenterandexit thepipelinethrough
a single stage. It doesnot requireary centralizedschedul-
ing mechanism.Our architecturealso providestight latencg
boundsfor searches.

We evaluate our pipeline task allocation algorithm and
our new multiprocessompipeline architectureby implement-
ing state-of-the-artree-basedetwork searchalgorithmsfor
IP lookup, VPN forwarding, and paclet classification. We
demonstrate memoryallocationheuristicwhich can,in lin-
eartime, allocatesubtreesvith only 1% waste.

Ourimplementatiorcanbeusedon high speedouterswith
OC-768links that run at 40Gbpsand require a throughput
of 8ns per paclet. We shov thatwe canprovide IP lookup,
VPN forwarding,andpaclet classificatiorat arateof 6ns per
pacletwhile theoveralllateng is constantat48ns.

Acknowledgments

The authorswould like to thankthe reviewersfor helpful
feedbackAlexanderTudorfor significanthelpwith the simu-
lationtools,andGeogeVarghesdor helpfuldiscussionsThis
researctwasfundedin partby NSFgrantCCR-0311683and
by joint NSF/NASA grantCCR-0234524.

References

[1] Network processoforum. http://www.npforum.og.
[2] Network processor forum benchmark working group.

http://www.npforum.og/benchmarking/indeshtml.
[3] C.Amerijckx andJ.Legat. A low-power multiprocessoarchi-
tecturefor embeddedeconfigurablesystems.
[4] F. BaboescuS. Rajgopal,N. RichardsonandL.-B. Huang. A
scalableip lookup low-powver implementatiorfor oc-768links.
Workshopfor Application SpecificProcessors(WSP),2004.
F. BaboescwandG. Varghese Scalablepaclet classification.In

Proc of ACM Sigcomn2001, septembe001.
J.-L. Baer D. Low, P. Crowley, andN. Sidhwang.. Memory

hierarchydesignfor a multiprocessotook-up engine. In IEEE

PACT, 2003.
L. A. Barrosoand M. Dubois. The Performanceof Cache-

CoherentRing-basedVultiprocessors. In 20th Annual Inter-
national Symposiunon ComputerArchitectule, page268-277,

May 1993.
A. BasuandG. Narlikar. Fastincrementaupdatedor pipelined

forwardingengines.In Proc. of Infocom march2003.
E. Coffman, L. Flatto, E. N. Gilbert, and A. G. Greenbay.

An approximatemodel of processolcommunicatiorrings un-
der heavry load. Information Processing_etters, 64(2):61-67,

1997.
E.Coffman,N. Kahale andF. T. Leighton.Processering com-

munication:A tight asymptoticboundon paclet waiting times.
1996.

[11] W. EathertonHardware-basethternetprotocolprefixlookups.
In Eatherton, WlIl. Hardware-BasedIinternet Protocol Prefix
Lookups.Washington University Electrical Engineering De-
partment MSthesis may 1999.

[12] M. R. Garey andD. S.Johnson.Computersaandintractability -
aguideto thetheoryof np-completenespage13-224 W.H.
FreemarandCompar, New York, 1979.

[13] P. Gupta. Algorithmic searchsolutions: Featuresandbenefits.
In NPC-West2003 october2003.

[14] P GuptaandN. McKeown. Paclet classificationon multiple
fields. In Proc of ACM Sigcomnil999 septembe 999.

[15] P. Guptaand N. McKeown. Paclet classificationusing hier-
archicalintelligent cuttings. In Proc of Hot InterconnectsVil,
august1999.

[16] D. Mayer. University of oregon route views project. 2003.
ftp://ftp.routeviews.og/pub/routgiews.

[5]
[6]

[7]

(8]
9]

[10]

[17] U. Michigan. Multi-threaded routing toolkit. 2003.

http://www.mrtd.net/.

[18] H. NarayanR. Govindan,andG. Vamghese.Theimpactof ad-
dressallocationandroutingonthestructureandimplementation
of routingtables.In Proc. of ACM Sigcomn2003 augus2003.

[19] Ravindranand Stumm. A performancecomparisorof hierar
chical ring- and mesh-connectethultiprocessomnetworks. In
3rd International Symposiunon High-PerformanceComputer
Architectue. IEEE ComputerSociety 1997.

[20] E.RosemandY. Rekhter BGP/MPLSVPNs. RFC2547,1999.

[21] RRC. Routing information service rav data. 2003.
http://data.ris.ripe.net/.

[22] M. SanchezE. Biersack,andW. Dabbous.Suney andtaxon-
omy of ip addressookup algorithms. In IEEE NetworkMaga-
zing vol. 15,n0.2, 2001.

[23] T. Sherwod,G. VargheseandB. Calder A pipelinedmemory
architecturdor highthroughpunetwork processors2003.30th
AnnuallnternationalSymposiumon ComputerArchitecture.

[24] P Shivakumar and N. Jouppi. Cacti.
http://research.compaqg.com/wrl/people/jouppiCIA html.

[25] S.SikkaandG. Varghese Memory-eficient statelookupswith
fastupdatesIn Proc of ACM Sigcomn200Q septembe2000.

[26] S.Singh,F. Baboescu. VargheseandJ. Wang. Paclet clas-
sificationusingmultidimensionaktutting. In Proc. of ACM Sig-
comm2003 august2003.

[27] V. Srinivasanandal. Fastandscalablelayer4 switching. In
Proc of ACM SigcommniL998 septembef 998.

[28] T. Woo. A modularapproachto paclet classification: Algo-
rithmsandresults.In Proc. of Infocom 2000.

A IP Lookup

Prefix | Value
P 0000001
P 000000000
Ps 01101100
Py 0110110100
P 0110110101
Fs 11001
P; 111101000
Py 11110101
Py 11110101110%
Iﬁo 01100
}ﬁl 011011
Pyo *

Table 7. A simple example of a routing table with 12 prefixes.

ThelP lookupoperationrequiresalongestmatchingprefix
computatioratwire speedsin IPv4 for example atevery hop
(router), for eachpaclet the 32 bit IP destinationaddresds
matchedagainsta databasesf IP prefixes. Eachprefix entry
consistsof a prefix anda next hop value. For a betterunder
standingof theproblem Jet's considethefollowing toy exam-
ple basednanlP lookupdatabaseonsistingof thefollowing
12 prefixesshovn in Table7. If therouterrecevesa paclet
with thedestinatioraddresshatstartswith 11110101110 then
thenext hopvalueassociatedvith theprefix Py is selected.

Therearemary solutionsin theliteraturefor the IP lookup
problemrangingfrom binarysearcho trie lookup[22]. In the

Figure 4. The trie lookup structure associated with the routing
table given in Table 7.

evaluationof our new pipeline schemewe usethe algorithm
inventedby Eathertor{11]. This algorithmoffersbothexcel-
lentthroughputaswell asfastupdaterates.

Eathertons algorithmusesa trie asthe basicsearchstruc-
ture. Thetrie is organizedinto subtrieswith fixed depth(for
example4) markedwith dottedlinesin Figure4. As aresult,
theinitial trie is now representedsatreein which eachnode
is associatedvith a subtriein the original representation.

[010000100000000]| [PBV

[0000000000001100] |CBV

Next Hop Table Ptr.

Child Node Array Ptr.

Figure 5. Each subtrie in the original trie may be represented
as it is shown here. This picture shows the representation of the
subtrie T» from Figure 4.

Eachsubtrieis representedith the helpof two bit vectors.
Figure5 shaws the representationf the subtrieT; from Fig-
ure4 andtwo arraysthatstorethechild nodesandthenext hop
informationassociatedvith the currentnode.

A first bit vectorthatwe call PBV describeghe distribu-
tion of the nodesassociatedvith valid prefixesinside of the
subtrie. This bit vectorrepresents linearizedformat of the
original subtree:eachrow of thesubtreds capturedop-davn
from left to right. Eachbit is associateih orderwith the pre-
fixes: *, 0% 1* 00* 01* 10* 11*% ..., 111* Two bits are
setin PBV, they correspondo the valid prefixes P;q and Py
existentin the subtrieasit is shavn in Figure 5 (The node
associatedvith the prefix P; doesnot belongin this subtrie.
Insteadt is theroot nodeof oneof its child subtrie). The next

hop informationassociatedvith eachof the valid prefixesis
keptin atable.

The secondbit vectorwhich we call CBV describeghe
child distribution. Thereareatmost2* childrenandabit is set
wheneverachild existsattheendof thatpaththroughthetrie.
Thus,in Figure5 we only have two bits setcorrespondindo
two child subtriesassociatedavith the prefixes1100 and1101,
respectiely.

In summarythesearchstructurein the Eathertoralgorithm
is atreewhichin every nodestores:two bit vectors,a pointer
to the block of child nodes,anda pointerto an arrayof next
hopdata.In orderfor the schemeo work efficiently all child
nodesof a given parentmustbe storedcontiguouslyin mem-
ory, to maximizelocality, andminimize memoryaccesgime.
Similarly, all the next hop information associatedvith valid
prefix nodesin theassociatedubtrieis storedasa contiguous
blockin memory

A searchoperationexecutesasfollows. Assumethat we
needto identify the longestmatchingprefix associatedvith
a destinationaddres$)1101101010. The algorithmconsiders
stridesof 4 bits of addressat a time. It startsby readingthe
child bit vectorassociatevith therootnodeandit determines
if thereis a child subtriewith the root at the position0110.
This correspondso theseventhbit in the CBV beingset. This
bit is setwhich meansthat the searchcontinuesto the next
node by using the next four bits of the address. In parallel
it determinesf thereis any matchingprefix in this node. If
thereis a match, the algorithm rememberst and continues
the searchrecursvely by goingto the next child node. When
thesearclfails, thelastmatchingprefix representshelongest
matchingprefix for thesearch.

B Optimally Allocating Subtreeson a Pipeline
Ring is an NP-CompleteProblem

We hereshaw the intractability of the problemof optimal
placementof subtreeson a pipelinering. In fact, we shav
that the simpler problemof decidingwhetheri! giventrees
of height H canbe allocatedon a ring of H cells suchthat
eachcell containsan equalnumberof nodesis NP-complete
Here the completetree information,i.e., the parentsof each
node, is not needed;only the numberof nodesper level is
neccessario scheduleplacementThereforeatreeof height
H is encodedas H numbergly,ls, ..., lz) in therangel..27.
Hence,one only needsO(H?) spaceto storea tree, despite
thefactthatthe weightof thetree,thatis, the total numberof
nodes; + l> + - - - + Lz, canbeexponentialin H.

Problem: OPTIMAL-RING-PLACEMENT

Input: A heightH € Z*, anumberM € Z*, and M
binarytreesof heightH.
Canthesetreesbe scheduledn a ring of H
cellssuchthateachcell containsexactly W/ H
nodeswhereW is thetotal weight(numberof
nodes)of all the M trees?

Output:

OPTIMAL-RING-PLACEMENT is thereforea decisionprob-
lem (outputs‘yes” or “no”) takinganinputof sizeO(M H?).

Our goalis to shav that OPTIMAL-RING-PLACEMENT is an

NP-completeproblem, thus motivating our focus on search-
ing goodpracticalsubtreeallocationheuristics ratherthanon

finding provably optimalsolutions.We thereforeneedto show

thatthe problemis in the classof NP problemsandthatit is

NP-had. While the first taskis almostimmediate,the NP-

hardnesss not trivial. We will usea reductionto a modified
versionof a known NP-completeroblem.Thefollowing par

tition problemis awell-known NP-completeproblem,evenin

thestrongsenseasshown in Garey andJohnsorj12]:

Problem: 3-PARTITION

Input: A finite set A of 3m elements,a bound
B € Z*, anda “size” s(a) € ZT for each
a € A, suchthateachs(a) satisfiesthe re-
lation B/4 < s(a) < B/2 and suchthat
Y acasla) =mB.
Can A be partitioned into m disjoint sets
S1,82,...,5, suchthat ZaESiS<a’) =B
foreachl <i < m?

Output:

Unfortunatelythe 3-PARTITION problemletstherelationship
betweenm and B unspecified so one may wrongly assume
thatthehardnessf this problemcomesrom certainbadclose
relationshipdbetweenn and B. To avoid this kind of wrong
assumptiorandto settlethe groundfor our maintheoremwe
considera more generalversionof this problem. Givenary
arbitrarybut fixed“ratio” r, we definethefollowing problem.

Problem: 3-PARTITION[7]3

Input: A finite set A of 3m elementsa boundB €
Z* with m/B > r anda “size” s(a) € Z*
for eacha € A, suchthateachs(a) satisfies
therelation B/4 < s(a) < B/2 andsuchthat
Y acasla) =mB.
Can A be partitioned into m disjoint sets
S1,82,...,5, suchthat Zaesis(”’) = B
foreachl <i < m?

Output:

Lemmal For anygivenr, 3-PARTITION[r] is NP-complete

Proof: Since3-PaRTITION[r] differesfrom 3-PARTITION
by just a more constrainednput, 3-PARTITION[r] is alsoin
NP. We shaow that 3-PARTITION[r] is NP-hardby reducingit
to 3-PARTITION. Let usconsideraninput of 3-PARTITION:
asetA of 3m elementsaboundB € Z™, anda sizefunc-
tions : A — ZT. We needto constructan input for 3-
PARTITION[r], consistingof asetA’ of 3’ elementsbound
B’ € Z* suchthatm'/B’ > r, andsizefunctions’ : A’ —
Z*T with B'/4 < s(a’) < B’/2foralla’ € A’, andthenshow
that3-PARTITION hasapositve answemntheinputm, A, B,
s if andonly if 3-PARTITION[r] hasa positve answeron the
inputm’, A’, B', s'. If m/B > r thenonecanclearlytake m/,
A’, B', s’ tobejustm, A, B, s, respectiely. Supposaow the
difficult case pamelythatm/B < r.

2Notice that theseconstraintson the item sizesimply that every suchS;
mustcontainexactlythreeelementgrom A.
33-PaRTION[r] definesa classof problems onefor eachr.

Let B’ bepreciselyB. Onecanbuild thesetA’ by adding
enought‘fresh” elementgo A, sothattheir total number m/,
hasthe propertym’/B > r: let usfirst take m’ to be [rB],
i.e.,thesmalleshaturalnumbedargerthanor equalto » B, and
thenletsustake A’ to bethesetA | J{z1,22,... , Z3(4m/—m) }»
for somearbitrary elementszy, 3, . .. , 23(m/—m) Which do
notoccurin A. We now needto construcianappropriatesize
functions’ : A’ — Z™. Thecrucialideahereis to build it in
suchaway thatall the elementof A have sizesvery closeto
B/3 whiletheelements:; have sizesfarenoughfrom B/3, so
thatthe only way to geta positive answerto 3-PARTITION[r]
is to actuallygetasolutionto 3-PARTITION andgrouptheele-
mentsz; amongthemseles.For example let s'(a) bedefined
asB/3+(s(a)—B/3)/1000for eacha € A, ands’(z3x+1) =
8/($3k+2) = B/3 — B/lOO ands’(x3k+3) = B/3 + B/50
It is now easyto seethat 3-PARTITION[r] admitsa solu-
tion on the input A’, B, s’ if andonly if 3-PARTITION ad-
mits a solutionon the input A, B, s. That happenshecause
T1,T2, ..., T3(m/—m) CANONlY begroupedwith themselesin
ary solutionof 3-PARTITION[r]. O

We cannow prove our maintheorem.

Theorem?2 OPTIMAL-RING-PLACEMENT is NP-complete

Proof: Let usfirst notethat OPTIMAL-RING-PLACEMENT
is in NP. Indeed,if oneis given an input and a placement,
thatisamap{1,...,M} — {1,..., H}, assigningeachtree
to a pipeline(ring)stagefrom whereit startsbeingallocated,
thenthe only thing one hasto do is to checkwhethereach
pipelinestagehasexactly W/H nodes.This canbe obviously
accomplishedh polynomialtime.

We next shav that OPTIMAL-RING-PLACEMENT is NP-
hard by reducingit to 3-PARTITION[7] for someappropiate
r. Let usconsideraninput of 3-PARTITION[r]: someset A
of 3m elementssomeboundB € Z™* with m/B > r, anda
sizefunctions : A — Z™ suchthat B/4 < s(a) < B/2 for
eacha € A andsuchthat) ., s(a) = mB. We canthen
build aninput of the OPTIMAL-RING-PLACEMENT problem
asfollows. Let H bem, let M be 3m, andlet us consider
onetree, t,, for eachelementa € A, having 1 nodeon the
first level, 2 on the secondlevel, 4 on the third, ..., 22
on level m — 1, and s(a) on the lastlevel. In otherwords,
eachtreet, hasheight H = m, is completeon thefirst H —
1 levelsand hass(a) nodeson the lastlevel. Our treesare
binary, thereforethis canhapperonly if m is large enoughso
thats(a) < 2m™~!. Sinces(a) < B/2, we cantake r large
enoughsothat B < 2™. Notethat,with theabstracview of a
treeasalist of numberssymbolizingthe nodeson eachlevel,
te = (29,21,22...,2m2 5(a)) for eacha € A. Letusnow
calculatethetotal weightof all thetrees:

w

Yaea0+28 4224 42772 4 5(a))
3m(2m~1 — 1) + mB.

Thuswe createdin polynomialtime aninstanceof the prob-
lemOPTIMAL-RING-PLACEMENT —thetimeneededo create

10

all thetreest,, is indeedpolynomial,becaus@* canberepre-
sentecbnm —2 bitsfor all 0 < k < m—2. Theonlythingleft
is to shaw thatthe original input A, B, s of 3-PARTITION][r]

admitsa solutionif andonlyif thecreatednputof OPTIMAL-

RING-PLACEMENT admitsa solution. The “only if” partis
easy Indeed f thereis somepartitionof A into m disjointsets
S1.8%,...,5m, eachof 3 eIementssuchthatZaesi = B,

thenonecanallocatethecorrespondindrees{t, }.cs, of each
partition startingwith the samecell. Theneachcell will con-
tain 3 groupsof 1,2,...,2™ 2 elementgrespectiely) plus
> qcs, S(a) for somel > i > m, thatis, 32" ! — 1) + B

elementsThering is balancedvith this allocation.

Let us next considerthe "if ” part, thatis, let us assume
thattheinput of OPTIMAL-RING-PLACEMENT createdabove
admitsonesolutionandlet us prove thatthe original input of
3-PATRITION[r], A, B, s, alsoadmitsa solution. Note first
that eachstagein the balancedpipeline will containexactly
3(2m=1 — 1) + B nodes.lt is enoughthento shav thatary
allocationof the 3m treeson the ring requirespreciselythree
treesto beallocatedstartingwith eachstagein thering. If that
is the case thenwe cangrouptogetherthe itemsin A corre-
spondingo eachof thesdreesandobtainapartitionsatisfying
theinput of the 3-PARTITION[r] problem.

Let us assume that the solution to the input of
OPTIMAL-RING-PLACEMENT allocates the trees T; =

{ta,taz,... .t » } startingwith the stagei, for 0 > i > m.
Thenclearly}"." | k; = 3m; all whatwe needto show is that
ki = ke = ... = k,, = 3. Sinceeachstagecontainsprecisely

3(2™~1 —1)+ B nodeswe canwrite thefollowing equations:
Stagel: ki + 2ky + 2%ks + ... + 2™ %k, 1 +
S s(ad,) =321 1) + B

Stage2: S5 s(a]) + ko +2ks ...+ 2" Pk 1 +
22k, =3(2m ' - 1)+ B

Stage3: ...

Multiplying the equationStage2 by 2 andthensubtracting
theequationStagel from it, we get:

I

1 km
(2) " s(ad)—k)+2" k= s(al,) =3(2" ' —1)+B.
j=1 j=1

Sincer is chosersuchthat B is muchsmallerthen2™, it fol-
lows that the dominanttermsin the two sidesof the above
equalityare2™ 'k, and3 - 21, respectiely. Thisdirectly
implies that k,,, = 3. lteratingthe previous stepsover the
differentstageswegetk, = ks = ... = k,,, = 3. O

11

