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Figure 6: (a) A weather-resistant, solar-powered FarmBeats sensor module.(b,c,d) Drone Flight Planning: (b) FarmBeats’s flight planning
algorithm minimizes the number of waypoints to cover a region. (c) Depending on the aspect ratio of the field, flights without FarmBeats’s
algorithm take upto 42% more time. This improves the time by a factor of 1.26 in the average case for our farms. (d) In addition, the yaw control
algorithm described in Section 5.1 achieves a gain of up to 5% based on the wind velocity.
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Figure 7: Power-aware Base Station: The cloudiness percentage over 3 days. (b) With no duty-cycling, the base station shuts down on a cloudy
day. (b) A fixed conservative duty cycle can prevent the base station from going down, but it collects 15 times less sensor data. (d) FarmBeats’s
Power-aware basestation can keep the base station on by reducing the duty-cycling on days are expected to be cloudy.

tries defined by their height to width ratio, where height
is the distance along the North-South direction and width
is measured along East-West. As expected, the gain
achieved by FarmBeats increases as the height-width ra-
tio increases. This is because FarmBeats algorithm gen-
erates fewer waypoints to cover the same area. In gen-
eral, for the average case of our deployments, FarmBeats
reduced the time taken to cover an area by 26%.

Finally, we evaluate the impact of our yaw control al-
gorithm under different wind conditions. The maximum
speed was set to 10m/s and the altitude was set to 30m.
For every flight, we fully charged the battery. We mea-
sure the percentage of time saved by FarmBeats’s yaw
control algorithm for each flight and plot it in Figure 6(d).
As seen in the figure, FarmBeats can save up to 5% time
depending on the wind velocity. Moreover, as the north-
south component (the principal direction of motion for
this set of experiments) of the wind increases, FarmBeats
can leverage it better.

7.3 Orthomosaic Generation

The novel orthomosaic generation algorithm proposed
in this paper advances the state-of-the-art on two fronts.
First, our approach of combining sparse 3D reconstruc-
tion techniques from video with image stitching tech-
niques is more robust than existing techniques based on
either aerial 3D mapping or aerial image stitching. In
addition, our approach is computationally more efficient
and runs considerably faster than Pix4D [42], an aerial
3D mapping-based tool catering to Precision Agriculture.
Qualitative Results: We show two representative ortho-

mosaics constructed by FarmBeats and Microsoft ICE in
Figure 4 and 8(b) respectively. Figure 8(a) shows what
the farm looked like in Google Earth in the past. The
orthomosaic generated by Microsoft ICE failed in this
case, while our result is consistent and accurate. Our geo-
referenced image covers about 5 acres of farmland and
provides a detailed visual summary to the farmer. By vi-
sually inspecting the high-resolution image, they can dis-
cover anomalies such as the water puddle that can render
a part of the field unsuitable for agriculture for a couple
of seasons. Moreover, the farmer can see where cows
are grazing during the day and make a decision about
whether they want to move them to another spot for the
next day. The decision is based on how much grass they
want to leave on the field to be converted into manure.

Processing Time: As shown in Figure 8(c), our im-
plementation is 2.2 times faster than Pix4D on average.
Specifically, our method took 14 minutes to construct an
orthomosaic on average whereas Pix4D took 32 minutes
on average on a set of videos captured by our drones at
1080p resolution at 30 frames per second. This demon-
strates the improved running time of our method.

Finally, the orthomosaic generated by our system are
approximately 5 times smaller than the original video
size at full resolution (in .png format) before applying
lossy compression. A single pixel in the geo-referenced
orthomosaic is about 2 cm in size which is equivalent to
a single penny on the ground. The image resolution and
compression quality are parameters that can be tuned to
meet any target file size.
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Figure 8: Orthomosaic Generation: (a) The Google Earth image for the farm in Figure 4. (b) Microsoft ICE image stitching pipeline fails to
reconstruct it accurately. (c) Pix4D takes about 2.2x longer on average compared to our approach.

7.4 Generating Precision Maps

As described in Section 5.3, FarmBeats uses the vi-
sual features from the orthomosaic overview to extrap-
olate the sensor values and generate precision maps for
soil temperature, soil moisture and pH.
Qualitative Evaluation: We show a representative set of
these precision maps in Figure 5. As shown in the figure,
based on sensor values in the rest of the farm, the mois-
ture prediction pipeline can estimate that the top left part
of the farm has high moisture content even though that
part has no sensor there. Similarly, the pH map gener-
ates an actionable input in the sense that the bottom left
and center of the farm have very low pH and are highly
acidic. As a result of this map, the farmer applied lime to
enhance the pH and make the soil more neutral.

Note that the pH of the farm varies within the farm at
fine granularity. As seen in Figure 5, within a couple of
acres, the pH can vary from 4 (very acidic) to 7 (neutral).
Soil moisture variance is even higher, with variance seen
within a few meters. Precision maps generated by Farm-
Beats capture this variance accurately, by using the drone
videos to extrapolate the sensor data.
Quantitative Evaluation: In order to evaluate the ac-
curacy of the precision maps generated by FarmBeats
using the approach described in Section 5.3, we evalu-
ated our system on 5 datasets constructed from the drone
videos and sensor data. Each dataset corresponds to a
drone flight over the farm (covering 2 acres) and one
set of sensor measurements from the sparse sensor de-
ployment. The hyperparameters are learned by doing 5
fold cross validation. As an accuracy metric, we measure
the correlation between the predicted sensor values and
the ground truth sensor values to see how well the varia-
tions in the field are captured by FarmBeats. We compare
against two techniques, which do not use the drone video
based extrapolation of the sensor values:

• Nearest Neighbor (SensorsNN): We assign the value
from the nearest sensor to each point in the field.

• Inverse Distance based Interpolation (SensorsInterp):
We linearly interpolate known sensor values in the field,
by using inverse distance as a weight. This technique has
been previously been proposed in the context of precision
agriculture [14, 55].
For all the analysis, we use leave-one-out evaluation, i.e.,
we generate a precision map after leaving one of the sen-

sors out of the training set and evaluate the map on the
left out sensor. We repeat this process for all the ground
sensors and report the averaged results.

The comparison of correlation across the different
schemes is shown in Figure 9(a). As shown in the fig-
ure, FarmBeats outperforms existing sensor based inter-
polation techniques. In particularly, FarmBeats can accu-
rately estimate the variations of the different sensor val-
ues in the field. While sensor based methods do not mir-
ror the variations and hence have nearly zero correlation
with the sensor values, FarmBeats’s estimates have high
positive correlation with the true sensor values, thus indi-
cating the utility of using the drone video in conjunction
with the drone estimates. Finally, the precision maps gen-
erated by FarmBeats are 3 orders of magnitude smaller in
size on average than the video and can be easily shipped
to the cloud during periods of connectivity.

7.5 Other Applications

Figure 9 highlights two other applications that the
farmers used FarmBeats for. First, the farmer in NY
used FarmBeats sensors to monitor his storage freezers.
The temperature in these freezers is carefully regulated
below 10◦ F to prevent produce from going bad. As
shown in Figure 9(b), an employee leaving the door open
could lead to this temperature going up causing loss to the
farmer. This problem is solved by FarmBeats by enabling
automated notifications based on these sensor readings in
the FarmBeats phone application.

Second, the farmers plugged in cameras at different
locations like cow sheds and connected them to the near-
est FarmBeats base station. One frame of the camera
is shown in Figure 9(c). While the intent of the cur-
rent application is to manually monitor the cows, one can
potentially build an application that can detect anoma-
lies in cow behavior or use cow motion to track animal
health [38]. As a preliminary result, we ran a deep neural
network based cow detector on the data. The identifica-
tion boxes are overlaid on the figure.
7.6 End-to-end Deployment Statistics

Data Aggregation: FarmBeats’s deployments at both
farms have been running for over six months. Over these
deployments, FarmBeats interfaced with around 10 dif-
ferent sensor types, three different camera types, three
versions of drones and the farmers’ phones. It collected
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Figure 9: FarmBeats Applications (a) FarmBeats’s precision maps are more accurate than standard sensor based interpolation techniques. (b)
Temperature (measured in F) in a storage unit can raise an alarm when an employee leaves a door open. (c) Cows being monitored in a cow shed.
The red boxes indicate a standard cow detector output.

more than 10 million sensor measurements, half million
images and 100 drone surveys.
Resilience to Outages: FarmBeats’s deployments faced
one week-long Internet outage due to a thunderstorm and
several smaller term Internet outages. The FarmBeats
gateway continued to be available during these times.
Cost: The TVWS client radios cost $200,4 and there are
no additional data charges, than the farmer’s existing in-
ternet connection. The Particle Photons cost about $20
and can add Wi-Fi support to each sensor. Thus, use of
the hybrid networking approach reduces the system cost
by an order of magnitude as compared to existing sys-
tems which cost over $1000 in equipment cost per sensor
and over 100$ annual subscription fee (see Table 1).
Applications: Farmers used FarmBeats’s precision agri-
culture system to guide their precision irrigation units.
The precision pH maps generated were used by farmers
to apply lime in the more acidic regions. As mentioned
before, farmers also used FarmBeats for storage monitor-
ing with sensors and animal shelter monitoring, selling
station monitoring with cameras. Beyond that, farmers
also used FarmBeats base stations to access Wi-Fi while
on the farm to run productivity applications like Trello.

8 RELATED WORK

FarmBeats builds on past work in wireless sensor net-
works, precision agriculture and ICTD.
Wireless Sensor Networks: Past work has used multi-
hop networks [5, 19, 23, 26, 39, 45, 57, 60] to gather data
from sensors in the farm. However, all these systems suf-
fer from bandwidth constraints that make them unable
to support sensors, cameras and drones. Further, these
systems do not account for constraints imposed by weak
cloud connectivity and weather related power and Inter-
net outages. The same is true for recent advances in LP-
WAN technologies [29, 52]. In contrast, FarmBeats in-
cludes support for sensors, cameras and drones; is backed

4With the standardization of IEEE 802.11af [1] standard, we expect
the price to the client and base station to be similar to Wi-Fi, of less
than 10$. We are testing one such multi-mode TVWS/Wi-Fi chip from
a major Wi-Fi vendor.

by cloud connectivity and has mechanisms to adapt to
weather variability.
Agriculture: Agronomists have studied various aspects
of precision agriculture, from defining more accurate
management zones [31], to improving prescription [37],
to leveraging soil science [54] and plant physiology [8]
techniques. Prior work has also looked at applications of
precision agriculture to irrigation, variable seeding, nutri-
ent application, and others. There has been prior work on
developing technology for enabling precision agriculture.
Researchers have built specialized sensors for measuring
nutrients [25], water levels [21], and other such sensors,
and we build on top of this work. FarmBeats’s work is
complementary to this body of work as it facilitates the
automation of data collection using these sensors and en-
ables the precision agriculture systems.
ICTD: ICTD solutions focus on user interfaces to make
existing technologies more accessible [13] enhanced ac-
cess to information [9] and better communications. The
mechanisms of data collection is manual in most sce-
narios. The few attempts at automated data collection,
like [9], fall into the same pitfalls as discussed before.
We believe FarmBeats is complimentary to this work and
will aid the proliferation of ICTD by enabling end-to-end
IoT connectivity in weakly connected scenarios.

9 CONCLUSIONS & FUTURE WORK

FarmBeats is a low-cost, highly available IoT platform
for agriculture. It supports high bandwidth sensors us-
ing TVWS, which is a low-cost, long range technology.
FarmBeats uses a weather-aware solar-powered IoT base
station, and an intelligent Gateway that ensure that ser-
vices are available in the Cloud and offline. It also incor-
porates new path-planning algorithms that extend drone
battery life. We have deployed the system in two farms,
and the farmers are already using it for three applica-
tions: precision agriculture, animal monitoring, and stor-
age monitoring. Moving forward, we are working with
the farmers to develop several other applications on top
of FarmBeats. Further, we plan to make anonymized data
available for researchers to enable more agricultural ap-
plications.
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10 SUPPLEMENTARY MATERIAL

10.1 FarmBeats Applications and Usage

The goal of FarmBeats is to serve as a substrate for
multiple sensing modalities on the farm. Sensors with
varying data requirements can plug-in to FarmBeats and
operate seamlessly. This allows farmers to use Farm-
Beats for various applications. Our primary target has
been to deliver a class of applications that fall under the
category of precision agriculture. Precision agriculture is
a technique to improve yield by treating the farm as het-
erogeneous land, and uses variable treatment throughout
the farm, such as variable seeding, fertilizer application,
lime application, irrigation, and many other agricultural
services. In principle, precision agriculture is good for
the overall farming ecosystem [37]. It improves yield,
reduces the operating expenses for the farmer [47], and
is also good for the environment.

In contrast to existing systems which divide the farm
into large static management zones [14, 41] and fail to
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Figure 10: Leveraging Wind Assistance: When the ef-
fective velocity,~ve f f , aids the UAV motion, then the yaw
is set to be perpendicular to the UAV motion (left), other-
wise the yaw is aligned with the effective wind velocity
to minimize air drag (right).

capture temporal and climatic variations [32, 46], Farm-
Beats delivers near real-time and fine-grained precision
maps to farmers for soil characteristics like pH, moisture,
etc. As described in section 5.3, FarmBeats uses a com-
bination of aerial imagery and sparse sensor deployment
to deliver these maps. They are currently being used by
farmers to monitor and amend irrigation, and lime appli-
cation practices in their farms.

In addition to precision agriculture applications, farm-
ers have used FarmBeats for monitoring cattle using cam-
eras in barns and for using sensors to monitor tempera-
ture in storage units. This functionality was suggested
by farmers and later added to the system. Future appli-
cations suggested by farmers include monitoring the net
carbon footprint of the agricultural production cycle, net
nutrient usage for each crop cycle, crop suggestions using
long-term data and flood monitoring.

10.2 Leveraging Wind to Assist UAV Path Planning

Algorithm 1 Pseudo-code for determining UAV yaw
based on wind speed
. Input: Wind velocity (~vW ), UAV velocity (~vUAV ), in-
tended acceleration (~aUAV )
. where all inputs are measured with respect to the
earth reference frame
. Output: UAV yaw (y)
Compute wind velocity w.r.t the UAV: ~ve f f = ~vW −
~vUAV
if~ve f f .~aUAV > 0 then

Set the yaw perpendicular to~aUAV
y = 6 ~aUAV + π

2
else

Align the yaw with~ve f f to minimize drag
y = 6 ~ve f f

end if

Here, we describe the algorithm to leverage wind to as-

14
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sist in UAV path planning. On a high level, the algorithm
works in two steps:

• Compute the effective wind velocity, ~ve f f . The effective
wind velocity is the wind velocity in the reference frame
of the UAV. Specifically, if the velocity of the UAV with
respect to the ground is ~vUAV and the wind velocity with
respect to the ground is ~vW , then ~ve f f =~vW −~vUAV . An
example of this vector computation is shown in figure 10.

• If ~ve f f has a component that can aid the UAV motion,
then we make the yaw perpendicular to the direction of
intended acceleration, otherwise, we align it with the di-
rection of ~ve f f to minimize air drag. For instance, as
shown in figure 10, if the UAV wants to accelerate and
the UAV velocity is large such that the effective wind ve-
locity has no component that aids acceleration, then the
algorithm aligns the UAV yaw with the effective wind
velocity, minimizing the air drag.

Algorithm 1 describes the pseudo-code for Farm-
Beats’s approach.
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