
Web Service Access Management for Integration with
Agent Systems

B.J. Overeinder, P.D. Verkaik
∗
, and F.M.T. Brazier

Department of Computer Science, VU University Amsterdam
de Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

{bjo,patrick,frances}@cs.vu.nl

ABSTRACT
The agent paradigm includes the notion that agents interact with
services. This paper identifies the need for controlled access to such
services, from the perspective of agent systems (and not as is gen-
erally the case by web service providers). Mediating between web
service requests from (virtual) organizations of agents, the web ser-
vice gateway proposed regulates (i.e., monitors and controls) web
service access according to the SLAs and organizational policies
that are in effect. In addition to a model for web service access
regulation, an implementation of a middleware component for web
services access regulation based on SOAP and described in WSDL
is presented.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—
multiagent systems; H.3.5 [Information Storage and Retrieval]:
Online Information Services—Web-base services

General Terms
Design, Management

Keywords
Web service interaction and integration, Web service management,
agent middleware

1. INTRODUCTION
In service-oriented architectures, the consumer and middleware

can vary from high-performance computing jobs in Grid environ-
ments to autonomous mobile processes in agent middleware. In
both situations, shared resources (web services) are used by appli-
cations and the supporting middleware to manage individual web
service usage.

Integration of web services with agent systems (multi-agent sys-
tems and/or agent platforms) requires not only semantic ontology

∗Current affiliation Department of Computer Science and Engi-
neering, University of California, San Diego, CA.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’08 March 16-20, 2008, Fortaleza, Ceará, Brazil
Copyright 2008 ACM 978-1-59593-753-7/08/0003 ...$5.00.

integration [3, 5] but also management integration: regulating web
services access and usage from the perspective of an agent system
runtime environment. The Web Services Distributed Management
(WSDM) specification addresses the integration and management
of complex heterogeneous systems [11]. This standard specifies a
common protocol for web service providers and their consumers.
At a higher level, the application level, service level agreement
(SLA) frameworks are being proposed to regulate service access
from the perspective of the provider [13].

Service level agreements negotiated between individual agent
platforms (e.g., collection of hosts in same IP range) and web ser-
vice providers, should also be monitored and regulated by the agent
platform. Individual and organization-wide agent (application) web
access should be managed according to these SLAs. Consider, for
example, a web service that (explicitly or implicitly) imposes a
limit on the number of requests per second or the number of si-
multaneous TCP connections, from any one site. The (virtual) or-
ganization responsible for the site on which an agent runs, may in
turn, impose explicit local policies to deal with this limitation, reg-
ulating local access. This local policy is instrumented in the agent
platform.

To this purpose this paper proposes a generic extension to agent
platforms, called the web service gateway, for controlled web ser-
vice access and usage. It supports integrated management infras-
tructure, for example using service level agreements, to control
agent access to, and usage of, web services according to organi-
zational policies. Semantic ontology integration is explicitly not
further addressed in this paper. Complementary results like Green-
wood et al. [5] can be used to include semantic enhancement of the
web service gateway.

The following section of the paper presents the general model of
agent–web service interaction and the design requirements. Sec-
tion 3 presents an architecture of the web service gateway, and
Section 4 describes the integration of the web service gateway and
SLA-based management in the AgentScape agent platform. Re-
lated work is discussed in Section 5, before closing the paper with
discussion and conclusions.

2. A MODEL FOR WEB SERVICE ACCESS
MANAGEMENT

The design objective of the web service gateway is transparent
management of web service access. For transparent access man-
agement to external services, a number of well-known approaches
exist, such as packet sniffing/filtering (used in, for example, fire-
walls) or proxies/gateways,1 and sometimes combinations of these

1The web service gateway is comparable to a typical proxy in many
web-oriented architectures, but as in this paper various manage-

Gateway
Web Service

Agent Platform

Web Service

actual path

virtual path

agent

Figure 1: The web server gateway model.

approaches.
Agent systems (or more specifically agent runtime support plat-

forms) typically run at user-level, without any special system ad-
ministration permissions. Approaches incorporating techniques
like packet sniffing/filtering, which require access to network de-
vices, are not viable in this situation. Alternatively, a gateway
can be incorporated with the agent platform at user-level. Another
advantage of the gateway approach is that it allows for incorpo-
rating third-party solutions for semantic ontology integration [5,
14]. In the current model without semantic ontology integration,
customers (agents) of web services use the known methods and
standards for web service discovery (e.g., UDDI or other direc-
tory services), interface definitions using WSDL, and message
exchange using SOAP. The web service gateway monitors and
controls access between agents and web service providers: con-
sumers and web service providers follow standard SOAP/WSDL
practice.

By delegating access and usage enforcement to the agent plat-
form (by means of a web service gateway), specific management
policies and decisions can be realized at the appropriate manage-
ment level. Agents are known by the platform in the context of,
e.g., an application, their credentials, history, etc., and the platform
management system can make policy decisions in the context of
this information. If access and usage enforcement is realized out-
side the platform (e.g., a generic proxy) this context information
will not be available for policy management decisions.

Figure 1 depicts virtual web service access. An agent uses stan-
dard SOAP message exchange to access a web service. The mes-
sage, however, goes via the middleware2 (or directly), to the web
service gateway. The web service gateway applies its organiza-
tion’s management policies to individual web service requests. If in
line with these policies, requests are forwarded to the web services
requested. Replies to web service requests are similarly returned
via the web service gateway to the consumer agent.

In many situations, resources (hosts, services, etc.) are aggre-
gated into virtual organizations (e.g., a site, or one or more insti-
tutes and companies that collaborate and share resources). By plac-
ing the gateway function in a separate middleware service (rather
than, e.g., integrating it into the middleware), the gateway is able to

ment tasks are incorporated in the functionality, the term web ser-
vice gateway is preferred over proxy.
2The terms middleware and agent platform are used interchange-
ably. The term middleware is preferred in the context of the soft-
ware architecture.

Application
Layer

SOAP
Layer

SOAP
Layer

Application
Layer

Protocol
SOAP

Protocol
SOAP Transport

SOAP
Messages

SOAP
Messages

Layer
SOAP Transport

Layer
SOAP Transport

Figure 2: SOAP communication layers.

monitor resource usage on a virtual organization-scale rather than
on a consumer basis.

A web service gateway facilitates specification and enforcement
of a virtual organization’s policies with respect to web service ac-
cess. To this purpose a gateway monitors and controls all web ser-
vice network traffic. Note that if scalability of web service access
is an issue, web service gateways can be replicated: these gateways
can be dedicated to specific web service providers and/or to specific
local consumers.

3. MIDDLEWARE AND WEB SERVICE
GATEWAY ARCHITECTURE

This section describes a web service gateway architecture for
agent middleware platforms. Based on the SOAP protocol and
WSDL documents, an architecture is proposed to transparently in-
tercept agent–web service interaction to monitor usage and to en-
force policies.

3.1 Web Services: SOAP and WSDL
This section gives a brief overview of the basic technology that

defines web services: SOAP and WSDL. These concepts are used
in the design and implementation of the web service gateway in
Section 3.2

3.1.1 SOAP Protocol
SOAP is a lightweight protocol for exchange of information in a

decentralized, distributed environment [17]. It uses XML technolo-
gies to define an extensible messaging framework with a message
construct that can be exchanged over a variety of underlying proto-
cols. The framework has been designed to be independent of any
particular programming model and other implementation specific
semantics; however, the only bindings defined in this document
describe how to use SOAP in combination with HTTP and HTTP
Extension Framework.

SOAP communication (see Fig. 2) consists of two layers:

• SOAP messages.

• A transport protocol that carries SOAP messages.

To send SOAP messages, SOAP must be bound to a transport
protocol. The SOAP 1.2 specification specifies an HTTP binding
for SOAP. However, SOAP may be bound to a variety of transport
protocols. The web service gateway extension supports this option.

3.1.2 WSDL Model
The middleware web service gateway extension largely follows

the model and terminology of WSDL [16], briefly summarized be-
low, focusing on the SOAP binding of WSDL.

WSDL is an XML format for describing a web service as a set
of ports operating on messages. In WSDL, a port is composed of
the following elements:

• A set of operations (a port type, similar to what is commonly
known as an interface).

• A protocol. WSDL can be used in conjunction with various
protocols, but is, in this paper, restricted to SOAP 1.2. As de-
scribed in Section 3.1.1, the SOAP protocol must be bound to
some underlying SOAP transport protocol. SOAP, together
with its transport protocol, constitutes the protocol to which
the WSDL port is bound.

• A network address: a URL whose scheme matches the trans-
port protocol to which SOAP is bound.

A web service in WSDL is defined as a set of one or more (re-
lated) ports. This allows for a web service to be distributed or repli-
cated over multiple servers, with each server represented by a port.

Each port contains an independent SOAP protocol stack, con-
sisting of a SOAP layer on top of a SOAP transport layer. Different
ports can use different transport layers and different network ad-
dresses. Both layers of a port are (syntactically) fully specified by
the WSDL document.

3.2 Design of the Web Service Gateway Ar-
chitecture

The gateway architecture allows an agent application running on
an agent middleware to act as a web service client to a SOAP-based
web service described by a WSDL document. The web service
gateway not only provides the agent application with initial access
to a web service, but also acts as an intermediary for all subsequent
communication between the agent application and the web service.

Middleware

Layer
SOAP Transport

Layer
SOAP

Layer
Application

SOAP Transport
Protocol

SOAP
Protocol

Layer
Application

Layer
SOAP

Middleware RPC

Middleware API

SOAP

SOAP
Messages

Web Service
Gateway

Messages

Application

Messages
SOAP

Web Service Port

Layer
SOAP Transport

Figure 3: The SOAP gateway approach.

Being a web service consumer, an agent exchanges SOAP mes-
sages with a web service port. According to the SOAP standard,
these messages are carried by a SOAP transport layer (e.g., HTTP).
However, the transport layer is maintained by the web service gate-
way of the middleware platform, rather than the agent. The agent
therefore passes any SOAP messages it wishes to send to the port

(through the middleware hosting the agent) to the web service gate-
way. Similarly, the web service gateway passes any SOAP mes-
sages it receives from the port to the correct agent (through the
middleware hosting the agent).

Agents and middleware communicate through the middleware
API as required by the middleware architecture. The middleware
layer and the web service gateway communicate through the mid-
dleware RPC protocol. The middleware and the web service gate-
way do not need to modify SOAP messages for the purpose of
routing the messages to the correct port. However, the web ser-
vice gateway may inspect and modify SOAP messages as part of
its policy management function.

As shown in Fig. 3, both network layers that are specified in a
WSDL document, namely SOAP and the SOAP transport, are im-
plemented by separate components, namely the agent application
and the web service gateway (respectively). It follows that both
components must have access to the information specified in the
WSDL document.

4. INTEGRATION OF THE WEB SERVICE
GATEWAY IN MIDDLEWARE

The SOAP gateway approach presented in Section 3.2 includes
an architecture that enforces agent application–web service inter-
action via the agent middleware. The following section presents
the interface to the web service gateway and its functionality. Next,
the mechanisms designed to parse and generate SOAP messages
that are routed through the middleware are described. The last sec-
tion describes a prototype implementation of these mechanisms and
the SLA-based management infrastructure in the AgentScape agent
middleware.

4.1 Middleware Web Service Interface
The web service API consists of two calls: (i) requestWSDL-

Access() call allows for requests for access to specific web ser-
vice, with initial parameters, (ii) sendSOAPRequest() call to
send a SOAP request to a web service port, and as a result to re-
ceive a SOAP response from the same port.

As a result of a request call the web service gateway creates
a lease which defines the context (i.e., the implications of the
site’s policies) in which an application accesses the web service’s
ports. This mechanism can be integrated with existing manage-
ment frameworks in the middleware or with, for example, the
WS-Agreements framework [1, 9]. The current design assumes
that the web service gateway is responsible for the leases and that a
new lease is created for each single web service. The use of leases
in relation with SLAs is discussed in Section 4.4.

The API is made available to the agent application it hosts as part
of the agent platform’s API, and to the agent platform middleware
through the middleware RPC.

4.1.1 Web Service Access Request
The requestWSDLAccess() is used by an application to re-

quest access to a specific web services from a web service gate-
way. The web service gateway can either either decline the request,
or create a lease which defines the context in which an applica-
tion interacts with the web service, i.e., to enforce the constraints
imposed by the hosting middleware of the interaction between an
agent application and a specific web service. Multiple leases may
be requested for the same web service.

The web service gateway returns a lease ID to the application
that has requested access. To prevent applications from accessing
each other’s leases, the lease ID is defined relative to the applica-
tion ID. The middleware checks the application ID of a requesting

agent application before forwarding an invocation to the web ser-
vice gateway.

As indicated above a requestWSDLAccess() call specifies
a WSDL document and the name of the service requested. (Note
that a WSDL document may contain multiple service descriptions.)
The web service gateway extracts SOAP transport layer informa-
tion (i.e., the transport protocol identifier and the network address
of each port) from the WSDL description of the web service.

Some transport protocols, such as HTTP/1.1, have the notion of
a session. For these protocols the web service gateway (i) can avoid
the overhead of setting up a new session for each SOAP message
exchange, and instead reuse a transport session for multiple SOAP
message exchanges destined for the same web service port; and
(ii) can conserve resources by dropping transport sessions (e.g.,
when they remain unused for an extended period of time) and mul-
tiplex SOAP messages belonging to different leases (possibly be-
longing to different applications) over a single transport session.
However, certain web services maintain client state and associate
client state with transport sessions making this impossible:

• A web service may expect a transport session to be associated
with a single consumer agent. As a result, the web service
gateway may not let multiple applications (or leases) share
transport sessions to these web services.

• A web service may require a transport session to be main-
tained while a consumer agent issues a number of SOAP
messages to a specific web service. As a result, a web ser-
vice gateway will avoid dropping a transport session service
whilst a consumer agent application is using the session (or
while the lease exists).

These requirements are not described in WSDL documents,
and so cannot be independently determined by the web service
gateway. The solution chosen is to let an application pass a excl-
Transport parameter to requestWSDLAccess() that re-
quests that for the new lease the web service gateway:

• does not share the transport sessions of this lease with other
leases;

• does not drop the transport sessions of the lease while the
lease exists;

• uses at most one transport session per port.

The web service gateway may decline to grant a lease with this
parameter set, and may signal an error to the application at a later
point if it initially granted exclTransport but was unable to
sustain the corresponding requirements.

4.1.2 Send/Receive SOAP Requests
After an application has acquired a lease, it may send and re-

ceive SOAP messages to and from a port in the web service identi-
fied by the lease. To this purpose, it calls sendSOAPRequest(),
to communicate the port name, the lease ID, and a SOAP request
message. In addition, the middleware supplies the application ID of
the calling application to the web service gateway. (Recall that the
lease ID is defined relative to the application ID.) The web service
gateway sends the SOAP request to the specified port and blocks
the call until the SOAP response comes back from the port. The
SOAP response returned by the port is passed back to the applica-
tion.

Note that there is no explicit parameter that specifies which op-
eration inside the port is to be invoked, as the operation name is
part of the SOAP request.

4.1.3 Extensions
There are a number of improvements that can be made to the

implementation of the web service gateway extension including:

• One-way message passing. The SOAP binding of WSDL
supports two communication patterns: one-way (a client
sends a message to a web service port) and request-response
(a client sends a message to a web service port and the web
service port sends a correlated message to the client). In
the current implementation, the web service gateway only
supports request-response. The extension can be improved
by adding the one-way pattern. Note that WSDL recognizes
two additional patterns which are not supported by WSDL’s
default SOAP binding: solicit-response (a web service port
sends a message to a client and the client sends a correlated
message to the web service port), and notification (a web
service port sends a message to a client).

• Preventing a consumer agent from cheating by requesting
multiple leases for the same web service. Detecting multi-
ple requests is the first step, deciding whether the agent ap-
plication is cheating is another. Given the current web ser-
vices API there may be legitimate reasons for an agent to
request multiple leases. For example, a consumer may wish
to present itself to a web service as multiple clients for le-
gitimate reasons, in which case it would need to request a
separate lease for each client.

4.2 Consumer Application Utility
Communicating with a web service port through the middleware

API as described above, requires a consumer agent application to
be capable of generating and parsing SOAP messages. A number of
existing utilities can be used for this purpose, an example of which
is the open-source Axis utility.3

Apache Axis (eXtensible Interaction System) is a platform for
creating and deploying web services applications. Essentially, Axis
is an open-source SOAP engine and provides a modular, flexible,
and extensible framework for constructing SOAP processors such
as clients, servers, gateways, etc.

This section describes a technique that enables an agent appli-
cation running on an agent platform to employ the Axis utility in
conjunction with the web service gateway extension. Note that the
web service gateway extension does not depend on the use of Axis
by the application developer. Alternative SOAP utilities that are
sufficiently flexible can use a technique similar to the one described
in this section.

Given a WSDL document, Axis generates a stub implementa-
tion (currently in Java and C++) that communicates with the web
service ports specified in the WSDL document. The Axis stub
manages any SOAP transport sessions that are required, and im-
plements each SOAP operation as a Java/C++ method which:

• marshalls the Java/C++ parameters of the method into a
SOAP request message;

• sends the SOAP request message to the correct port using the
transport protocol and network address specified for the port;

• receives the corresponding SOAP response message from the
port;

• unmarshalls the SOAP response message and returns its con-
tents as a return value of the Java/C++ method.

Client
Web Service

Layer
SOAP

SOAP Transport
Layer

Messages
SOAP

SOAP Transport
Protocol

SOAP
Protocol

Stub
Axis

Java/C++ API

Figure 4: A SOAP stub as implemented by Axis.

Figure 4 summarizes the functionality of an Axis stub.
An agent application cannot use an Axis stub as described above,

as, by default, the stub attempts to communicate with a web service
port using the transport and network address specified in the WSDL
document. However, in the context of the proposed middleware
architecture, an application is required to access the port through
the middleware API.

Axis provides the functionality needed to solve this problem as
(i) the set of transports that Axis recognizes (e.g., HTTP) can be
extended with additional transports; and (ii) although by default
an Axis stub bases its transports and network addresses on those
specified in the WSDL document from which the stub was gener-
ated, Axis allows the client to specify an alternative transport and
network address at runtime.

Using Axis’ pluggable architecture, the above problem is solved
by providing the stub with a middleware-specific SOAP transport
implementation that makes invocations to sendSOAPRequest()
in the middleware API, rather than performing network communi-
cation. (It therefore ignores the transport layer specification in the
WSDL document.) This is illustrated in Fig. 5. Note that the new
middleware-specific SOAP transport protocol is called mwrpc.

In addition, the application developer is provided with WSStub-
ber, a utility that performs the following functions:

• It makes the requestWSDLAccess() call in the middle-
ware API (described in Section 4.1) on behalf of the applica-
tion.

• Given an Axis stub implementation generated from a WSDL
document, WSStubber instantiates an Axis stub, and modi-
fies it to use the mwrpc transport rather than the transports
specified by the WSDL. In addition, WSStubber sets up a
number of parameters in the stub that ensure that the mwrpc
transport implementation receives the following information:

– A reference to the middleware API. The mwrpc imple-
mentation requires access to the API in order to invoke
sendSOAPRequest()

– The lease ID, to be passed to sendSOAPRequest().
– The port name, to be passed to sendSOAPRequest().

4.3 Prototype Implementation in AgentScape
Middleware

The web service gateway model and architecture are imple-
mented and integrated in the AgentScape middleware. AgentScape
3Apache Axis, http://ws.apache.org/axis.

Layer
SOAP

Layer
Application

Layer
SOAP

Layer
Application

SOAP Transport
Layer

SOAP Transport
Layer

Server
Agent

Transport Layer
’’mwrpc’’

Gateway
Web Service

Messages
SOAP

Messages
SOAP

Messages
SOAP

Messages
SOAP

Protocol

Axis

Application

Protocol

Stub

Web Service Port

SOAP Transport

SOAP

Middleware API

Java/C++ API

Middleware RPC

Figure 5: A SOAP stub part of a web service consumer appli-
cation.

is an open, scalable platform for mobile agents (autonomous pro-
cesses) [12]. In AgentScape, virtual organizations are called lo-
cations. An AgentScape location consists of one or more hosts
running the AgentScape middleware, typically within a single
administrative domain.

The AgentScape middleware consists of two layers: (i) the
kernel and (ii) the middleware services. The kernel provides low-
level secure communication between middleware processes, and
facilities secure agent mobility. The middleware services provide
higher-level middleware functionality to agents. For example,
agent servers provide a run-time environment for agents, host
managers are responsible for managing the middleware compo-
nents running on their hosts, a location managers that manage
AgentScape locations, and a location service for resolving contact
addresses of agents. Figure 6 shows an example of an AgentScape
location. The web service gateway has been implemented as a
middleware service.

4.4 SLA-Based Management Architecture
The objective of the management infrastructure is that it must

honor the autonomy of agents and resources (i.e., hosts and ser-
vices). An approach to accomplish this autonomy of agents and
resources, is negotiation to establish the terms of conditions of an
agreement specifying the access and usage of a resource. As a re-
sult, a resource negotiation infrastructure needs to provide mecha-
nisms to negotiate the terms of resource usage between the agents
and the resources locally, and to finalize the negotiation in a con-
tract specifying the agreed resources usage, the so-called service
level agreement (see Fig. 7).

Contract negotiation within AgentScape takes place at two lev-

Agent
Server

Agent
Server

Server
Agent

Server
Agent

Web
Service

GWHM HM

LM

HM

Host B

Host A

Host C

Location

Figure 6: Management components within an AgentScape lo-
cation. (LM = location manager, HM = host manager, GW =
web service gateway)

� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �

contract

usage
policies

Middleware

Applications

Resources

Negotiation

resource
requirements

Figure 7: Abstract resource negotiation and contract model.

els: between agents and location managers, and between location
managers and host managers within a location. The two tier con-
tract negotiation model is in line with the scalable middleware ar-
chitecture design objectives of AgentScape: localizing and limiting
the number of interactions required.

The Web Services Agreement Specification (WS-Agreement) [1]
defines the format used to specify contract descriptions and ne-
gotiation interactions. The specification defines an XML-based
language for specifying agreements between resource providers
and consumers, and a protocol for establishing these agreements.
Agreement terms are used to describe the (levels of) service negoti-
ated. Two types of terms are distinguished for agreement specifica-
tions: (i) Service Description Terms, describing the services to be
delivered under the agreement, and (ii) Guarantee Terms, express-
ing the assurances on service quality (e.g., minimum bounds) for
the services described in the service description terms. The spec-
ification of domain-specific term languages is explicitly left open.
The AgentScape management architecture defines these terms for
resources in the AgentScape middleware. A detailed description of
the WS-Agreement based management infrastructure can be found
in the article of Mobach et al. [9].

In the web service gateway scenario, the leases that are granted
to agents are the result of a WS-Agreement based negotiation. The
negotiation of an agent with a web service gateway determines the
access, usage, and QoS terms according to the policies at local and
organization level. The web service gateway enforces the agree-
ments by monitoring and managing the individual leases.

5. RELATED WORK
The agent paradigm assumes interaction between agents and ser-

vices, of which web services are specific instances. This paper ad-
dresses how this interaction can be structured. Integration of web
services with agent applications can be considered at two levels:
semantic level and management level.

Independently, both Greenwood et al. [4] and Shafiq et al. [14]
introduce a web service gateway as a (FIPA compliant) solution to
web service integration, connecting agents and web services trans-
parently. The operation is fully automatic, allowing web services
to invoke agent services and vice versa by translating message
encodings and service descriptions between the two technologies.
The gateways provides service directory transformation (direc-
tory facilitator–UDDI), service description transformation (agent
description–WSDL), and communication protocol transformation
(ACL–SOAP). An enhanced version of the web service gateway
of Greenwood et al. [5] allows agents and web clients to invoke
atomic services and composition patterns. WS2JDADE [10] pro-
vides a similar framework for agent–web service integration, but
also includes facilities to deploy and control web services as agent
services at runtime for deployment flexibility and active service
discovery.

Soto presents a web service based message transport service
(WSMTS) [15]. The message transport service enables agents
to interact through the web with web services and other agents.
WSMTS is a FIPA compliant communication framework where
messages are grounded using web services standards (e.g., SOAP,
WS-Addressing, etc.). The WSMTS not only allows for web ser-
vice accessibility as with the other proposals, but provides the
possibility to perform complex interaction patterns using SOAP
between agents and other agents or Web Services.

The difference with the the web service gateway presented in
this paper, is that this paper focuses on management of web ser-
vice interaction. Mechanisms are presented that (implicitly) en-
force agents to interact with web services through the middleware,
so that access and usage of web sites can be managed on a site
basis, using SLA-based leases.

The only translation addressed in our approach is the ACL–
SOAP translations, as described in Section 4. The other two trans-
lations (directory facilitator–UDDI and agent description–WSDL)
could be be adopted from the contributions described above, to
create a new web service gateway with combined functionality.

Dickinson and Wooldridge [3] present a different architecture for
integrating web services with BDI agents. Service descriptions are
extended with meta-knowledge with which agents can reason about
individual web services in relation to specific goals, to devise plans
to reach these goals. Agents can dynamically create web service
bindings via the standard WSDL service descriptions, without fur-
ther control or management.

Although not often cited in agent literature, the expected Quality
of Service (QoS) is relevant to agent application developers. Ser-
vice level agreements between a service provider and a consumer
are negotiated to assure that consumers receive the service they ex-
pect and have paid for [6]. Dan et al. [2] present a framework for
differentiated levels of service through automated management and
SLAs. Machiraju et al. [8] introduce an architecture for federated
service management, which targets management of web services
that interact across administrative domains (and involves multiple
stakeholders).

The potential of web service gateways for consumer side web
service management has, however, not yet fully explored. Sahai et
al. [13] have also identified this problem: customer side measure-
ment has been neglected—relying solely on measurements on the

server side. In their article, they propose an automated and dis-
tributed SLA monitoring engine to obtain measurements from mul-
tiple sites to guarantee SLAs. The approach is applicable to web
service architectures in general, and is, in itself, a subsystem of sub-
stantial size and complexity, whereas our approach is lightweight
with a small footprint (and subsequently, targeted to management
problem in a specific agent systems setting).

Web Service Offerings Language (WSOL) is a language for the
formal specification of classes of service, various constraints (func-
tional, Quality-of-Service, access rights, etc.), and management
statements (prices, penalties, and responsibilities). Ma et al. [7] de-
signed a Web Service Offerings Infrastructure (WSOI) by extend-
ing Apache Axis. The infrastructure allows for perform different
monitoring activities for different WSOL service offerings. Similar
to the approach presented in this paper, their solution compares to
other existing solutions as less general (or powerful), but also less
complex. The difference with our approach is that the web service
gateway management is based on SLA negotiation, while selection
and manipulation of service offerings are simpler but faster than
SLA negotiations.

6. CONCLUSIONS
The web service gateway model and architecture presented in

this paper manages web service access at the level of agent platform
middleware, supporting monitoring and web service access control
at the level of individual agents. SLAs between agents (i.e., the
organizations they represent) and service providers must be obeyed
by both parties. The web service gateway and SLA-based negoti-
ation infrastructure showed to be a flexible approach which allows
for the inclusion of other components, for example, for semantic
ontology integration.

The web service gateway presented in this paper manages SLAs
from the consumer side, the agent side. For example, if web ser-
vice access is shared in an organization, multiple agents can make
requests to services. However, in aggregate these requests must
comply with the SLA to which they have agreed, enforced by the
web service gateway.

The interoperability of the web service gateway with web ser-
vice management frameworks as described by Dan et al. [2] and
Machiraju et al. [8] will be further studied. Also the inclusion of
the other two transormation (directory facilitator–UDDI and agent
description–WSDL) is future work. Finally, a more in-depth study
into the web services offerings language (WSOL) and the WS-
Agreements will be performed.

Acknowledgements
The authors thank dr. Michel Oey for his valuable contributions.
This research is supported by the NLnet Foundation, http://
www.nlnet.nl.

7. REFERENCES
[1] A. Andrieux et al. Web services agreement specification

(WS-Agreement) (draft). https:
//forge.gridforum.org/projects/graap-wg,
2007.

[2] A. Dan, D. Davis, R. Keamey, A. Keller, and R. King. Web
services on demand: WSLA-driven automated management.
IBM Systems Journal, 43(1):136–158, 2004.

[3] I. Dickinson and M. Wooldridge. Agents are not (just) web
services: Considering BDI agents and web services. In
Proceedings of the Workshop on Service-Oriented
Computing and Agent-Based Engineering (SOCABE’2005),
Utrecht, The Netherlands, July 2005.

[4] D. Greenwood and M. Calisti. Engineering web
service–agent integration. In Proceedings of the
International Conference on Systems, Man and Cybernetics
(SMC 2004), volume 2, pages 1918–1925, The Hague, The
Netherlands, Oct. 2004.

[5] D. Greenwood, J. Nagy, and M. Calisti. Semantic
enhancement of a web service integration gateway. In
Proceedings of the Workshop on Service-Oriented
Computing and Agent-Based Engineering (SOCABE’2005),
Utrecht, The Netherlands, July 2005.

[6] L.-J. Jin, V. Machiraju, and A. Sahai. Analysis on service
level agreement of web services. Technical Report
HPL-2002-180, HP Laboratories, Palo Alto, CA, June 2002.

[7] W. Ma, V. Tosic, B. Esfandiari, and B. Pagurek. Extending
Apache Axis for monitoring of web services offerings. In
Proceedings of the IEEE EEE05 International Workshop on
Business Services Networks, Hong Kong, China, Mar. 2005.

[8] V. Machiraju, A. Sahai, and A. van Moorsel. Web services
management network: An overlay network for federated
service management. In IFIP/IEEE Eighth International
Symposium on Integrated Network Management, pages
351–364, Mar. 2003.

[9] D. Mobach, B. Overeinder, and F. Brazier. A WS-Agreement
based resource negotiation framework for mobile agents.
Scalable Computing: Practice and Experience, 7(1):23–36,
Mar. 2006.

[10] X. T. Nguyen and R. Kowalczyk. WS2JADE: Integrating
web service with JADE agents. In Service-Oriented
Computing: Agents, Semantics, and Engineering, volume
4504 of Lecture Notes in Computer Science, pages 147–159.
Springer, Berlin, Germany, 2007.

[11] OASIS. Web services distributed management.
http://www.oasis-open.org/committees/tc_
home.php?wg_abbrev=wsdm, 2005.

[12] B. J. Overeinder and F. M. T. Brazier. Scalable middleware
environment for agent-based Internet applications. In
Proceedings of the Workshop on State-of-the-Art in Scientific
Computing (PARA’04), pages 675–679, Copenhagen,
Denmark, June 2004.

[13] A. Sahai, V. Machiraju, M. Sayal, A. van Moorsel, and
F. Casati. Automated SLA monitoring for web services. In
Proceedings of the 13th IFIP/IEEE International Workshop
on Distributed Systems, pages 28–41, Montreal, Canada,
Oct. 2002.

[14] M. Shafiq, Y. Ding, and D. Fensel. Bridging multi agent
systems and web services: Towards interoperability between
software agents and semantic web services. In Proceedings
of the 10th IEEE International Conference on Enterprise
Distributed Object Computing (EDOC’06), pages 85–96,
Hong Kong, China, Oct. 2006.

[15] E. L. Soto. Agent communication using web services, a new
FIPA message transport service for JADE. In Multiagent
Systems Technologies, volume 4687 of Lecture Notes in
Computer Science, pages 73–84. Springer, Berlin, Germany,
2007.

[16] W3C. Web services description language (WSDL) 1.1.
http:
//www.w3.org/TR/2001/NOTE-wsdl-20010315,
Mar. 2001.

[17] W3C. SOAP Version 1.2 Part 1: Messaging framework.
http://www.w3.org/TR/2003/
REC-soap12-part1-20030624/, June 2003.

