
Towards Low Latency State Machine Replication
for Uncivil Wide-area Networks

Yanhua Mao
CSE, UC San Diego

San Diego, CA - USA
maoyanhua@cs.ucsd.edu

Flavio P. Junqueira
Yahoo! Research
Barcelona, Spain

fpj@yahoo-inc.com

Keith Marzullo
CSE, UC San Diego

San Diego, CA - USA
marzullo@cs.ucsd.edu

Abstract

We consider the problem of building state machines in
a multi-site environment in which there is lack of trust be-
tween sites, but not within a site. This system model rec-
ognizes the fact that if a server is attacked, then there are
larger issues at play than simply masking the failure of the
server. We describe the design principles of a low-latency
Byzantine state machine protocol, called RAM, for this sys-
tem model. RAM also makes judicious use of attested
append-only memory (A2M) and uses a rotating leader de-
sign to further reduce latency.

1. Introduction

State machine replication is a popular foundation for
constructing highly available distributed services. Byzan-
tine fault tolerance (BFT) is the most used approach for
adapting state machine replication to address service fault
tolerance against adversarial attacks. The first step towards
making this approach practical was PBFT [5], which pro-
vides high throughput BFT state machine replication.

We consider the problem of building state machines in a
multi-site environment in which there is lack of trust be-
tween sites. Given a total of n sites, we have each site
supply one state machine replica, and assume that no more
than f servers can exhibit Byzantine behavior. If a server
behaves in a Byzantine manner because of a fault in the ser-
vice software, then the problem is widespread and hard to
contain: it would need to be detected and fixed using debug-
ging techniques. If the server is Byzantine because of a fail-
ure in the site’s system administration, then the problem is
quite severe for that site but less so for the other sites: mask-
ing the server’s faulty behavior is short-sighted. Instead, the
system administrators need to understand how widespread
the damage is and restore the site’s integrity.

We call this model of site behavior Mutually Suspicious
Domains, or MSD for short. In such an environment, a

client can trust the server in its site since there are more
general mechanisms needed for dealing with compromised
servers and failures of system administration in that site.
Servers in other sites, however, are treated as being possi-
bly uncivil [7], i.e., they may not follow the protocol.

We investigate BFT state machine replication in MSD
environments. While most previous work have focused on
providing high throughput [5, 7, 12], our goal is low la-
tency. We have this goal because low latency is difficult to
achieve in real wide-area replicated systems. Throughput
increases over time because of higher performance hard-
ware and higher bandwidth communication channels; re-
ducing latency, however, requires redesigning protocols.

As an example, the PNUTS [8] platform replicates data
in a wide-area system and has low latency as a primary goal.
With PNUTS, data replicas reside in several continents, and
users access data locally. For availability, data is replicated
across different sites. The latency for guaranteeing serial-
izability across sites, however, is too high to meet the user
expectation. Consequently, the designers of PNUTS have
opted for relaxed per-record consistency that is weaker than
serializability but stronger than eventual consistency.

Our plan is to use an approach similar to what we used in
Mencius [15], which is a wide-area state machine replica-
tion protocol for crash failures. As with Mencius, replicas
take turns as the leader and propose client requests in their
turns. Doing so reduces latency because it enables client
requests to be proposed directly by their local replicas.

The result of our investigation is the initial design of
a protocol that we call RAM. RAM leverages our MSD
model, a rotating leader scheme, and attested append-only
memory (A2M) to reduce latency in multi-site environ-
ments. Throughout this paper, we argue that the properties
of RAM lead to a low-latency protocol in multi-site envi-
ronments and that it is a practical protocol.

1



2. PBFT revisited
To implement a replicated state machine, a group of

servers run an unbounded number of instances of consen-
sus to agree on a sequence of client requests to execute.
Masking Byzantine failures is inherently harder than mask-
ing crash failures. The result is that BFT protocols typi-
cally have higher latency than their crash-failure counter-
parts. In this section, we identify the underling cause of the
higher latency by comparing two protocols: Paxos [13] and
PBFT [5]. Paxos is a crash failure consensus protocol that
tolerates f failures with 2f + 1 replicas. PBFT implements
consensus that tolerates f Byzantine failures with 3f + 1
replicas. For simplicity, we assume n = 2f + 1 for Paxos
and n = 3f + 1 for PBFT in the following sections.

REQUEST PROPOSE ACCEPT REPLY REQUEST PRE-
PREPARE PREPARE REPLYCOMMIT

REQUEST PROPOSE
ACCEPT
+ SKIP

+ P-RELAY
REPLY

+ S-RELAY

Client

Leader

Replica

Replica

Client

Leader

Replica

Replica

Replica

Client

Local 
Replica

Replica

Replica

Replica

Figure 1: The message flow of Paxos in failure free runs.

REQUEST PRE-
PREPARE PREPARE REPLYCOMMIT

Client

Leader

Replica

Replica

Replica

Figure 2: The message flow of PBFT in failure free runs.

Paxos is a leader based protocol. Figure 1 shows the
message flow of Paxos in failure-free executions. At a high
level: (a) it starts when the client sends its request to the
leader using REQUEST message; (b) the leader then assigns
the request with a consensus sequence number and proposes
it by broadcasting PROPOSE messages; (c) if there is no fail-
ure or concurrent leader, the server will accept the proposal
by exchanging ACCEPT messages; (d) a server knows that
consensus has been reached if a majority of the servers have
accepted it. It then executes the request and sends a REPLY
back to the client; (e) The client learns the outcome of the
request as soon as it receives the first reply.

PBFT is also a leader (primary) based protocol. Fig-
ure 2 shows the message flow of PBFT in failure-free ex-
ecutions. At a high level: (a) it starts when the client sends

its request to the leader using REQUEST message; (b) the
leader then assigns the request with a consensus sequence
number and disseminates this assignment by broadcasting
PRE-PREPARE messages; (c) after that, the servers exchange
PREPARE messages to agree on the assignment the leader
has proposed; (d) if 2f + 1 matching PREPARE messages
are obtained, the servers then exchange COMMIT messages
to reach consensus, i.e., to guarantee that even if a leader
(view) change occurs the new leader must propose the same
value for this sequence number; (e) this is established when
a server gathers 2f + 1 matching COMMIT messages. Then
it can execute the request and send a REPLY back to the
client; (f) the client learns the outcome of the request once
it receives f + 1 matching REPLIES.

When running Paxos in multi-site systems, the latency
of a client request is two wide-area communication steps
when the client is co-located with the leader and three steps
otherwise. PBFT requires two more steps than Paxos in
both cases. This is a result of the following two obser-
vations. (1) With PBFT, to prevent a faulty leader from
proposing inconsistent values to different servers, two steps
(PRE-PREPAREand PREPARE) are required to propose a re-
quest. However, only one step (PROPOSE) is required with
Paxos since it assumes crash failures. (2) A Paxos client
learns the outcome of the request as soon as it hears it from
its local server, while a PBFT client must wait for f + 1
matching REPLIES at least f of which must cross the wide-
area network. In the next section, we explore techniques to
reduce latency for PBFT in multi-site systems.

3. Reducing Latency for PBFT
3.1. Mutually Suspicious Domains

In the Byzantine model, there is no trust between pairs
of processes, and both clients and correct servers have to
be aware of Byzantine servers. Applying the Byzantine
model to a multi-site system means that the clients do not
even trust their local servers. However, in many practi-
cal systems, the clients and their local servers share fate:
(1) Clients may rely solely on their local servers to make
progress. (2) Client and server machines in the same site are
more likely to share vulnerabilities as they are in the same
administrative domain. (3) When a local server is compro-
mised, instead of simply masking the failure, it is often the
case that administrative actions are required to recover the
server and the clients rely on it. We therefore propose the
following practical failure model.

Mutually Suspicious Domains (MSD): We model each
site as an independent communication domain. While there
is trust between the server and clients within a domain, we
assume no trust for inter-domain communication, i.e., a do-
main must protect itself from possible uncivil behavior from
other domains. Assuming MSD gives us two advantages in
term of reducing latency for BFT protocols:



Local replies: By assuming MSD and trusting its lo-
cal server, a client can immediately learn the outcome of
a request when it receives the REPLY from its local server,
therefore reducing its latency by one wide-area communi-
cation step.

Local reads: Certain read-only requests that do not re-
quire linearizability can now be executed locally without
going through wide-area communication.

Note that local reads may violate real-time precedence
ordering thus making the history of operation not lineariz-
able [11]. However, serializability is still preserved: clients
only perceive that requests are not executing atomically
if they communicate through channels that are external to
the replicated state machine. If clients only communicate
through the state machine, then they perceive the same or-
der of state changes.

3.2. Rotating leader design

PBFT, as well as other more recent BFT protocols [7,12],
relies on a single leader to propose requests. This makes it
possible for a Byzantine leader to mount performance at-
tacks by, for example, delaying to propose requests from
other sites [2]. With MSD, clients can trust their local
servers. Consequently, a server proposes requests on be-
half of its local clients. This way, the clients do not have to
worry about the server being unfair. The result is a rotat-
ing leader scheme as defined below, similar to that of Men-
cius [15], which is a rotating leader version of Paxos.

Simple consensus: Instead of consensus, we now run
an unbounded sequence of simple consensus instances. In
each instance, one distinguished server is assigned as the
coordinator (the default leader), and all other servers are
called followers. Simple consensus requires that only the
coordinator proposes either a client request (suggest) or a
no-op (skip), and followers only propose no-op (revoke).

Rotating leader: The consensus sequence space is par-
titioned so that the servers take turns to be the coordinator.
The simplest way is to assign coordinators in a round-robin
fashion.

In addition to reducing the risk of being treated unfairly
by a server in a remote site, rotating the leader allows the
REQUEST message to be sent as a local area message. Doing
this reduces the latency by one wide-area communication
step as compared to PBFT when clients are not co-located
with the leader. When there are no concurrent client re-
quests, this reduces the latency observed by the client by
one step. As with Mencius, concurrent requests may cause
the delayed commit problem and increase the latency by up
to one step 1. This extra latency can be reduced by allowing

1As showed in [15], delayed commit can be up to two communica-
tion steps when the servers only send ACCEPT messages to a distinguished
server. When the servers broadcast ACCEPT messages, the upper-bound is
reduced to one step.

out-of-order commit, the same technique used in Mencius,
to safely commit commutable requests at different servers
in different orders.

3.3. A2M for identical Byzantine failure

While it only takes Paxos one round (PROPOSE) for the
servers to know the value proposed by the leader, it takes
PBFT two rounds (PRE-PREPARE and PREPARE) to agree
on the leader’s proposal. The extra delay is necessary to ex-
pose inconsistent proposals due to a Byzantine leader, e.g., a
Byzantine leader may propose some request v to one server
and no-op to another. By running a flooding protocol using
the extra PREPARE phase, PBFT is able to simulate iden-
tical Byzantine failure [4]: if a server has prepared a value
from the leader, all other servers will prepare either the same
value or no value.

Attested append-only memory (A2M): A2M [6] has
been proposed to design BFT protocols that tolerates f fail-
ures with only 2f + 1 replicas, which requires recording
all outgoing messages into A2M and making sure they are
consistent with respect to the semantics of the BFT proto-
col. We, however, propose to use A2M in a limited basis to
implement identical Byzantine failure with only one wide-
area message delay. Each server is paired with a local A2M,
a trusted third-party. Whenever a server proposes a value
(either no-op or a client request) to a consensus instance,
it asks its local A2M to digitally sign the proposal. The
A2M will record all pairs of values and sequence numbers
it has signed 2 and will only sign a proposal if it is consistent
with previous records or has not seen the sequence number
before: this way a server cannot have the A2M signing in-
consistent proposals.

We can now reduce PBFT’s proposing phase from two
steps to just one step if each server’s A2M can be trusted,
an assumption that is only possible if the A2M involved is
simple enough to be implemented correctly without vulner-
abilities. This assumption might hold in practice because
the logic that determines consistency is very simple and is
independent of the specific protocol that uses it.

While a faulty A2M can render the replicated state ma-
chine to an unsafe state, the damage it can cause is limited
because inconsistent proposals can be easily detected and
proved by exchanging the signed proposals. Once proven
faulty, a server (and its A2M) can be excluded from any fu-
ture proposal. Also, the state machine state can be rolled
back and repaired when suitable.

Finally, there are various ways to implement A2M, each
with different guarantees. Chun et al. have proposed both
a software approach with a separate process on each of the
sever machine and a hardware approach with specialized

2In practice, only the most recent suggestion and skips need to be
recorded because a server is not supposed to leave any gaps in the con-
sensus sequence space.



REQUEST PROPOSE
ACCEPT
+ SKIP

+ P-RELAY
REPLY

+ S-RELAY
Client

Local 
Replica

Replica

Replica

Replica

Figure 3: The message flow of RAM in failure free runs.

Message Meaning
REQUEST A Client sends a request to a replica
PROPOSE The coordinator proposes a client request (suggest)
ACCEPT A Replica accepts the proposal

SKIP The coordinator proposes no-op (skip)
P-RELAY A replica relays the PROPOSE messages

REPLY A replica sends the result of a request to the client
S-RELAY A replica relays the SKIP messages

Table 1: Summary of messages in RAM.

devices [6]. Another way to implement A2M is to imple-
ment a replicated service with a separate set of servers at
each site. Extra care can be taken with the A2M service to
secure it against various attacks.

4. Building Protocol RAM

We have explained three techniques to reduce latency for
PBFT. In this section we further explain the high level prin-
ciple of protocol RAM (which stands for Rotating leader,
A2M and MSD) and the issues that arise in making it ef-
ficient and practical. Figure 3 shows the message flow of
RAM in failure free executions and Table 1 summarizes the
meaning of the messages. Note that PROPOSE, SKIP, P-
RELAY and S-RELAY are digitally signed by A2M; all other
messages can be either signed by the sending replica or au-
thenticated using Message Authentication Code (MAC).

4.1. RAM: a state machine with BP-A2M

We introduce BP-A2M (which stands for Byzantine
Paxos with A2M) to solve each instance of simple consen-
sus in RAM. A server with BP-A2M may invoke one of the
three following actions based on its role:

Suggest: The coordinator may suggest by proposing a
client request. It does this by asking its local A2M to sign
this proposal and broadcasting the signed PROPOSE mes-
sage. Upon receiving the PROPOSE message for the first
time, a server accepts it if it has not promised not to do so.
It then broadcasts an ACCEPT message and relays the PRO-
POSE message using P-RELAY. A server learns the outcome
when it receives 2f + 1 matching ACCEPT messages.

Skip: The coordinator may skip by proposing no-op. It
does this by asking its local A2M to sign the SKIP message
and broadcasting it. Upon receiving the SKIP message for
the first time, a server relay the message using S-RELAY
to all other servers and learns no-op has been chosen be-
cause no-op is the only possible outcome: the coordinator
has proposed no-op and all the other servers can only pro-
pose no-op by the definition of simple consensus.

Revoke: For some protocol parameter α (1 ≤ α ≤
f + 1), if f + α servers suspect the current leader is faulty,
a new leader is elected to revoke the suspected coordina-
tor. The new leader does this by polling all the other servers
and gathering a progress certificate. If the progress certifi-
cate indicates that some value v might have been chosen,
the new leader proposes v to reach consensus, otherwise
it proposes no-op. It accomplishes this by following the
same execution path of suggestions. Note that α ≥ 1 en-
sures at least one correct server suspects the current leader.
α ≤ f +1 because up to f servers may be faulty. Choosing
a large α reduces the probability of unnecessary revocation
caused by network jitter (see section 4.2 for a more detailed
discussion).

Note that servers are required to relay PROPOSE and SKIP
messages with P-RELAY and S-RELAY messages respec-
tively, because Byzantine servers can omit messages to up
to f + α − 1 correct servers without triggering revocation.
While the relay is not necessary during failure-free runs, it
ensures that if a correct server learns the outcome, then all
correct servers learn the outcome after one round even if
some of the servers are Byzantine. During failure-free runs,
it takes two rounds to learn a suggestion and one round to
learn a skip. During uncivil runs, up to one additional round
may be needed for all the servers to learn the outcome.

In failure-free executions, a RAM server suggests its
client requests immediately to its index, i.e., the next avail-
able instance it coordinates. A server is also required to
skip its turns when other servers are consuming consensus
instance faster, preventing gaps in the consensus sequence.
SKIP and P-RELAY messages are piggybacked in the AC-
CEPT messages for efficiency. Multiple S-RELAY messages
are also batched together to reduce the overhead of relaying.
When a server has crashed, is slow, or behaves suspiciously,
it is revoked to allow other servers to make progress. Re-
vocation is issued in advanced of correct servers’ index to
prevent the lengthy revocation process from slowing down
other servers. Revocation is also done in large block size at
a time to amortize the cost. We discuss revocation strategies
in more detail in section 4.2.

4.2. Revocation and failure detection

As a result of using the rotating leader design, both Men-
cius and RAM require eventually accurate failure detector
to ensure the liveness of the protocols [15]. While it is not



difficult to implement this class of failure detectors in prac-
tice, unavoidable false suspicions come with any practical
implementation: it is impossible in an asynchronous system
to determine if an unresponsive server has failed or is just
slow. When false suspicion happens with Mencius, a server
can resume action by setting its index to be greater than the
last instance it has been revoked. By suggesting a value
to the new index, the falsely suspected server makes other
servers update their indexes and skip their unused turns.
This quickly synchronizes the indexes of servers.

This strategy, however, should not be applied with RAM:
a Byzantine server can abuse it to get out of the revoca-
tion and continue to behave maliciously. Not being able to
suggest requests on behalf of its clients, a falsely suspected
server can either wait the revocation period out or forward
its requests to other servers expecting that a correct server
proposes them on its behalf. Considering rational behav-
ior [1], this mechanism gives incentive to a rational server
to avoid being revoked, i.e., to act according to the protocol
and act in a timely fashion.

With the new revocation mechanism, a falsely suspected
server can be excluded for action because of occasional net-
work jitter and can not recover quickly. This means that, in
addition to eventual accuracy, the underlying failure detec-
tor should produce as few false positives as possible. We
argue that instead of outputting a binary value (either sus-
pected or not) for each server, a failure detector should out-
put three values: correct, suspicious, or faulty.

A server is believed to be correct if it is timely and no
misbehavior is detected. A server is faulty if definite misbe-
havior is detected, e.g., proposing inconsistent requests to
the same consensus instance due to faulty A2M. This class
of failure should result in repeated revocation in the future
until the faulty server has been repaired and the revocation
is lifted through human intervention. Finally, a server is
believed to be suspicious if it is not acting fairly or in a
timely fashion, for example, failing to batch when it has
high client load, failing to accept suggestions from other
servers in time, or failing to skip its turns in time. Such
a conduct is classified as suspicious because in practice it
is difficult to tell whether it is because of network jitter or
deliberate step of the server. Ideally, a practical failure de-
tection implementation has a low false positive rate when
such behavior is caused by network jitter. Since we require
at least f + α servers to revoke a suspected server, having
a larger α makes revocation triggered by network jitter less
likely: up to α − 1 correct servers can experience untimely
behavior without triggering revocation even in the presence
of f Byzantine servers. Finally, small values for the revoca-
tion block size should be used for occasional misbehavior
caused by network jitter and large values should be used for
repeated deliberate untimely actions. We plan to implement
this property by tracking the frequency of each server’s mis-

behavior and choose larger block size for more frequently
misbehaved server.

4.3. Limiting damage

In this section we explain why a Byzantine server with
RAM can only cause limited increase in latency to requests
proposed by other servers without risking itself being sus-
pected by f + α servers and hence being revoked. A RAM
server participates in the state machine in two ways: it acts
both as the proposer for instances coordinated by itself and
as the acceptor for instances coordinated by other servers.
A Byzantine server can only cause a bounded increase in
latency because:

(1) As an acceptor, a Byzantine server can not keep re-
quests proposed by a correct server from being chosen by
not accepting its suggestion: BP-A2M only needs the 2f+1
responses from the correct servers to make progress.

(2) f Byzantine servers can not keep requests proposed
by a correct server from being chosen by revoking the
server: f + α servers are required to revoke a server.

(3) As a proposer, a Byzantine server can not result in
gaps in the consensus sequence by not skipping its turn
when required: when a correct server has suggested a value,
all other servers must either skip its unused turns or suggest
values to the turns. Failing to do so will result the server be-
ing suspected and revoked, and hence the gap being filled.
In the worst case scenario, a Byzantine server does not have
to respond until it receives the (f +α−1)th P-RELAY mes-
sages. Doing so adds one wide-area message delay. After
receiving the (f +α− 1)th P-RELAY message, a Byzantine
server does not have to send SUGGEST or SKIP messages
for its unused turns to all servers: it can omit the messages
to up to f + α − 1 correct servers without being revoked.
The other correct servers, however, relay messages to en-
sure that the extra latency is at most one wide-area message
delay. Thus, the total extra delay a Byzantine server can
induce is two wide-area message delays.

5. Related work

We have already explained Paxos [13], Mencius [15],
A2M [6] and PBFT [5]. FaB [16] reduces PBFT’s propos-
ing phase from two rounds to one round. The improved
latency, however, comes at the cost of more replicas: it re-
quires 5f + 1 replicas to tolerate f failures.

A common technique to improve the latency for BFT
protocols is to use speculative execution. Speculative ex-
ecution can improve the latency for both PBFT and FaB
by one round. Zyzzyva [12] is PBFT with client specula-
tion. Introducing the client in the loop not only provides
higher throughput but also reduces the latency observed by
the clients. Zyzzyva, however, requires the client to be able
to talk to all the servers, which can be impractical for multi-
site systems, for example, because of inter-site security con-



cerns. A common disadvantage of speculative execution is
that a carefully crafted faulty client or server can dramati-
cally reduce the performance of such protocols by forcing
an expensive recovery path [7].

Aardvark [7] is the first work to design a robust BFT pro-
tocol to provide usable throughput not only during failure-
free execution but also during uncivil runs. It accomplishes
this by routinely changing the leader that fails to maintain
adequate throughput.

Steward [3] is the only BFT protocol we are aware to be
designed specifically for multi-site systems. It is a hybrid
protocol that replicates servers within a site to provide the
illusion of crash-failure semantic for wide-area networks. It
is, however, vulnerable when a site is corrupted or behaving
selfishly.

Finally, RAM focus on masking faulty servers. Tolerat-
ing faulty client behavior is an orthogonal problem and can
be dealt with using published techniques [9, 14].

6. Final remarks

RAM is a low-latency replicated state machine proto-
col designed for wide-area networks consisting of mutu-
ally suspicious domains. Unlike approaches such as the one
PNUTS [8] uses, RAM does not sacrifice serializability to
reduce latency. It is an open question whether RAM’s re-
duced latency is low enough latency to meet the demands
of systems like PNUTS.

RAM is built upon three main concepts: MSD, rotat-
ing leader, and A2M. MSD is a model of uncivil behavior
that assumes trust between clients and server in a site to re-
duce the latency of local tasks such as returning a value to
a request and reading values from the state machine. Al-
though local reads enable lower latency, it implements seri-
alizability, but not linearizability. Given that many systems
currently sacrifice serializability for performance (e.g., Dy-
namo [10], PNUTS [8]) this is acceptable for many real sys-
tems.

The rotating leader scheme has been used with our proto-
col Mencius and proved to be efficient. With Byzantine fail-
ures, however, tasks such as revocation present subtleties,
such as requiring multiple processes to suspect another to
guarantee a correct behavior. Although we have discussed
and presented a framework for the implementation of such
mechanisms we are yet to assess all practical issues that
arise with the assumption of Byzantine failures.

Finally, assuming A2M simplifies the protocol by en-
abling identical Byzantine failures. Abstractly, it is a simple
component that enables fewer wide-area messages in our
protocol. In practice, it is another component that we have
to implement and harden. So far we have no reason to sus-
pect that it is a difficult engineering task to build such a de-
vice, but it is part of ongoing work to determine a good way
of implementing it. Implementing A2M also requires the

use of digital signatures, which are more expensive than the
Message Authentication Code (MAC) used by PBFT; this
can result in a potential throughput bottleneck. If higher
throughput is desired, it can be obtained at the cost of one
extra wide-area delay by broadcasting and relaying authen-
ticated PROPOSE and SKIP messages [5, 17]. The use of
A2M reflects our engineering tradeoff in favor of lower la-
tency over higher throughput.

Acknowledgement
This material is based upon work supported by the Na-

tional Science Foundation under Grant No. 0546686. We
would like to thank the anonymous reviewers for their help-
ful and insightful comments.

References
[1] A. S. Aiyer, L. Alvisi, A. Clement, et al. BAR fault tolerance for

cooperative services. SIGOPS Oper. Syst. Rev., 39(5):45–58, 2005.
[2] Y. Amir, B. Coan, J. Kirsch, et al. Byzantine replication under attack.

In DSN 2008, pages 197–206, Anchorage, AK, USA, 2008.
[3] Y. Amir, C. Danilov, J. Kirsch, et al. Scaling Byzantine fault-tolerant

replication to wide area networks. In DSN 2006, pages 105–114,
Washington, DC, USA, 2006.

[4] H. Attiya and J. Welch. Distributed Computing: Fundamentals,
Simulations and Advanced Topics (2nd edition). John Wiley Inter-
science, March 2004.

[5] M. Castro and B. Liskov. Practical Byzantine fault tolerance
and proactive recovery. ACM Transactions on Computer Systems
(TOCS), 20(4):398–461, Nov. 2002.

[6] B. Chun, P. Maniatis, S. Shenker, et al. Attested append-only mem-
ory: making adversaries stick to their word. In SOSP 2007, pages
189–204, 2007.

[7] A. Clement, E. Wong, L. Alvisi, et al. Making Byzantine fault toler-
ant systems tolerate Byzantine faults. In NSDI 2009, pages 153–168,
Boston, MA, USA, 2009.

[8] B. F. Cooper, R. Ramakrishnan, U. Srivastava, et al. PNUTS: Ya-
hoo!’s hosted data serving platform. VLDB, 1(2):1277–1288, 2008.

[9] J. Cowling, D. Myers, B. Liskov, et al. HQ replication: a hybrid
quorum protocol for Byzantine fault tolerance. In OSDI 2006, pages
177–190, Berkeley, CA, USA, 2006.

[10] G. DeCandia, D. Hastorun, M. Jampani, et al. Dynamo: ama-
zon’s highly available key-value store. SIGOPS Oper. Syst. Rev.,
41(6):205–220, 2007.

[11] M. P. Herlihy and J. M. Wing. Linearizability: a correctness con-
dition for concurrent objects. ACM Trans. Program. Lang. Syst.,
12(3):463–492, 1990.

[12] R. Kotla, L. Alvisi, M. Dahlin, et al. Zyzzyva: Speculative Byzantine
fault tolerance. In SOSP 2007, pages 45–58, 2007.

[13] L. Lamport. Paxos made simple. ACM SIGACT News, 32(4):18–25,
December 2001.

[14] B. Liskov and R. Rodrigues. Tolerating Byzantine faulty clients in a
quorum system. In ICDCS 2006, pages 34–43, Lisbon, Portugal, Jul
2006.

[15] Y. Mao, F. Junqueira, and K. Marzullo. Mencius: Building efficient
replicated state machines for WANs. In OSDI 2008, pages 369–384,
San Diego, CA, USA, 2008.

[16] J. Martin and L. Alvisi. Fast Byzantine consensus. In DSN 2005,
pages 402–411, Los Alamitos, CA, USA, 2005.

[17] T. K. Srikanth and S. Toueg. Simulating authenticated broadcasts
to derive simple fault-tolerant algorithms. Distributed Computing,
2(2):80–94, 1987.


