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Today, application providers can choose from a range of storage choices to provi-
sion their infrastructure for cluster-based applications . Each storage technol-
ogy presents a different point in a complex tradeoff space of cost, capacity, and 
performance . To help application providers choose from these alternatives, we 
developed scc [1] to automate the selection of cluster storage configurations based 
on a formal specification of applications, hardware, and workloads . Our tool allows 
administrators to understand how high-level workload characteristics influence 
the cluster architecture, and in applying scc to several representative deployment 
scenarios, we show how it can enable 2x–4 .5x cost savings when compared to tra-
ditional scale-out techniques .

Identifying an appropriate cluster architecture to host a large-scale service is 
often not straightforward . Given a set of resources to choose from (e .g ., as shown 
in Table 1), an application provider has to answer several questions . What storage 
technologies should be employed, and how should data be partitioned across them? 
Where should caching be employed? What types of servers should be chosen to 
house the selected storage units? 
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In addition, even if the application’s implementation is efficient and there is 
coarse-grained parallelism in the underlying workload, how will algorithmic shifts 
in the application or variations in workload affect the appropriate cluster architec-
ture? Our goal is to automate the process of answering these questions, rather than 
relying solely on human judgment .

Resource MB/s IOPS Watts Cost

7 .2K Disk 
(500 GB)

90 (R) 
90 (W)

125 (R) 
125 (W)

5 $213

15K Disk 
(146 GB)

150 (R) 
150 (W)

285 (R) 
185 (W)

2 .3 $296

SSD 
(32 GB)

250 (R) 
80 (W)

2500 (R) 
1000 (W)

2 .4 $456

DRAM 
(1 GB)

12 .8K (R) 
12 .8K (W)

1 .6B (R) 
1 .6B (W)

3 .5 $35

CPU core — — 20 $137

Server type Resource Limits Cost

Server1
4 cores, 1 Gbps network 

12GB DRAM, 4 SAS slots
$1400

Server2
16 cores, 10 Gbps network

48GB DRAM, 16 SAS slots
$1850

Server3
32 cores, 10 Gbps network

512GB DRAM, 16 SAS slots
$11000

Table 1: Example set of hardware units input to scc. Cost is price plus energy costs for three 
years.

In developing scc, we show how to systematically exploit storage diversity, i .e ., 
select among different physical media, local and remote storage, and various 
caching strategies . First, we determine how the characteristics of applications, 
workloads, and hardware should be specified in order to automate the selection 
of cluster configurations . To do so, we study several representative deployment 
scenarios and identify a parsimonious yet sufficiently expressive set of parameters 
that capture the tradeoffs offered by different types of storage devices and the 
varying demands across application components . To characterize applications, 
we leverage developer knowledge and standard techniques to trace the execu-
tion of applications, and, once developed, application models can be reused across 
deployments . Second, we implement scc, a storage configuration compiler, to take 
specifications of applications, workloads, and hardware as input, automatically 
navigate the large space of storage configurations, and zero in on the configuration 
that meets application SLAs at minimum cost .
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Specifying scc’s Inputs

As shown in Figure 1, scc takes three inputs: (1) a model of application behavior, 
specified in part by the application’s developer and in part by the administrator 
deploying the application; (2) characteristics of available hardware building blocks 
specified by the infrastructure provider; and (3) application performance metrics, 
i .e ., a parameterized service level agreement (SLA) (e .g ., a Web service SLA might 
specify a peak query rate per second) . Given these inputs, scc computes how cluster 
cost varies as a function of the SLA and outputs a low-cost cluster configura-
tion that meets the SLA at each point in the space . scc’s output cost vs . SLA value 
distribution helps administrators decide what performance can be supported cost 
effectively .

While there has been prior work on similarly configuring storage based on formal 
specifications of workloads and hardware [2, 3], these prior approaches take as 
input the workload demands on every component of the application (e .g ., the I/O 
rates to be satisfied by a logical volume of data) . In practice, application providers 
seek to satisfy SLAs that are specified at a higher level . For example, in a photo-
sharing Web service, the target may be to cope with a certain rate of photo uploads 
and downloads . To translate such SLA requirements into demands on individual 
application components, we need a model of the application .

Our characterization of applications accounts for two aspects: its implementation 
and the workload in its planned deployment . To capture an application’s implemen-
tation, we first ask the application’s developer to describe its decomposition into 
compute and storage components, and the interaction between them . We account 
for various characteristics of these components, such as whether the application 
runs in multiple phases, the I/O operations it performs in response to particular 
inputs, and the dependencies between different parts of the application . 

For example, Figure 2 depicts the components, and the interaction between them, 
for an example photo-sharing Web service . Although we place the onus on applica-
tion developers to formally specify the components of their application, an applica-
tion’s specification is reusable across deployments .

Second, we enable those who deploy an application to annotate the specification 
of the application’s architecture with properties of the expected workload in their 
deployment . To do so, we require that the compute and I/O characteristics of an 
application’s components, when subjected to the target workload, be determined by 
running small-scale application benchmarks . We characterize compute compo-
nents by their memory requirements and storage components by their storage 
capacity and persistence needs . We also label I/O operations and inter-component 
dependencies with properties such as the record size being read/written, and 
whether these operations are synchronous or asynchronous . The former helps 
differentiate between random and sequential I/O, while the latter determines 
the application’s ability to trade off latency with throughput . Extracting these 
properties requires tracing the application’s execution, now standard practice in 
resource-intensive performance-critical applications . In the absence of built-in 
tracing support, systems like Magpie [4] can be leveraged .

Automating the Navigation of the Configuration Space

scc determines the cost versus SLA distribution for a given application deployment 
by considering the configuration for each point in the distribution independently . 

scc
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Figure 1: scc takes formal specifications of 
applications, hardware, and SLA metrics as 
input. It outputs a cost-versus-SLA distribu-
tion, while determining the minimum cost 
cluster configuration for every SLA value.

Figure 2: Interaction between tasks and 
datasets in example photo-sharing applica-
tion. Edges between tasks and datasets 
represent I/O with direction differentiating 
input and output. Dotted edges indicate task 
dependencies.
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To compute the cluster configuration for a target SLA, scc needs to determine the 
architecture of the cluster (the types of storage media to be used for each dataset 
and the types of servers used to host storage units and CPUs) and the scale at 
which this architecture must be instantiated (the number of servers, storage units, 
and CPUs, as well as the level of parallelism of each application task) to meet the 
SLA .

Guiding Principles

Two key principles help scc identify the right cluster configuration . First, the 
architecture and scale for every application component can be determined inde-
pendently when all operations are performed asynchronously, but not when some 
operations are synchronous . The SLA for any task only specifies the rate at which 
a task’s execution path must run . In the typical case, where a task’s execution path 
contains some operations that block others, scc needs to determine the “division 
of labor” across these operations that minimizes cost . For example, in a task that 
reads from an input dataset and then writes to an output dataset, in order to meet 
the task’s SLA it may suffice to provision fast storage for any one of the two data-
sets; provisioning fast storage for both datasets may unnecessarily result in higher 
cost due to storage capacity requirements, whereas slow storage for both may incur 
higher costs in satisfying I/O throughput needs . Hence, scc jointly determines 
resource requirements across all application components .

Second, since scc provisions for peak load, it prevents over-provisioning by ensur-
ing that at least one resource is bottlenecked on every server at peak load . (If the 
application provider wants to run the cluster at lower peak utilization, that can be 
specified as input .) Based on our characterization of hardware, there are four pos-
sible bottlenecks on each server: (1) the number of slots, (2) the bandwidth on an 
I/O controller, (3) the number of CPU cores, (4) network bandwidth .

Algorithm

Driven by the need for joint optimization across components, scc represents 
each point in the configuration space by the assignment of storage unit types to 
datasets . This assignment suffices to represent each configuration because, given 
this information, we can compute the number of storage units of each type and the 
number of CPUs necessary to meet the SLA . We can then compute the number of 
servers of each type required to accommodate these resources . As a result, if S is 
the number of storage choices and D is the number of datasets, scc has to search 
through a space of O(SD) configurations; for each dataset, scc can choose any one 
of the S storage options .

In cases where the configuration space is too large to perform an exhaustive 
search, scc performs a repeated gradient descent search . We start with a randomly 
chosen configuration .

In each step, we consider all neighboring configurations—those which differ in 
exactly one dataset’s storage-type assignment—and move to the configuration 
that still meets the SLA with the maximum decrease in cost . We repeat this step 
until we find a configuration where all neighbors have higher cost . Since gradient 
descent can lead to a local minimum, we repeat this procedure multiple times with 
different randomly chosen initial configurations and settle on the minimum cost 
output across the multiple attempts . In our evaluation, we have found that repeat-
ing the gradient descent 10 times is typically sufficient to find a solution close 
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to the global minimum . Therefore, even when determining the configuration to 
satisfy workloads of tens of thousands of queries per second, scc’s running time for 
any particular SLA is within a minute .

Figure 3: scc represents every configuration by the storage type assignments for each of the 
application’s datasets, and searches through this space with gradient descent (with multiple 
randomly chosen initial configurations) to find the minimum cost configuration.

At the heart of scc’s search of the configuration space (summarized in Figure 
3) is a procedure that, given any particular assignment of storage types to data-
sets, determines a cost-effective set of resources to meet the target SLAs . In this 
procedure, scc first determines for each remote dataset (i .e ., not local to any task) 
the number of storage units required of the type assigned to the dataset in the 
configuration state . Second, scc determines the number of CPUs required by every 
task and the number of storage units of the assigned type needed by the task’s local 
datasets . Finally, it solves a linear integer program to determine the types of serv-
ers and number of each kind required to minimize overall cluster cost .

Heterogeneous Configurations Beat Scale-Out

We have applied scc to three distributed applications with distinctly different 
workload characteristics: (1) a product search Web service modeled on Google 
Merchant Center, (2) Terasort, a MapReduce job to sort large tuple collections, and 
(3) a photo-sharing Web service modeled on Flickr . We validated scc by deploying 
these applications on a range of cluster configurations and measuring application 
performance on these configurations .
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In applying scc to these diverse application workloads, we repeatedly find that 
clusters with heterogeneity—rather than conventional homogeneity—across serv-
ers are necessary to optimize cost . The resources required differ across applica-
tion components due to the varying ratios of capacity, compute, and I/O throughput 
needs across components . Figure 4 shows an example of how scc’s recommended 
configuration for our example product search Web service changes when the input 
workload is increased . First, we note that different application components are 
hosted on servers equipped with different types of storage . Second, the types of 
hardware resources allocated to the same application component radically change, 
rather than resources simply being increased in quantity, when the workload is 
increased .

Transitions in Cost-Optimal Storage Configurations

In applying scc to our exemplar applications, we also find that the most cost-effec-
tive cluster architecture depends not only on the application being provisioned 
but also on the workload and performance requirements . Data that was initially 
capacity-bound may become I/O-bound at higher loads, calling for shifts from high 
capacity but slow storage, e .g ., disks, to low capacity but fast storage, e .g ., SSDs . As 
a result, cluster configurations output by scc for our exemplar photo-sharing and 
product search applications result in 2x–4 .5x average savings in cost compared to 
similarly performant scale-out options .

(a)

Uploads/s
Storage unit type

Photos Thumbnails Tags

≤ 5 Disk Disk Disk

5–25 Disk Disk Disk + DRAM

25–330 Disk SSD Disk + DRAM

330–930 SSD Disk + DRAM Disk + DRAM

930–10k Disk + DRAM Disk + DRAM Disk + DRAM

(b)

Figure 5: (a) Cost versus SLA distribution output by scc for example photo-sharing applica-
tion, with (b) the corresponding regimes in the cost-effective architecture. Simply scaling out 
alternate configurations inflates cost by 3x–4.5x on average.
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Figure 4: Illustration of transition in minimum 
cost cluster configuration recommended by 
scc, when input workload is increased. scc 
uses heterogeneous architectures to reduce 
costs in comparison to simply scaling out 
resources.
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As an example, Figure 5(a) shows the cost distribution output by scc across a range 
of SLA values for our photo-sharing application . Perhaps surprisingly, no huge 
spikes are observed in this distribution; this is because scc balances costs across 
the kind of storage, the number of CPUs, and the number of machines provisioned . 
Rather than adding more machines of the same type, the cluster architecture 
transitions to faster storage as the SLA becomes more stringent, with transitions 
in storage type for different datasets seen at different SLA values . 

Figure 5(b) highlights these transitions . Note that the quantity in which different 
types of resources are provisioned varies within each architecture regime speci-
fied by every row in the table .

We further compare the cost output by scc with the cost associated with a scale-
out approach . We compare the scc configuration to the cases where the building 
block is based around: (1) storage servers with four 7 .2k-RPM disks (the cost-
optimal storage type for all datasets at the lowest SLA), and (2) servers with four 
15k-RPM disks . In either case, more storage servers are added as the required rates 
increase . Figure 5(a) shows that the costs in both cases are significantly greater 
than with scc, incurring between 3 and 4 .5 times more cost (note the logarithmic 
y-axis) . Thus, simply scaling out a homogeneous configuration that is cost-effec-
tive at low loads can result in significant cost inflation at higher loads . 

How Robust Are scc’s Recommendations?

scc’s output cluster configuration for a target SLA is a function of both the SLA 
and the values specified for the various attributes in the application and hardware 
specifications . In practice, an administrator may not have precise values for all 
attributes due to incomplete knowledge of the application workload, uncertainty of 
hardware costs, or measurement inaccuracy in benchmarking the application .

Attribute
Range with same architecture

Lowest value Input value Highest value

Avg . photo size 50 KB 200 KB 850 KB

Avg . thumbnail size 1 KB 4 KB 30 KB

SSD unit price $200 $450 $900

Dataset Most sensitive to what change in hardware costs?

Photos 20% drop in $ of 7 .2K-RPM disk

Thumbnails 92% drop in $ of DRAM

Tags 31% drop in $ of 15K-RPM disk

Table 2: (a) Robustness of scc’s output with respect to input values for a sample set of at-
tributes; (b) the change in hardware costs to which scc’s storage decision for each dataset is 
most sensitive.

scc is naturally built to cope with such uncertainty . For every attribute in the input 
specifications, scc varies the value of the attribute in the neighborhood of the ini-
tially specified value . For each attribute, it then outputs the range of values for that 
attribute wherein the cost-effective cluster architecture, i .e ., the types of resources 
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assigned to different application components, remains unchanged; variance of the 
attribute’s value within this range can be handled by simply adding more resources 
of the same type . Outside of that range, the cluster will need to be revamped with 
a different type of resource for some application component, a more onerous under-
taking . For example, we consider our example photo-sharing service with an SLA 
of 100 uploads/s, 300 photo views/s, and 100 tag views/s . Table 2(a) shows the 
value ranges output by scc for a few attributes, within which the cluster architec-
ture is robust to change . For example, we see that as long as the average photo size 
remains between 50 KB and 850 KB, the cluster architecture remains the same as 
that obtained with the input value of 200 KB .

Furthermore, scc can also evaluate the sensitivity of its choice of storage configu-
ration for every dataset in the application . For example, consider our photo-sharing 
Web service again with the same input SLA as above . Based on current hardware 
costs, scc determines that photos be stored on 15k-RPM disks, thumbnails be 
stored on SSDs, and tags be stored persistently on 7 .2k-RPM disks and cached in 
DRAM, in order to meet the SLA at minimum cost . However, these recommenda-
tions are likely to change as prices for storage units drop . scc can determine the 
robustness of its storage option choice in response to such changes in hardware 
prices . To do so, it varies the price of every type of storage unit from its input value 
down to 0, and notes the inflection points at which the optimal storage choice for 
some dataset changes . Based on this analysis, it can determine, for every dataset, 
that change in hardware price to which the current storage choice for the dataset 
is most sensitive . Table 2(b) shows that while the storage choices for photos and 
tags are sensitive to relatively small reductions in the prices for 7 .2k-RPM and 15k-
RPM disks, scc’s recommendation of storing thumbnails on SSDs is very robust to 
price fluctuations .

Conclusion

The primary thesis of our work is that the choice of cluster hardware for an appli-
cation should be informed by the interaction between the application’s behavior 
and the properties of hardware . Rather than relying on human judgment to do so, 
we developed scc to compile formal specifications of these inputs into cost-effec-
tive cluster configurations . We have applied scc to a range of application workloads 
and storage options to demonstrate that scc captures sufficient detail to identify 
the appropriate hardware at any given scale . We find that scc often recommends 
heterogeneous cluster architectures that result in significant cost savings com-
pared to traditional scale-out approaches .

Our implementation of scc is available for download at http://www .cs .ucr .edu/ 
~harsha/scc/ .
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