
Classic Paxos vs. Fast Paxos: Caveat Emptor

Flavio Junqueira
Yahoo! Research Barcelona

fpj@yahoo-inc.com

Yanhua Mao
UC San Diego

maoyanhua@cs.ucsd.edu

Keith Marzullo
UC San Diego

marzullo@cs.ucsd.edu

Abstract

Classic Paxos and Fast Paxos are two protocols
that are the core of efficient implementations of
replicated state machines. In runs with no failures
and no conflicts, Fast Paxos requires fewer commu-
nication steps for learners to learn of a request com-
pared to Classic Paxos. However, there are realistic
scenarios in which Classic Paxos has a significant
probability of having a lower latency. This paper
discusses one such scenario with an analytical com-
parison of the protocols and simulation results.

1 Introduction

With the advent of web services, grid services,
and service-oriented architectures, fault-tolerant
distributed services are now being deployed in many
different network configurations. Consensus is the
central protocol behind services replicated for fault
tolerance. Hence, it is worth understanding how
consensus performs across different network config-
urations. In this brief paper, we consider one point
in this space: the latency of two versions of Paxos
in one wide-area network configuration.

There are different versions of Paxos that have
been designed for different environments and fail-
ure models. All provide safe, but not necessarily
live, consensus in an asynchronous system. One,
which is now usually called Classic Paxos, is rela-
tively simple and has low latency in the normal case
of timely message delivery and no failures. Another
version, called Fast Paxos, has theoretically a lower
message latency than Classic Paxos. It has some
disadvantages over Classic Paxos, including needing
a larger number of replicas, and having collisions,
a scenario that can not occur in Classic Paxos and
that leads to a higher message latency. Collisions

in Fast Paxos are more likely to occur when the
request rate is high.

It is not obvious, however, that the reduced mes-
sage latency of Fast Paxos is in fact real when used
in a wide-area network. Wide-area networks have a
larger variance in message delivery than local-area
networks. Depending on how the servers are dis-
tributed across the wide area and how the clients are
distributed with respect to the servers, Fast Paxos
may in fact have a higher message latency in prac-
tice. In this paper, we show why this is the case.
This paper is meant to encourage further research in
the area of the performance of core protocols across
different network configurations.

2 Overview of the protocols

In this section, we give a quick overview of Clas-
sic Paxos [4] and Fast Paxos [5]. We only consider
the failure-free case and concentrate on the message
flow, the quorum size, and the replication require-
ments for both protocols.

Both Classic Paxos and Fast Paxos are designed
for asynchronous consensus, where a group of pro-
cesses propose values and eventually agree on a sin-
gle proposed value. One of the most important ap-
plications of consensus is state-machine replication,
where clients propose commands and the servers run
a sequence of consensus instances. Each instance
then selects a single command for the replicated ser-
vice to execute.

Servers in both Classic Paxos and Fast Paxos
have roles: there are proposers that propose values,
acceptors that accept proposals and learners that
learn the outcome of the consensus. Servers can
take on all three roles. In Classic Paxos, a distinct
proposer assumes the role of leader. Clients can
send commands to all proposers, but only the leader
actually proposes commands to acceptors. Accep-

1

Classic Paxos Fast Paxos
Comm. steps 3 2

Number of replicas 2t + 1 3t + 1
Quorum size t + 1 2t + 1

Table 1. Summary of the Paxos protocols.
The number of communication steps con-
sider the case with no leader changes. As-
suming that at most t processes can fail,
the number of replicas corresponds to the
minimum degree of replication to guaran-
tee correctness, and the quorum size cor-
responds to the size of minimum subsets
of acceptors necessary for progress.

tors can then accept the proposed value (they may
not, for example, if there are multiple leaders). If
a learner learns that a majority of acceptors has
accepted the same value, it learns that the value
is chosen and it knows that consensus is reached.
In the steady state, it takes three communication
steps (client → leader → acceptor → learner) for
a learner in Classic Paxos to learn the value.

Fast Paxos saves one communication step by al-
lowing clients to propose values directly to the ac-
ceptors (client → acceptor → learner). However,
to preserve safety, a larger quorum of acceptors is
necessary. Assuming a threshold model that a max-
imum of t servers can fail, a learner needs to know
that 2t + 1 acceptors have accepted the same value
for it to know consensus has been reached, while in
Classic Paxos the quorum size is t+1. This implies
that Fast Paxos requires at least 3t + 1 acceptors
while Classic Paxos requires only 2t + 1 acceptors.
In addition, Fast Paxos can suffer from collisions,
which can happen when two or more clients send
proposals at nearly the same time, and acceptors re-
ceive these proposals in different orders. We do not
discuss collisions in this short paper, even though
the additional latency that arises from them can be
large. Table 2 summarizes these facts on Classic
and Fast Paxos.

3 Protocol analysis

Fast Paxos enables a learner to learn a new client
request in two communication steps, whereas Clas-
sic Paxos requires three. In this section, we analyze
the message latency of both flavors of Paxos, and we
only discuss the case in which at most one server is

faulty at any time. In this case, Classic Paxos re-
quires a minimal of three servers while Fast Paxos
requires four. We first introduce some notation. Let
lt(p1, p2) be the latency of a message sent from p1 to
p2 and pc(p1) be the processing time of an operation
in process p1. We also use smin{A,B,C} to denote
the second smallest value among A,B, and C, and
tmin{A,B,C, D} to denote the third smallest value
among A,B,C, and D.

We use the expression learning latency to denote
the time for a given learner to learn a new request.
For Classic Paxos, the learning latency is given by
the following expression:

learncp = lt(Client ,Leader) + pc(Leader)

+ smin{A1, A2, A3}

Ai = lt(Leader,Acceptor i) + pc(Acceptor i)

+ lt(Acceptor i,Learner), i ∈ {1, 2, 3}

If we assume that the processing times are neg-
ligible, then we can simplify the previous equation
to the following:

learncp = lt(Client ,Leader) + smin{A1, A2, A3}

Ai = lt(Leader,Acceptor i)

+ lt(Acceptor i,Learner), i ∈ {1, 2, 3}

For Fast Paxos, the equivalent expression is as
follows:

learnfp = tmin{A1, A2, A3, A4}

Ai = lt(Client,Acceptor i) + pc(Acceptor i)

+ lt(Acceptor i,Learner), i ∈ {1, 2, 3, 4}

If we assume that the processing times are negli-
gible compared to message latencies, then we have
the following:

learnfp = tmin{A1, A2, A3, A4}

Ai = lt(Client,Acceptor i)

+ lt(Acceptor i,Learner), i ∈ {1, 2, 3, 4}

To give an example in which Fast Paxos has a sig-
nificant probability of having a higher latency com-
pared to Classic Paxos, suppose that all servers are

2

in the same site, interconnected through a local-
area network, and the client is in a different net-
work, connected to the servers through a wide-area
network. We can then assume that the network
communication among the servers is negligible com-
pared to the cost of the wide-area latencies. For
Classic Paxos, we then have that the time for a
learner to learn that a client request has been ac-
cepted is given by learncp = lt(Client, Leader). For
Fast Paxos, it is given by:

learnfp = tmin{lt(Client, Acceptori) : i ∈ {1, 2, 3, 4}}

Suppose that wide-area latency ranges from α
to β and follows a continuous probability density
function (PDF) D(x), where x ∈ [α, β]. The cu-
mulative distribution function (CDF) C(x) of D(x)
captures the probability for a message to be deliv-
ered within time x, i.e., C(x) = Pr(latency < x),
where x ∈ [α, β].

The distribution of the learning latency for Clas-
sic Paxos is the same as the wide-area message la-
tency distribution, as it is dominated by the message
from the client to the leader and the communication
among the servers is negligible. The PDF and CDF
for Classic Paxos are then given by Dcp(x) = D(x)
and Ccp(x) = C(x) respectively.

Assuming that the message latencies for Fast
Paxos messages are independent, the CDF of the
learning latency for Fast Paxos is as follows:

Cfp(x) = Pr(learnfp < x) = 4C3(x)(1−C(x)) + C4(x)

Recall that the probability of Fast Paxos learning
a value by time x is the probability of at least three
out of four messages from the client to the servers
being delivered within time x. The PDF is given
by:

Pfp(x) =
dCfp(x)

dx

Now suppose an independent run of both proto-
cols. The probability P that Fast Paxos is slower
than Classic Paxos is:

P = Pr(learnfp > learncp) =
∫ β

x=α

Pfp(x)Ccp(x)dx

Noting that C(α) = 0 and C(β) = 1, it is rela-
tively simple to expand this equation and obtain:

P = 12
∫ 1

C(x)=0

(C3(x)− C4(x))dC(x) =
3
5

This result implies that, independent of the dis-
tribution for wide-area message latencies, Classic
Paxos is faster than Fast Paxos for 60% of the time
in this particular network topology. Note that this
proof only holds for continuous distributions, as if
message latency is constant, for example, then the
result clearly does not hold.

Intuitively, Fast Paxos has to wait for three mes-
sages out of four to make progress whereas Classic
Paxos only requires one particular message. Even
though the one message for Classic Paxos can be
slow, this message is faster in most cases compared
to waiting for three out of four messages.

An alternate way of obtaining this same result,
but under different constraints is the following. As-
sume that the probability distribution of network
latencies is not concentrated on any value. This as-
sumption is weaker than assuming that the PDF
is continuous, and it implies that if we sample the
distribution multiple times, then all samples will
be distinct with probability 1. Fast Paxos sam-
ples the network latency distribution four times.
Let these samples have values A,B,C, D, where
A < B < C < D. Classic Paxos samples the
network latency distribution once. Let that sample
have value E. By assumption, these five samples are
distinct. There are five possible relations between
the value E with respect to the other four values:

1. E < A;

2. A < E < B;

3. B < E < C;

4. C < E < D;

5. D < E.

Each case has the same probability because
we draw A,B,C, D, E from the same distribution.
Thus, the probability of Cases 1, 2 or 3 is 3/5. These
are the cases when Classic Paxos is faster than Fast
Paxos.

4 Simulation

The performance of both variants of the Paxos
algorithm depends upon how fast the network de-

3

livers messages to receivers. Their relative perfor-
mance depends strongly on the variance of message
latency. In many real networks, the variance in mes-
sage latency is high due to traffic variations and
non-deterministic scheduling of processes in a sin-
gle computer. Informally, this observation implies
that most of the time messages are delivered fast,
but occasionally messages take one or two orders of
magnitude more to be delivered.

In this section, we present simulation results on
the latency of Classic Paxos and Fast Paxos. The
simulator we use assumes that processing time is
negligible compared to message latencies, and con-
sequently the learning latency is the sum of the
message latencies. To simulate message latencies,
we considered traces obtained with NWS (Network
Weather Service [8]) in the GrADS testbed [2] over
the period between August and October of 2002.
These are traces of TCP connections between pairs
of machines. Each trace contains the time to estab-
lish a TCP connection, send four bytes, receive four
bytes, and close the connection.

Our simulator is trace-driven. We associate the
history between two computers in our dataset with
a channel of our simulator, and for every message
that crosses the channel, we obtain the latency for
this message from the associated history. Also, we
consider failure-free runs only, and we assume no
conflicts between different clients. Failure-free runs
should be the common case in many systems, and
collisions introduce extra complexity into our envi-
ronment not necessary to make our point. In fact,
had we considered collisions for Fast Paxos, the la-
tency for Fast Paxos would have been higher.

The case we present consists of a client and a set
of servers implementing Paxos, where the client is in
one site and all the servers are in another site. That
is, only the communication between the client and
the servers crosses a wide-area network. For this
scenario, we have selected two different sites A and
B from our dataset, and used the traces between
two machines in different sites, one in A and one in
B, and between pairs of machines in site B.

Figures 1 and 2 shows the cumulative fraction of
requests (y-axis) with a given latency (x-axis). The
latency of Figure 1 includes the time for a client to
send a request to the servers implementing Paxos,
the time for servers to exchange messages, and the
time for a learner to learn this request by receiving
accept messages from a quorum of acceptors. In
addition to the latency mentioned for the case of

Figure 1, the latency of Figure 2 also includes the
time to send a response back to the client.

In these figures, if we draw a vertical line at some
value of x0, then the two y values of the two points
in which this line crosses the curves correspond to
the fraction of instances that Classic Paxos and Fast
Paxos obtain a latency value x ≤ x0. From the
learning curves, for values of x0 < 90ms, the frac-
tion of instances for which Classic Paxos obtain this
latency is larger compared to the same fraction for
Fast Paxos. The curves cross roughly at 90ms and,
for values of x0 > 90ms, the roles change, and the
fraction of instances that have latency x or smaller
is higher for Fast Paxos. The intuition for this re-
sult is as follows. Suppose we pick an instance of
Classic Paxos as a reference, and consider the la-
tency for a client request to reach the proposer. If
the latency for this message is low, then there is a
high probability that an instance of Fast Paxos us-
ing the same latency distribution is higher. This is
due to the variance in message latency. As there are
more messages from the client to the acceptors, the
probability that at least two messages have a higher
latency is significant compared to the request mes-
sage to the proposer in Classic Paxos. If the request
latency in Classic Paxos is high, then there is a high
probability that Fast Paxos is faster because it can
discard one message among all four sent to the ac-
ceptors if this message is too slow.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 60 80 100 120 140 160 180 200

C
um

ul
at

iv
e

fr
ac

tio
n

Latency (ms)

Classic Paxos
Fast Paxos

Figure 1. Cumulative distribution compar-
ing Classic Paxos and Fast Paxos, learn-
ing latency.

4

Note also that the difference between Fast Paxos
and Classic Paxos is more noticeable in the learning
latency graph. For example, if we pick the value
x = 80ms, the difference between the fraction of
instances that have at most this learning latency
value is over 0.7. In the client latency figure, the
difference between y fraction values for the same
latency value x is not greater than 0.5. This is due
to addition of the latency to respond to the client in
the client latency graph, which takes another wide-
area communication step. This new step increases
the variability in the latency of instances as now
instances that are learned fast have a non-negligible
probability of having slow wide-area messages on
the way back to the client.

From a different perspective, we can also draw
horizontal lines to determine the latency values for
which we obtain a particular fraction of instances.
For example, if y = 0.5, then in the learning la-
tency graph Classic Paxos obtains this fraction with
latency 62ms, whereas Fast Paxos obtains this frac-
tion with 83ms. In general, for values of y < 0.9,
the latency value for such a fraction is smaller for
Classic Paxos in both graphs. Classic Paxos and
Fast Paxos swap roles for y > 0.9.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 100 150 200 250 300 350 400

C
um

ul
at

iv
e

fr
ac

tio
n

Latency (ms)

Classic Paxos
Fast Paxos

Figure 2. Cumulative distribution compar-
ing Classic Paxos and Fast Paxos, client
latency.

5 Future directions

Theoretically, counting the number of commu-
nication steps to learn the value is a simple way

to evaluate the performance of consensus protocols.
Indeed, in a system where system load is low and
network delivery variance is small, communication
steps can be an excellent predictor of latency. How-
ever, communication steps do not always translate
directly into practical performance because of the
asynchronous nature of the system. Especially in a
wide-area network, there can be a large variance in
message latency. In addition, often theoretical anal-
ysis overlooks other factors that can add to latency,
such as available network bandwidth and operat-
ing system scheduling. In this section, we discuss a
set of issues to consider when designing a consensus
protocol for a given system.

Message complexity. Message complexity plays
an important role in high-load systems. An increase
in the number of messages by a constant factor can
have significant performance penalty when system
load increases. For example, Dobre et al. propose a
new consensus algorithm that performs better under
collisions [1], but requires a larger number of mes-
sages by a constant factor. Interestingly, their eval-
uation results show that this larger number of mes-
sages can cause a significant performance penalty
when system load is high.

Quorum size. Larger quorum sizes require higher
degrees of replication for the same degree of fault
tolerance. In addition, in systems with significant
variance in message delay and in operating system
scheduling latency, a larger quorum size can lead to
significantly higher latency [3].

Single critical path. The existence of single crit-
ical path makes performance vulnerable to a single
performance problem along that path. Increased
delay from the client to the leader in Classic Paxos
slows the whole algorithm down. Classic Paxos can
achieve 50% performance gain when it is able to
dynamically change the leader [7].

Resistance to collision. Fast learning consensus
protocols, such as Fast Paxos, rely on the absence
of collisions to achieve high performance, and ac-
cording to the Collision-Fast Learning Theorem by
Lamport no general consensus algorithm can be fast
learning upon collisions [6]. Collision is inherently
hard to avoid in wide-area environments, in par-
ticular when there are multiple clients submitting
requests concurrently. Because of large values and

5

high variance with message latency in wide-area en-
vironments, there is often a higher probability of
collisions when using larger quorums such as the
quorums that Fast Paxos requires.

Two possible approaches for achieving high per-
formance across a wide range of environments are:

1. Run multiple protocols concurrently;

2. Switch between protocols depending on the
network conditions.

For example, Fast Paxos outperforms Classic Paxos
when both system load and message delay variance
are low, but can do worse otherwise [1]. One can
hope to achieve the better of two protocols at any
time by using both protocols. However, this may
not be ideal in practice. When running two proto-
cols at the same time, additional care need to taken
to make sure the two protocols choose consistent
value. In addition, more messages will be sent when
running the two at the same time, which may hurt
the system performance as load increases.

Putting aside the policy of deciding when to
switch, switching between protocols is straightfor-
ward when the consensus protocol is used to support
replicated state machines. Switching can be learned
as a proposal in the command sequence of the repli-
cated state machine. A system is usually designed
to have a maximum number (say α) of concurrent
consensus instances, and so if a switching command
is learned in instance i, switching can be achieved in
instance i+α. Furthermore, a no-op command can
be used in bulk to fill the gap from instance i+1 to
i + α − 1 so as to speed up the switching process.
The less straightforward question is when to make
the switch. We believe it is worth further study.

6 Conclusion

Classic Paxos and Fast Paxos are algorithms that
enable efficient implementations of replicated state
machines. Although intuitively Fast Paxos should
always have a lower latency, this paper shows that
increasing the number of messages from the client
to the servers can result in a high number of in-
stances of Classic Paxos having lower latency than
Fast Paxos. This is due to the variability of message
latency in networks. This variability increases the
probability of high latency for an instance of Fast
Paxos even in runs without collisions or failures. We
have shown one wide-area scenario in which we can

observe this effect. A more exhaustive study of sce-
narios in which this effect manifests, and practical
corroboration of these results are subjects of future
work.

Acknowledgements The alternate proof in Sec-
tion 3 is due to Marcos Aguilera. We would like to
thank him for his comments and also thank Rus-
sell Impagliazzo for the comments he gave us about
this section. We also thank Rich Wolski for provid-
ing us with the NWS traces, and the reviewers for
their helpful comments and good insight.

References

[1] D. Dobre, M. Majuntke, and N. Suri. CoReFP:
Contention-resistant Fast Paxos for WANs. Tech-
nical Report TR-TUD-DEEDS-11-01-2006, Depart-
ment of Computer Science, Technische Universität
Darmstadt, 2006.

[2] F. B. et al. The GrADS Project: Software support
for high-level grid application development. Inter-
national Journal of High Performance Computing
Applications, 15(4):327–344, Dec. 2001.

[3] F. Junqueira and K. Marzullo. Coterie availability
in sites. In Proceedings of DISC, pages 2–16, Sept.
2005.

[4] L. Lamport. The part-time parliament. ACM Trans-
actions on Computer Systems, 16(2):133–169, May
1998.

[5] L. Lamport. Fast Paxos. Distributed Computing,
19(2):79–103, Oct. 2006.

[6] L. Lamport. Lower bounds for asynchronous con-
sensus. Distributed Computing, 19(2):104–125, Oct.
2006.

[7] L. Sampaio and F. Brasileiro. Adaptive indulgent
consensus. In DSN’05, pages 422–431, 2005.

[8] R. Wolski. Experiences with predicting resource
performance on-line in computational grid settings.
Proceedings of ACM SIGMETRICS Performance
Evaluation Review, 30(4):41–49, Mar. 2003.

6

