
The Power of Slicing in Internet Flow Measurement

Ramana Rao Kompella
University of California, San Diego

ramana@cs.ucsd.edu

Cristian Estan
University of Wisconsin-Madison

estan@cs.wisc.edu

Abstract– Network service providers use high speed
flow measurement solutions in routers to track dominant
applications, compute traffic matrices and to perform other
such operational tasks. These solutions typically need to
operate within the constraints of the three precious router
resources – CPU, memory and bandwidth. Cisco’s Net-
Flow, a widely deployed flow measurement solution, uses a
configurable static sampling rate to control these resources.
In this paper, we propose Flow Slices, a solution inspired
from previous enhancements to NetFlow such as Smart
Sampling [8], Adaptive NetFlow (ANF) [10]. Flow Slices,
in contrast to NetFlow, controls the three resource bottle-
necks at the router using separate “tuning knobs”; it uses
packet sampling to control CPU usage, flow sampling to
control memory usage and finally multi-factor smart sam-
pling to control reporting bandwidth. The resulting solu-
tion has smaller resource requirements than current pro-
posals (up to 80% less memory usage than ANF), enables
more accurate traffic analysis results (up to 10% less er-
ror than ANF) and balances better the error in estimates of
byte, packet and flow counts (flow count estimates up to 8
times more accurate than after Smart Sampling). We pro-
vide theoretical analyses of the unbiasedness and variances
of the estimators based on Flow Slices and experimental
comparisons with other flow measurement solutions such
as ANF.

1 Introduction
The role of traffic measurement in operating large scale IP
networks requires little or no introduction. Traffic mea-
surement allows network operators to make informed de-
cisions about provisioning and extending their networks,
and it helps solve many operational problems. Specialized
devices operating on relatively low traffic links can per-
form complex security analyses that reveal malicious activ-
ities [18, 20], monitor complex performance metrics [6], or
simply capture packet (header) traces with accurate times-
tamps [7] to be analyzed offline. Much simpler solutions
such as SNMP counters [16] are deployed on even the high-
est speed links, but they only give measurements of the to-
tal volume of the traffic. Flow level measurement at rou-
ters [2, 3] offers a good compromise between scalability
and the complexity of the traffic analyses supported since
it can offer details about the composition of the traffic mix.

In this paper, we propose a new flow measurement solu-
tion: Flow Slices. The contributions of this paper are both
practical and theoretical and we summarize the most im-
portant ones here.

� Flow Slices has separate parameters controlling the
three possible bottlenecks at the router: processing
load, memory, and reporting bandwidth. This separa-
tion allows the solution to be applicable in a wide vari-
ety of scenarios with different resource constraints.

� The flow slicing algorithm at the core of this solution
provides more accurate results than packet sampling us-
ing the same amount of memory. Moreover, it enables
new measures of traffic such as estimates for the num-
ber of active flows. Note: we use Flow Slices to refer to
the the complete flow measurement solution proposed
in this paper and flow slicing to refer to the algorithm
at the core of the solution.

� Flow Slices separates sampling rate adaptation from
binning. Adaptive NetFlow uses more router memory
and measurement bandwidth because its flow records
are active for fixed time intervals (bins). Adaptive sam-
pling rates give Flow Slices the robustness of Adaptive
NetFlow without the overheads of binning. See Table 1
for a comparison of various flow measurement solu-
tions.

� We propose multi-factor smart sampling that takes into
account multiple factors such as byte counts, packet
counts, and the existence of SYN flags in the flow
records to determine the sampling probability for in-
dividual flow records. For comparable configurations,
this decreases significantly the variance in estimates
of the number of flow arrivals while increasing only
slightly the variance for byte counts when compared to
Smart Sampling.

� Optional binned measurement allows us to eliminate
binning error in the analysis phase, while still main-
taining the memory and reporting bandwidth overheads
below those of Adaptive NetFlow.

� We propose novel estimators
� �
,
��
,
������
	

, and
������	

for
various measures of traffic. See Section 4 for a discus-
sion of these and other estimators.

Before we explain Flow Slices, we briefly review some
of the previous work in Internet flow measurement.

2 Related work
NetFlow [17], first implemented in Cisco routers, is the
most widely used flow measurement solution today. Rou-
ters maintain flow records collecting various bits of infor-
mation. Flows are identified by fields present in the header
of every packet: source and destination IP address, proto-
col, source and destination port, and type of service bits.
The flow record keeps information such as the number of



Issue Sampled NetFlow Adaptive NetFlow Flow Slices

Memory usage Variable Fixed Fixed
Volume of flow data reported Variable Fixed Fixed
Behavior under DDoS with spoofed sources Panicky flow Reduction in Small reduction
and other traffic mixes with many flows expiration accuracy in accuracy
Estimates of traffic in small time bins Less accurate Accurate Less accurate
Reporting overhead when using small bins Unaffected Large increase Unaffected
Lifetime of flow record in router memory Min (active timeout, Bin length Min (slice length,

flow length + flow length +
inactivity timeout) inactivity timeout)

Resource usage at end of time bin N/A Reporting spike or N/A
extra memory

Processing intensive tasks Counting Counting and Counting
renormalization

Counting TCP flow arrivals (using SYNs) Yes Yes Yes
Counting all active flows No Separate flow Yes

counting extension
Counting all active flows at high speeds No Hardware flow No

counting extension

Table 1: Sampled NetFlow, Adaptive NetFlow and Flow Slices differ in the types of measurements they support, in how
they adapt to different traffic mixes, and in their resource consumption (memory usage and reporting traffic).

packets in the flow, the (total) number of bytes in those
packets, the timestamp of the first and last packet, and pro-
tocol flag information such as whether any of those packets
had the SYN flag set. NetFlow uses four rules to decide
when to remove a flow record from router memory and re-
port it to the collection station: 1) when TCP flags (FIN
or RST) indicate flow termination, 2) 15 seconds (config-
urable “inactive timeout”) after seeing the last packet with
a matching flow ID, 3) 30 minutes (configurable “active
timeout”)’ after the record was created to avoid staleness
and 4) when the memory is full.

On every new packet, NetFlow looks up the correspond-
ing entry (creating a new entry if necessary) and updates
that entry’s counters and timestamps. Since for high speed
interfaces, the processor and the memory holding the flow
records cannot keep up with the packet rate, Cisco intro-
duced Sampled NetFlow [22] which updates the flow cache
only for sampled packets. For a configurable value of a pa-
rameter � , a packet is sampled with one in � probability.

One problem with NetFlow is that the memory required
by the flow records and the bandwidth consumed to re-
port them depends strongly on the traffic mix. In partic-
ular, large floods of small packets with randomly spoofed
source addresses can increase memory and bandwidth re-
quirements by orders of magnitude. Adaptive NetFlow [10]
solves this problem by dynamically adapting the sam-
pling rate. Adaptive NetFlow divides the operation of the
flow measurement algorithm into equally spaced time bins.
Within each bin, the algorithm starts by sampling aggres-
sively (high sampling probability). If memory is consumed

too quickly, it switches to less aggressive sampling. It
then “renormalizes” existing entries so that they reflect the
counts they would have had with the new sampling rate in
effect from the beginning of the bin. At the end of the bin,
all entries are reported.

Using fixed size bins in Adaptive NetFlow increases
the memory utilization compared to Sampled NetFlow and
causes bursts in reporting bandwidth. Memory utiliza-
tion is higher because, to operate seamlessly between bin-
boundaries, Adaptive NetFlow requires two sets of records
(double-buffering), one for current bin and one for records
in the previous bin while they are being transmitted. With-
out double-buffering, flow records that expire at the bin-
boundary need to be transmitted immediately to create
space for the next set of entries. Large flows spanning mul-
tiple bins are reported separately for every bin increasing
the bandwidth usage. Table 1 gives a summary comparison
of Sampled NetFlow, Adaptive NetFlow and Flow Slices.

The flow records are used to estimate the number of
bytes or packets in various traffic aggregates of interest.
This can give network operators information about domi-
nant applications, the network usage of various clients, traf-
fic matrices, and many other useful statistics [12, 19, 1, 14].
Smart Sampling [8] is a way of reducing the data used by
such analyses without significantly affecting their results.
Smart Sampling retains flow records with probability pro-
portional to the size of their byte counter. The flow records
can also be used to estimate the number of active flows
which is important when looking for denial of service at-
tacks, scans, and worms in the traffic mix. Unfortunately,



if we use Sampled NetFlow it is impossible to recover the
number of flows in the original traffic from the collected
data [5] unless we use protocol information. By using the
SYN flag information in flow records we can accurately es-
timate the number of TCP flows in the traffic mix [9].

3 Description of flow slices
The core flow slicing algorithm is based on the sample
and hold algorithm [11]. After presenting the core algo-
rithm, we discuss four extensions: adding packet sampling
to scale to high speed links, using an inactivity timeout to
reduce memory usage at a router, adding binned measure-
ment to reduce binning error during analysis, and adding
multi-factor smart sampling to control the volume of flow
data reported. The version of Flow Slices described used
for Table 1 has the first two extensions. We also discuss the
configuration parameters of Flow Slices, and how they can
be set adaptively based on the current traffic mix.

3.1 Core algorithm
The core flow slicing algorithm addresses the problem of
reducing the memory usage of the flow measurement mod-
ule. Sampled NetFlow and Adaptive NetFlow use random
packet sampling: they only handle sampled packets. Just
as sample and hold [11], flow slicing uses sampling only to
control the creation of flow entries, once a sampled packet
creates an entry for a flow, all its subsequent packets are
counted (not just the sampled ones). This increases the ac-
curacy of the estimates of packet counts, without changing
the memory requirement. We use the “flow slicing proba-
bility” � to control the creation of flow entries. We expire
and report each entry exactly � seconds after its creation,
irrespective of the rate at which packets arrive for a par-
ticular flow. We call this core algorithm “flow slicing” be-
cause each entry tracks a “slice” of length � from the flow.
Just as in the case of NetFlow, the entry associated with a
flow has a byte and packet counter updated at every packet,
timestamps for the first and last packet, and it stores proto-
col information such as whether any of the packets counted
against the entry had the SYN flag set. To ensure unbiased-
ness of estimators, on creation of an entry we do not ini-
tialize the byte counter to the number of bytes

����� ���
	 in the
packet that caused the creation of the entry, but to

����� ���
	�� �
(see Section 4.2 for more details).

The slice length � is related to the “active timeout” of
NetFlow which controls for how long an active entry is kept
before expiring and being reported (default 30 minutes).
Both of these parameters limit the staleness of the data (i.e.
if we have a long-lived flow, we know that its traffic will be
reported with at most this much delay).

By dynamically adapting the flow slicing probability, we
can control the rate at which entries are created and freed,
thus ensuring that the algorithm stays within its allocated
memory budget  . By keeping the rate at which entries

FLOW MEMORY 

CREATE FLOW ENTRY

TIME OUT 
AFTER SLICE DURATION

LOOKUP FLOW ENTRY

ENTRY NOT FOUND

Flow Record sent to 
Monitoring Station

Packet Arrival

ADAPTIVE 
SLICING PROBABILITY

BASED ON MEMORY USAGE

flow slicing

reduces processing overheads

reduces memory usage

packet sampling

reduces volume of reports
multifactor smart sampling

Figure 1: Architecture

are created, on average slightly below  � � , we can also
keep the rate at which flows records are reported smooth.
In contrast Adaptive NetFlow proposes expiring all active
entries at the end of the measurement bin, so it either has
a large peak in reports, or it requires buffers that increase
the memory usage by almost a factor of two if the reporting
of the records is smoothed out over the next measurement
bin. We do not however, discuss dynamic adaptation in
much detail in this paper, as adaptation techniques similar
to that in [10] can be applied in this context using feedback
from the current memory usage. Note however, that in our
adaptation, we do not require the costly operation of renor-
malization that is required in Adaptive NetFlow. Next we
discuss some of the tuning knobs we provide to control the
three resource bottlenecks (CPU, Memory, Bandwidth).

3.2 Scaling to high speeds
The flow slicing probability � controls the memory usage,
but since we do a lookup in the flow memory for every
packet, flow slicing does not control the processing load. In
the presence of limited processing power, we add a random
packet sampling stage in front of the flow slicing stage (see
Figure 1). A simple solution is to set the packet sampling
probability � statically to a value that ensures that the pro-
cessor performing the flow measurement can keep up even
with worst case traffic mixes. Based on Cisco recommen-
dations [17] for turning on NetFlow sampling for speeds
higher than OC-3, we set � to � ��� for OC-12 links, � � ���
for OC-48, etc. With these packet sampling rates, and with
worst case traffic consisting of the link entirely full with
40-byte packets, the flow measurement module has around�����

per packet and it has time to perform around ��� (wide)
DRAM accesses on average.



3.3 Adding an inactivity timer
Most flows in the Internet are short-lived. If our only mech-
anism for removing an entry is its expiration after the slice
length � and we use a large value for � , at any moment in
time, most of the entries in the flow memory will belong
to flows that are no longer active and just use up memory
waiting to expire. On the other hand having a very short
slice length can lead to an increase in reporting traffic and
loss of accuracy. Adding an inactivity timeout parameter
� ��� ��� 	 � ��� to flow slices reduces the memory spent on obso-
lete entries. Experimental results in Section 6.1 show that
we can significantly reduce the memory requirement by us-
ing inactivity timers. An adaptive algorithm for setting the
flow slicing rate can turn this reduction in memory usage
into an increase in accuracy.

3.4 Adding binned measurement
With flow slices we have the same problem as with Net-
Flow if we want to perform traffic analysis using time bins:
for flow slices that span time bins, we can only guess how
many of the flow’s packets were in each bin, and this in-
troduces errors in the results. This problem is even more
pronounced when analysis is required in very small time
bins to capture more precise traffic dynamics. We can ex-
tend flow slices to support binned measurement of traffic by
keeping multiple sets of byte and packet counters, one set
for each bin the slice passes through. By keeping separate
counters for each bin, the binning error is eliminated en-
tirely, at the cost of increasing the size of the flow records.
Note that the reporting bandwidth costs of this solution
are significantly smaller than those of the solution used by
Adaptive NetFlow where an entire record is reported for
each bin. The byte and packet counters are 8 bytes whereas
a complete record is 48 bytes.

The number of counters per record has to be one larger
than the number of bins required to fit a slice because the
flow slice can overlap only partially with the first and last
bin. The choice of the size of the measurement bin sup-
ported is a compromise between resource consumption at
the router and accuracy of results. Reasonable choices can
range anywhere from the slice length � to 20 times smaller.
For brevity, we do not explore this further in the paper, but
note that depending on the final goal, the flow slicing algo-
rithm can be extended with additional resources to obtain
the desired accuracy.

3.5 Controlling the reporting bandwidth
Smart sampling has been proposed as a way of reducing the
number of flow records without causing much error. Smart
sampling focuses on measuring the number of bytes in ar-
bitrary aggregates of traffic and thus smart sampling favors
flow records with large byte counters over those with small
flow counters. Common packet sizes vary between � � and
��� ��� , so while the packet counts are not proportional to

the byte counts, they are closely correlated. Thus smart
sampling will ensure that the errors introduced in packet
counts are also small. The situation is different with flow
arrival counts. These depend heavily on flow records with
the SYN flag set, and most such records come from small
flows which are discriminated against by smart sampling.
Thus the errors introduced by smart sampling in the flow
arrival counts are significant.

We propose a new variant of smart sampling, multi-
factor smart sampling which takes into consideration not
just byte counts, but also packet counts and SYN flags.
While multi-factor smart sampling still favors flow records
with large byte and packet counts, it also favors records
with the SYN flag, thus ensuring that the errors introduced
into the flow arrival counts are not large either. Because
the exact rule used to determine the multi-factor smart
sampling probability 	 depends on estimators of byte and
packet counts, we postpone its discussion to Section 4.5.

3.6 Setting the parameters of flow slicing
Routers or other network devices performing flow measure-
ment have three types of resources that can become bot-
tlenecks: processing power, flow memory, and reporting
bandwidth. Flow slices use three different “tuning knobs”
to control these three resources: the packet sampling proba-
bility � controls the processing load, the flow slicing pro-
bability � controls the memory usage and the thresholds
determining the smart sampling probability 	 control the
volume of data reported. This can result in more accurate
traffic analysis results than using a single parameter, the
packet sampling probability, to control all three resources,
as Adaptive NetFlow does. This distinction would be ir-
relevant in practice if the only scarce resource would be
the processing power at the router, so it is useful to per-
form a quick sanity check before proceeding any further:
can an unfavorable traffic mix push the memory require-
ments or reporting bandwidth so high that they become
a problem? First, let us assume a traffic mix consisting
of back-to-back minimum sized packets, each belonging
to a different flow (a massive flooding attack with ran-
domly spoofed source addresses). With the packet sam-
pling rates from Section 3.2, the traffic measurement mod-
ule would receive a packet every

�����
. Even with an aggres-

sive inactivity timeout of � ��� ��� 	 � ����
 � seconds, we need a
flow memory that can fit

�� � ����������� flow records, which
at � � bytes/record[17] requires ��� � megabytes. When re-
ported flow records take ��� bytes (ignoring overheads),
so at � ����������� flow records/second, which requires ��� �
megabits/second. These numbers are orders of magnitude
above what one can comfortably afford. The experiments
from Section 6 use realistic traffic mixes to evaluate the
benefits of Flow Slices as compared to Sampled NetFlow
and Adaptive NetFlow.

For each of the parameters of Flow Slices listed in



Parameter What it controls How it is set

Flow slicing probability Memory usage at router Adaptively based on memory usage
Flow slice length Staleness of reported data Statically based on user preferences
Inactivity timeout Reduces memory usage Statically based on typical inter packet arrival time
Packet sampling probability Processing load at router Statically based on worst case traffic
Bin size (optional) Binning error Statically based on user preferences
Smart sampling thresholds Volume of flow data reported Adaptively or statically based on target volume

Table 2: Configuration parameters for Flow Slices.

Table 2, we need to decide whether to set them statically
as part of the router configuration, or dynamically adapt
them to the current traffic mix. Of the three main tuning
knobs, the flow slicing probability � should definitely be
set dynamically to allow the router to protect from mem-
ory overflow when faced with unfavorable traffic mixes.
The thresholds controlling the smart sampling probability
can also be set adaptively. In this paper, we consider
that the packet sampling probability � is static based on
recommended values for different link capacities. Flow
Slices would work just as well with a dynamic packet
sampling probability that could go above the conservative
static value, but since it is hard to guarantee the stability of
such an approach without pushing the packet sampling rate
adaptation logic into hardware (which raises deployment
problems), we chose not to explore such a solution here.

The observant reader might have noticed that without
the optional binned measurement feature Flow Slices re-
sembles Sampled NetFlow. If the dynamic adaptation al-
gorithms set the flow slicing probability � and the smart
sampling probability 	 to � the two solutions perform ex-
actly the same processing. We consider this to be an im-
portant feature. The difference between Sampled NetFlow
and Flow Slices is in how they react to unfriendly traf-
fic mixes and environments with strong constraints on re-
sources. While both Adaptive NetFlow and Flow Slices
provide robustness to unfavorable traffic mixes, Adaptive
NetFlow forces the user to adopt the binned measurement
model (which can increase memory usage and the volume
of reports) even when the traffic mix is favorable.

4 Estimators based on flow slices

In this section, we discuss formulae for estimating traffic
based on the flow records provided by Flow Slices. In prac-
tice, the user would be interested in the number of bytes,
packets or flows in the entire traffic mix or a portion of it
(e.g. the HTTP traffic, etc.). All our estimators focus on
a single flow. To compute the total traffic, the user has to
sum the contributions of all individual flow records. If the
estimators for individual flows have the property of unbi-
asedness, the errors in the estimates for individual flows
will not accumulate, but cancel out (to some extent).

For the purposes of our analysis, a bin is an arbitrary
interval of time of interest to traffic analysis. To simplify
analysis, we start by focusing on the simple case of a sin-
gle bin, with slice length � and inactivity timeout � ��� ��� 	 � ���
larger than the size of the bin and flow memory empty at
the beginning of the bin. Next, we look at how the estima-
tors generalize when we remove these constraints. Table 3
summarizes notation used throughout the paper.

4.1 Estimating packet counts
The packet counter � � in an entry is initialized to � when the
first packet of the flow gets sampled, and it is incremented
for all subsequent packets belonging to the flow. Let

�
be

the number of packets in the flow at the input of the flow
slicing algorithm. Equation 1 gives the formula for our es-
timator

� �
for the number of packets in the flow.

� � 
 � � ��� ����� � (1)

Lemma 1
� �

as defined in Equation 1 is an unbiased esti-
mator of

�
.

Proof: By induction on the number of packets
�
.

Base case: If
� 
 � , the only packet of the flow is sam-

pled with probability � and in that case it is counted as
� � ��� ��� � 
 � � � packets. With probability ��� � it is not
sampled (and it counts as

�
). Thus 	�
 � �� 
 ��� � � ��� � 


� 
 �
.

Inductive step: By induction hypothesis, we know that
for a flow with

��� 
 � � � , 	�

�� � � 
 ��� 
 � � � . Also since

the flow slice length � and the inactivity timeout � ��� ��� 	 � ���
are larger than the bin size, we know that once the flow
gets an entry, all its packets within the bin will get counted
by � � . There are two possible cases: the first packet of the
flow gets sampled, and we get � � 
 �

, or it doesn’t and then
the value of � � and

� �
will be the same as those for a flow

with
��� 
 � � � packets for which the sampling decisions

are the same as for the rest of the packets of our flow.

	�
 � �� 
 ����� � � ��� ��� ��� ������� � � 	�
 �� � �

 ��� ��� � � ��� ��� � � � � � � � 
 �

�



Name Meaning

� flow slicing probability
� packet sampling probability
	 smart sampling probability�

size of flow (in packets) before flow slicing
� � packet counter in flow record� �

estimate of the size of flow before flow slicing (0 if flow not sliced)�
original size of flow (in packets) before packet sampling��
estimate of the original size of flow (0 if flow not sampled or not sliced)�
size of a flow in bytes before flow slicing

��� byte counter in flow record� �
estimate of the number of bytes in flow based on flow slices (0 if flow not sliced)�
original size of flow in bytes before packet sampling��
estimate of the original size of flow in bytes (0 if flow not sampled or not sliced)��
contribution to the estimate of the number of active flows (0 if flow not sliced)� �
contribution to the estimate of the number of flow arrivals (0 if flow not sliced)������ 	
contribution to first estimator of number of flow arrivals (0 if flow not sampled or not sliced)����� 	
contribution to second estimator of number of flow arrivals (0 if flow not sampled or not sliced)� � smart sampling threshold controlling the influence of

��
on 	� � smart sampling threshold controlling the influence of

��
on 	� � smart sampling threshold controlling the influence of

������
	
on 	

Table 3: Notation used in this paper.

If we sample packets randomly with probability � before
applying the flow slicing algorithm, we will want to esti-
mate the number of packets

�
at the input of the packet

sampling stage. Since 	�
 �� 
 � � , it is easy to show that�� 
 � � � � � is an unbiased estimator for
�

.

4.2 Estimating byte counts
Before discussing how to estimate byte count estimates in
flow slices, we show why a simpler solution does not work.
We could have the byte counter � � in the flow entry just
count the total number of bytes in the packets seen once
the flow record is created. Just like with the packet counter,
we need an additive correction to account for the packets
missed before the creation of the entry. We can get an un-
biased estimate for the number of packets missed, but not
for their total size, because we do not know their sizes. We
could assume that the packet sizes are uniform within the
flow, but this would lead to systematic biases because they
are not. As the proof of Lemma 2 shows, storing the size
of the sampled packet that led to the creation of the entry
would solve the problem because using it to estimate the
total number of bytes in the packets not counted does lead
to an unbiased estimator. But this would require another
entry in the flow record. Instead, we store this information
in the byte counter itself by initializing � � to

� ��� � � 	 � � when
the entry is created (

� ��� � � 	 is the size in bytes of the sam-
pled packet). Let

�
be the number of bytes of the flow at

the input of the flow slicing algorithm.

� � 
 ��� (2)

Lemma 2
� �

as defined in Equation 2 is an unbiased esti-
mator of

�
.

Proof: By induction on the number of packets in the
flow

�
. Let

� �
for � from � to

�
be the sizes of the individual

packets. By definition the number of bytes in the flow is� 
	� ���

�
� �

. For convenience of notation, we index the
packet sizes in reverse order, so

�
� will be the size of the

last packet and
� � the size of the first one.

Base case If s=1, the only packet is sampled with pro-
bability � and in that case it is counted ��� 
 �

� � � 
 � � �
bytes. With probability ��� � , it is not sampled (and it
counts as

�
). Thus 	�
 � � � 
 ��� � � � � � 
 �

.
Inductive step By induction hypothesis, we know that

if the first packet is not sampled we are left with the last��� 
 � � � packets and 	�
 � � � 
 � � 
 �
�

� � . If the first
packet gets sampled, we count it as

� � � � and we count the
rest exactly because the flow slice length � and the inactivity
timeout � � � ��� 	 � ��� are larger than the bin size.

	�
 ��� � 
 ����� � � � ��� � � � ������� � � � �

 � � � � � � ������� � � � � 
 � � � � � 
 �

�
If we sample packets randomly with probability � be-

fore applying the flow slicing algorithm, we will want to



estimate the number of bytes
�

at the input of the packet
sampling stage. Since 	�


� � 
 � � , it is easy to show that�� 
 � � � � � is an unbiased estimator for
�

.

4.3 Estimating the number of active flows
We use two definitions for counting flows: active flows and
flow arrivals. A flow is active during a time bin if it sends
at least one packet during that time bin. Consecutive TCP
connections between the same two computers that happen
to share the same port numbers are considered a single flow
and they will be reported in the same flow record under
our current assumptions. Active flows with none of their
packets sampled by the flow slicing process, will have no
records; at least some of the flow records we get should
be counted as more than one active flow, so that the total
estimate will be unbiased. We count records with a packet
counter � � of � as � � � flows and other records as � flow and
this gives us unbiased estimates for the number of active
flows.

�� 

� � � � if � � 
 �

� if � ��� � (3)

Lemma 3
��

as defined in Equation 4 has expectation � .

Proof: There are three possible cases: if a packet before
the last gets sampled, � ��� � , if only the last packet gets
sampled � � 
 � , and if none of the packets gets sampled
there will be no flow record, so the contribution of the flow
to the estimate of the number of active flows will be

�� 
 �
.

The probability of the first case is � ��� � 
 ��� ����� � � ��� � ,
the probability of the second is � ��� � � ��� � � and that of the
third is ����� � � � ��� � ��� � � .

	�

�� � 
 � ��� � � ��� � � ��� � ��� � � � � � ���

����� � � ����� � ��� � � � � 
 �
�

The estimators for the number of bytes and packets in a
flow were trivial to generalize to the case where we apply
random packet sampling before flow slicing because the ex-
pected number of packets and bytes after packet sampling
was exactly � times the number before. For the number of
active flows there is no such simple relationship and actu-
ally it has been shown that it is impossible to estimate with-
out significant bias the number of active flows once random
sampling has been applied [5]. But by changing slightly the
definition of flow counts we can take advantage of the SYN
flags used by TCP flows.

4.4 Estimating flow arrivals
Flow arrivals are defined only for TCP flows which should
start with one SYN packet. A flow is considered to have ar-
rived in a bin if its SYN packet is in that time bin. Flows ac-
tive during a certain bin, but with their SYN packet before

the bin do not count as flow arrivals for that bin (but they
count as active flows). If we look a the core flow slicing
algorithm we can use the following estimator to compute
the number of flow arrivals.

� � 

� � � � if SYN flag set�

if SYN flag not set
(4)

Given that the SYN flag is set in the flow record if it
was set in any of the packets counted against the record, it
is trivial to prove that

� �
leads to unbiased estimates of the

number of flow arrivals if we make an assumption.

Assumption 1 Only the first packet for the flow can have
the SYN flag set.

The flow arrival information is preserved by random
packet sampling. Duffield et al. propose two estimators of
the number of flow arrivals that work based on flow records
collected after random sampling of the traffic [9]. The for-
mulas for the individual contributions of flow records to the
total estimate of the number of flow arrivals are as follows.

� � � 	 

� � � � if SYN flag set�

if SYN flag not set� � � 	 

� � � � if SYN flag set and

� 
 �
� if SYN flag not set or

� � �
Duffield et al. show [9] that both estimators are unbi-

ased 	�

� ���
	 � 
 	�


� ���	 � 
 � for flows that have exactly
one SYN packet. Both estimators overestimate the num-
ber of flow arrivals if flows have more than 1 SYN packet.
For flows without any SYN packets which according to our
definition of flow arrivals (which differs slightly from that
used in [9]) should not be counted, we have 	�


� ���
	 � 
 �
and 	�


� ���	 � � �
, so to make the second estimator unbi-

ased we need another assumption.

Assumption 2 The first packet within the bin for every
flow has the SYN flag set.

Flows retaining SYN packets after the random packet
sampling stage will retain a single SYN packet, and

� ���
	

estimates the number of flow arrivals based on the number
of such flows. We can easily combine it with

� �
to get an

estimator for the number of flow arrivals for the combined
algorithm using random packet sampling and flow slicing.

�� ���
	 

� � � � � � � if SYN flag set�

if SYN flag not set
(5)

� �� 	
treats separately flows that only have a SYN packet

after packet sampling and the others that survive it. Fortu-
nately we can differentiate between the two types of flows
even after flow slicing is applied: if a flow with a single



SYN packet is sampled by flow slicing its record will have
� � 
 � and the SYN flag set; if any other flow is sampled
by flow slicing and it has � � 
 � at the end of the bin it
means that only its last packet was sampled thus it will not
have the SYN flag set because that would put it into the
category of flows with a single SYN packet surviving the
packet sampling. Thus we can combine

� ���	
with

� �
to

obtain another estimator.

�� ���	 
��� � � � � � � � if SYN flag set and � � 
 �
� � � if SYN flag not set and � � 
 �
� if SYN flag not set and � � � �

(6)

Note that if assumption 1 is violated and we have more
than one SYN packet at the beginning of the flow, say
due to SYN retransmissions, both estimators will be biased
towards over-counting. But if repeated SYNs are a rare
enough occurrence, the effect on a final estimate based on
many flow records will be small.

4.5 Multi-factor smart sampling
To reduce the number of flow records, while maintaining
accurate byte counts, smart sampling [8] proposes sam-
pling the flow records with a size dependent probability
	 
����	� ��� � � � � � where � is a threshold parameter con-
trolling the trade-off between the loss in accuracy and the
reduction in the volume of reports. We can adapt smart
sampling to flow slices using 	 
����	� ��� � �� � � � and we
could still estimate byte, packet and flow arrival counts
based on the smart sampled flow records using

�
 
 � � 	 �� ,�� 
 � � 	 �� , and
�� 
 � � 	 �� . But using this formula for

	 results in a variance for
��

much larger than that of
��

because it discriminates against flows with few bytes, and
since most flows have few bytes, they will also produce
most flow records with the SYN flag set – and these are
exactly the records

������
	
and

������	
rely on.

We propose a new variant of smart sampling, multi-
factor smart sampling, which takes into consideration not
just byte counts, but also packet counts and SYN flags. By
picking a smart sampling probability of 	 
����� ��� � � � � � � ��� � � � � �� � � � � we can balance the requirements of the
three estimators. The three individual thresholds control
the trade-off between accuracy and reduction in report vol-
ume separately for the three estimators of bytes, packets
and flow arrivals. Note that multi-factor smart sampling
is a generalization of smart sampling: if we set � � 
 � ,� � 
�� , and � � 
�� , it will assign the exact same sam-
pling probabilities to records as smart sampling.

4.6 Dynamically adjusting the flow slicing
probability

Flow Slices dynamically adjusts the flow slicing probabi-
lity � to the current traffic. This adjustment can happen in
the middle of a time bin. Which one of the many values of

� should we use in our estimators? Are the estimators still
unbiased? Actually none of the proofs depends on having
a single value for � , and they would all work if we replaced
it with a separate � � for every packet. All the estimators
would need to use the value of the packet slicing probabi-
lity in effect at the time the sampling of a packet caused the
creation of the entry. This doesn’t necessarily mean that
one needs to extend the flow entry with one more field, be-
cause it already holds the timestamp of the first packet and
that can be used to determine the flow slicing rate if the
router keeps a small log of recent adjustments to it.

When the flow record expires and it is reported, the re-
port should include the value of the flow slicing probability
� in effect at the time the entry was created. Similarly if
the smart sampling thresholds � � , � � , and � � are adjusted
dynamically, the report should include their current value
so that one can compute 	 during analysis. If one uses just
a few possible values for these parameters (e.g. only pow-
ers of two), each of these sampling rates can be encoded in
less than one byte, so the reporting overhead they impose
is limited (a flow record has 48 bytes).

4.7 Bins, timeouts, and flow reconstruction
To simplify our discussion of the estimators we started with
some strong assumptions: all records last longer than the
bin length, counters count only packets within the bin of
interest, and the flow memory is empty at the beginning
of the bin. In this section we relax these assumptions and
discuss the effects of these relaxations on the estimators.

4.7.1 Continuous operation
The most elementary relaxation of the assumption is to con-
sider continuous operation of the algorithm: records still
last longer than the bin length, and we still have separate
counters for each bin, but there can be active records at the
start of our bin, records created earlier.

The simplest case is that of records spanning the entire
bin. The byte and packet counters will reflect the actual
traffic, so we use

�� 
 � � � � � and
�� 
 � � � � � . If we do not

have a packet sampling stage we can also compute
�� 
 �

if � � � �
and

�� 
 �
otherwise.

�� 
 �
because the flow

started in an earlier bin.
If a flow record expires within the bin we run the anal-

ysis on, it can be the only record for the flow, but it is
also possible that another record for the same flow would
get created after the first record’s expiration. For byte and
packet counts which are additive we can just add the coun-
ters from the first record to the estimates from the second� � 
 � � � � � � � and

� � 
 � �
� �

� �
� . The analysis of unbiased-

ness carries through because we can consider that the bin
is actually two sub-bins, one ending when the first record
ends and the other starting at the same time. Since we have
unbiased byte and packet estimates for both sub-bins, our
estimates for the sum of the bins will still be unbiased.



If � � � � �
, we know that the flow sent packets during the

bin, so we set
��

to 1, otherwise we use Equation 3 with � � �
since an unbiased estimator for whether the flow was ac-
tive in the second sub-bin will tell use whether it was active
overall. This approach preserves overall unbiasedness, but
it makes analysis more complicated because the two flow
records representing the flow cannot be processed indepen-
dently anymore: the contribution of the second record to
the flow count of the bin depends on whether there was a
first record with the same flow identifier. When the router
reports the records, they might not be near each other, so
the analysis has to do “flow reconstruction”: keep a hash
table with flow identifiers and find flow records with the
same flow identifier covering parts of the same bin. The
consequence of not doing flow reconstruction is running
the risk of double counting such flows with more than one
record (which might be acceptable in many settings).

By our definition of flow arrivals from Section 4.4, as
long as assumption 1 holds, if a flow has a record that starts
before the start of the bin, we should use

�� 
 �
, irrespec-

tive of whether we have a second flow record (possibly with
a SYN flag) or not. If we have a second flow record with
the SYN flag set we can clearly say that assumption 1 does
not hold, but without flow reconstruction we might count it
separately against the flow arrival count. In many settings
this type of over-counting is not a serious concern.

������	

should not be used because assumption 2 does not hold.

4.7.2 Slices shorter than bins
When the inactivity timeout � � � ��� 	 � ��� is short or when the
analysis is over long time bins (say hours), flow slices can
be shorter than the bin size. It can happen that we have
more than two records for the same flow within the same
bin. For byte and packet counts we can just add the in-
dividual estimates for the different records and we get an
unbiased estimator for the entire bin. For active flows we
cannot get an unbiased estimate, not even with flow recon-
struction. For flow arrivals, by using

������
	
for the individual

records and summing the contributions without any flow
reconstruction gives unbiased estimates as long as assump-
tion 1 is not violated. For a record started before the begin-
ning of the bin, even if it has the SYN flag set in violation
of assumption 1 we do not count it as flow arrival and thus
have

���� � 	 
 �
.

4.7.3 Binning errors
So far we assumed that Flow Slices uses binned measure-
ment. This guarantees that as long as the analysis is on
time intervals that are exact multiples of the measurement
bins used, it will be easy to determine exactly how many
of the packets and the bytes counted by the record were
within the bin. But by default Flow Slices doesn’t use bins,
and for records that span bin boundaries, the user will have
to guess how the packets and bytes were actually divided
between the bins. We can prove that our reconstruction of

how the traffic divides between the bins is unbiased only if
we make an assumption about the spacing of the packets.

Assumption 3 For every flow at the input of the flow slic-
ing algorithm, the time between the arrivals of all pairs of
its consecutive packets is the same.

We use the following algorithm for distributing the pack-
ets of reported by a flow record that spans bins between
the bins covered by the record. We consider � � packet ar-
rival events, the first one is the timestamp of the first packet
counted by the entry, the last one the timestamp of the last
packet counted by the entry and the remaining � � � �

evenly
spaced between them. We consider that � packet arrived at
every packet arrival event, except for the first event which
has � � � packets, and distribute the packets between bins ac-
cordingly. This can be shown to be an unbiased way of dis-
tributing packets between bins under assumption 3. We rec-
ommend distributing the � � bytes of the flow between bins
proportionally with the number of packets counted against
each bin. Assumption 3 is not enough to prove this distri-
bution of bytes between the bins to be unbiased, we would
need an additional assumption about uniformity of packet
sizes. For flow arrivals, we do not have a binning problem
because we assume that the first packet counted by the flow
record is the one with the SYN, so we count the flow arrival
against the bin the first packet is in.

We cannot achieve provably unbiased binning for bytes
and packets under realistic assumptions about inter packet
arrival times and packet size distributions within flows. We
turn to measurements instead to see how much the binning
error is on typical traffic. We recommend using such ex-
perimental results to decide whether increasing the size of
the flow record by adding multiple counters to do binned
measurement is worth it.

5 Variances of estimators
The estimators discussed in the previous section were all
defined on an individual flow and to compute a measure
(say the number of packets) for a larger aggregate, the an-
alyst would sum the values of the estimators for the flow
records matching the aggregate. The sampling decisions
for different flows are fortunately independent and thus
the variance of the estimates for aggregates are the sum
of the respective variances for the estimators for individual
flows. In this section we focus on studying the variances of
the various estimators for individual flows. We also show
that the variances of the estimators based on the core flow
slicing algorithm are lower than those of estimators based
on random sampling used by Adaptive NetFlow to control
memory usage. As in Section 4, we start with a simplified
setting of a single bin in isolation and then proceed to more
realistic settings. The proofs for the variance results from
this section can be found in technical report[15].



5.1 Packet count variance
For the core flow slicing algorithm we can compute the
variance of the packet count estimator.

� ��� 
 � �� 
 � � � � � � � � � � � ��� � ��� � � � � (7)

Note how this variance is strictly lower than the variance
of results based on random packet sampling ��� � ��� � � � ex-
cept for the case of

� 
 � when the two variances are equal.
The higher

�
, the larger the difference between the variance

of results based on flow slicing when compared with packet
sampling. Since using the same sampling probability will
give the same memory usage for flow slicing and ordinary
sampling, this comparison of variances shows us that flow
slicing is a superior solution. The advantage is most ap-
parent when estimating the traffic of aggregates with much
traffic coming from large flows.

The same conclusion holds if we compare the combi-
nation of packet sampling and flow slicing used by Flow
Slices to the pure packet sampling used by Adaptive Net-
Flow and Sampled NetFlow. Here the fair comparison is
with Sampled NetFlow using a packet sampling probabi-
lity of � � . We can conceptually divide this into a first stage
of packet sampling that samples packets with probability �
and a second one that samples them with probability � . The
first stage has identical statistical properties for the two so-
lutions, thus the difference in the accuracy is given by the
second stage, but comparing the second stages reduces to
comparing flow slicing and packet sampling using the same
probability � .

5.2 Byte count variance
We can also compute the variance of the estimates for the
number of bytes (we number the packet sizes

� �
in reverse

order with
�
� being the size of the last packet and

� � that of
the first one).

� ��� 

� � � 
 � � �

�� � 

�
����� � �

� � ��� � � ��
(8)

Note how this variance is strictly lower than the vari-
ance of results based on random packet sampling � � � ���
� � � �� 


�
� ��

(except for the case of a single packet flow).
This shows that for byte counts too, flow slices are a better
solution than ordinary sampling.

5.3 Flow count variance
We can also compute the variance of the estimates for the
number of active flows. We cannot compare against packet
sampling because there are no unbiased estimates for the
number of active flows based on packet sampled data.

� ��� 

�� � 
 ����� � � ��� � ��� � ��� � � (9)

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 10000  100000  1e+06

R
at

io
 o

f E
st

im
at

ed
/A

ct
ua

l #
 o

f p
ac

ke
ts

# of packets in a flow

Figure 2: Scatter plot depicting the accuracy of packet
count estimates based on flow slices.

5.4 Continuous operation
If we consider continuous operation for the algorithm, we
can have at the beginning of the bin a record for our flow.
If the slice spans the entire bin, it counts everything exactly
and thus the variance of all estimator is

�
. If the slice ends

in the current bin, we can divide the flow into two parts:
one covered by this older record and the rest. For the first
part we have

�
variance for the byte and packet counts and

for the second part we can apply formulas 7 and 8, but in-
stead of

�
being the number of packets of the flow in the

bin, it should be only the number of packets in this second
part and the

� �
be the sizes of those packets. For the flow

count estimate, if the number of packets in the first record
is

�
, the variance of the estimate is

�
, otherwise formula

9 applies. Thus having flow records active at the begin-
ning of the bin does not increase the variance of the packet,
byte and flow count estimates, on the contrary, it can reduce
them significantly.

6 Experimental evaluation
We divide the experimental evaluation into two parts. The
first group of experiments evaluates the efficacy of the core
flow slicing algorithm and the multi-factor smart sampling
algorithm. The second group compares the Flow Slices so-
lution with Adaptive NetFlow (ANF) to show the efficacy
of Flow Slices both in terms of memory usage and accuracy
of estimates. For our evaluations, we obtained traces on an
OC-48 link from CAIDA [4].

6.1 Accuracy of core flow slicing algorithm
In this section, we evaluate the core flow slicing algorithm
against the “full-state” approach. These experiments pro-
vide more insight into the efficacy of the flow slicing al-
gorithm and the effect of changing various variables such
as flow slicing probability and slice length on the memory
usage and the mean relative error of results.



 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.001  0.002  0.003  0.004  0.005  0.006  0.007  0.008  0.009
 5000

 10000

 15000

 20000

 25000

 30000

 35000
M

ea
n 

R
el

at
iv

e 
E

rr
or

 (
F

lo
w

s 
>

 5
00

0)

M
em

or
y 

U
sa

ge

Sampling Probability

Mean Relative Error
Theoretical Error

Memory Usage

Figure 3: Trade-off between the mean relative error and
memory usage as we increase flow slicing probability.

Are estimates unbiased? For this experiment, we fix the
flow slicing probability � to 0.8% (1 in 125) and the slice
duration to 60 seconds. Figure 2 shows the scatter plot
of ratio of the estimated and true flow sizes (in number of
packets) on the y-axis with increasing true flow size on the
x-axis. Note that the plot only shows flows that have more
than 5,000 packets throughout the duration of the trace (1
hour). From this scatter plot, we can see that most of the
flows have been accurately estimated (within 10%). The
estimates converge to the true values as the flow size in-
creases. The presence of two-sided errors empirically con-
firms the unbiasedness of estimates based on flow slicing.

What is the effect of flow slicing probability on the ac-
curacy of these estimates ? According to Equation 7, in-
creasing flow slicing probability increases the accuracy of
estimated flow sizes. Besides, the memory usage should in-
crease as the slicing probability increases. In Figure 3, the
mean relative error for flows larger than 5,000 and the cor-
responding memory usage have been plotted with varying
slicing probability on the x-axis. Apart from the empiri-
cal value of the mean relative error, we also plot the theo-
retical value based on Equation 7. Figure 3 confirms that
increasing slicing probability decreases the mean relative
error while increasing the memory usage. It can also be
observed from the figure that the theoretical and empirical
values of mean relative errors are in close agreement thus
validating the analysis in Section 5.1.

What kinds of errors do we introduce by interpolating
the number of packets in time bins? The goal of this exper-
iment is to study the errors introduced when interpolating
the number of packets in various time bins from flow slices
that do not use bins (they only store the timestamps of the
first and last packet). In Figure 4, the y-axis has the ratio of
estimated to actual size of the flow in a given bin and the
x-axis has the actual flow size (in packets). For this exper-
iment, we used a slice length of 90 seconds and divided it
up equally into 10 bins of size 9 seconds each. Two conclu-

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1000  2000  3000  4000  5000  6000  7000  8000  9000

E
st

im
at

ed
/A

ct
ua

l #
 o

f p
ac

ke
ts

# of packets in a flow

Figure 4: Scatter plot depicting the errors introduced in in-
terpolating bin measures from slices.

sions can be drawn from the results in Figure 4. First, for
large flows, the error in the estimates obtained by interpo-
lating bins from slices is insignificant. On the other hand,
for relatively small flows, interpolating from flow slices re-
sults in much higher error. This is because we divide the
entire volume of traffic for a particular flow among the bins
it covers (see Section 4.7.3 for more details); the error de-
pends on the timing of bursts of traffic. Of course, to cap-
ture the fine grained traffic information, the extension pro-
posed in Section 3.4 could be used, but it would result in
higher memory requirements. Second, we can observe the
presence two-sided errors indicates lack of bias.

What is the effect of multi-factor smart sampling on the
accuracy of estimates? In Section 4.5, we proposed a mod-
ification to smart sampling to improve the accuracy of the
estimates for the number of flow arrivals. Table 4 summa-
rizes the results of our experiment comparing multi-factor
smart sampling with smart sampling. Before we discuss the
details of this experiment, we want to note that we found
that Assumption 1, that only the first packet of a flow can
have the SYN flag set, is often violated in our trace. For
some applications, the average number of packets with the
SYN flag set per flow is almost 2 (due to SYN retransmis-
sions). This affects all estimators of flow arrivals based on
SYN counts. In this experiment, we do not aim to evaluate
the accuracy of estimators based on SYN counts, but the ef-
fect of smart sampling on their estimates. Therefore, we do
not measure the error relative to the actual number of flow
arrivals, but to the estimate of flow arrivals based on the
input to the two smart sampling algorithms. The input we
used is the result of Flow Slices with a packet sampling pro-
bability of � 
 � ��� and flow slicing probability of � 
 � � � ,
using a slice length of 60 seconds and an inactivity timeout
of 15 seconds. The threshold used for smart sampling is� 
 � ��� ����� bytes. The thresholds used for multi-factor
smart sampling, � � 
 � ������� packets, � � 
 � ����� ����� bytes
and � � 
 � � flows, have been selected so that it produces



Port number used as Multifactor s. s. error Smart sampling error Actual traffic
aggregation key Pkts Bytes SYNs Pkts Bytes SYNs Pkts Bytes SYNs

Web (80) 0.4% 0.7% 0.8% 0.3% 0.1% 1.6% 17.5M 1582M 1852K
Kazaa (1214) 0.4% 0.2% 2.4% 0.6% 0.1% 12.4% 2.67M 1527M 44.9K

eDonkey (4662) 0.5% 0.7% 1.5% 1.0% 0.2% 4.5% 2.96M 1075M 344K
telnet (23) 0.6% 0.8% 4.9% 0.9% 1.0% 39.2% 1.84M 79.1M 12.0K
SMB (445) 1.3% 1.6% 1.1% 2.5% 1.8% 3.1% 1.50M 93.3M 1380K
SMTP (25) 1.9% 1.0% 1.4% 2.7% 0.9% 6.4% 0.43M 130M 86.9K
DNS (53) 1.8% 2.4% 3.6% 2.7% 1.7% 16.8% 0.45M 34.8M 6.02K

Table 4: Comparison of the error introduced by multifactor smart sampling and smart sampling into estimates of traffic of
various applications (average of 10 runs with different seeds). Both algorithms were configured to reduce the number of
flow records from 1,700,000 to around 190,000.

Port number/ Adaptive NetFlow Flow Slices(60s) Flow Slices(180s) Flow Slices(300s)
Range Packets Bytes Packets Bytes Packets Bytes Packets Bytes

Web (80) 0.5% 1.4% 0.4% 2.0% 0.5% 1.5% 0.3% 0.9%
Kazaa (1214) 1.2% 2.6% 1.0% 2.4% 0.8% 1.0% 1.0% 1.4%

eDonkey (4662) 1.4% 3.3% 1.7% 2.1% 1.1% 1.9% 1.0% 1.9%
telnet (23) 1.3% 1.5% 2.2% 2.2% 2.1% 1.8% 2.3% 2.5%
SMB (445) 2.6% 3.3% 2.5% 5.0% 2.2% 2.5% 1.7% 4.1%
SMTP (25) 1.9% 8.7% 2.3% 7.7% 3.9% 6.5% 3.8% 6.8%
DNS (53) 2.7% 4.0% 3.6% 2.6% 2.8% 3.6% 4.4% 4.9%� 50,000 9.7% 10.1% 5.4% 5.6% 3.7% 3.9% 3.1% 3.3%

10,000-50,000 20.5% 21.9% 15.3% 16.7% 12.2% 13.5% 10.8% 11.9%
5,000-10,000 30.6% 35.8% 26% 29.4% 22.2% 24.9% 19.9% 22.5%

Table 5: Comparison of the accuracy of estimates based on Adaptive Netflow and Flow Slices with different slice lengths.

approximately same number of records as smart sampling
(from 1,700,000 down to roughly 190,000). Table 4 shows
the error introduced by the two variants of smart sam-
pling into estimates of the traffic of various applications
identified by destination port numbers. While smart sam-
pling introduces very large errors in the flow arrival esti-
mates, multi-factor smart sampling ensures that the errors
are comparable to packet and byte count estimates. For
example, smart sampling incurs an error of 39.2% for tel-
net because it’s small flows (approximately 6,600 bytes per
flow on average compared to 34,000 for Kazaa) are dis-
criminated against by smart sampling. Multi-factor smart
sampling, on the other hand, achieves more accurate flow
arrival counts by biasing its sampling towards records with
non-zero flow arrivals. This typically results in only a slight
reduction in the accuracy of packet and byte count esti-
mates.

6.2 Comparison with Adaptive NetFlow
In this section, we compare Flow Slices with Adaptive Net-
Flow [10], a previously proposed solution based on packet
sampling. For the purposes of evaluation, we fix the packet
sampling probability to 1 in 1024 for ANF. To be fair in our
comparisons with Flow Slices, we split the � � � ��� � proba-

bility into two parts consisting of packet sampling ( � � ���
for our OC-48 trace) and flow slicing probability ( � � � � ).
We compare average error in the estimates for both indi-
vidual flows (categorized by ranges) as well as aggregates
based on destination port number. typically, are Table 5
shows that ANF and Flow Slices have similar errors when
estimating the traffic of various applications (aggregated by
port). However, Flow Slices performs better than ANF (by
about 10%) in the average error for individual flows. Vary-
ing the slice length from 60 to 300 seconds for Flow Slices
did not affect the accuracy of the results significantly, al-
though bigger slice lengths seem to perform a little better
than with smaller slice lengths.

How does Flow Slices compare with ANF in resource
consumption ? Table 6 summarizes the memory usage at
the router and the volume of traffic reports for Flow Slices
and ANF . Without an inactivity timeout, the resource re-
quirements of the two solutions are similar. As we move
to longer bins/slices there is a slight decrease in report vol-
umes and a significant increase in memory requirements.
Adding an inactivity timeout of 15 seconds to Flow Slices
has a dramatic effect. The memory requirements are re-
duced significantly (about 80%) at the cost of only a slight
increase in the volume of the reports (about 5%). With the



Trace Packets Slice length / Memory (entries) Report volume (records)
per second Bin size (in secs) Slices � ��� ��� 	 � ��� ANF Slices � ��� ��� 	 � ��� ANF

1 (1 hour) 23,733 60 1,148 597 1,195 68,537 63,658 64,764
1 (1 hour) 23,733 180 3,021 741 3,141 61,316 57,028 60,229
1 (1 hour) 23,733 300 4,691 793 4,158 57,635 53,953 58,730

2 (10 mins) 124,988 60 5,378 3,065 5,641 25,896 26,362 27,509
2 (10 mins) 124,988 180 14,046 3,944 14,049 22,896 23,800 23,994
2 (10 mins) 124,988 300 21,667 4,218 21,716 21,667 22,841 21,716

Table 6: Comparison of the amount of memory used and the volume of traffic reports generated by Flow Slices and ANF
for different slice lengths (in Flow Slices) and bin sizes (in ANF). The � � � � � 	 � ��� columns show the memory savings Flow
Slices achieve by using an inactivity timeout of 15 seconds.

 0.01

 0.1

 1

 10

 100  1000  10000  100000  1e+06

M
ea

n 
R

el
at

iv
e 

E
rr

or

Attack Rate (pkts/sec)

Adaptive Netflow Pkt Count
Adaptive Netflow Byte Count

Flow Slices Pkt Count
Flow Slices Byte Count

 0.001

 0.01

 0.1

 1

 100  1000  10000  100000  1e+06

M
ea

n 
R

el
at

iv
e 

E
rr

or

Attack Rate (pkts/sec)

Kazaa (Flow Slices)
Kazaa (ANF)

Telnet (Flow Slices)
Telnet (ANF)

Figure 5: Accuracy of ANF and Flow Slices the rate of attack traffic increases. The left plot compares the average relative
error in estimating the size of flows with more than 5,000 packets. The right plot compares the average relative error in
estimating the size of two traffic aggregates – telnet and Kazaa. All results are averages over 10 runs with different seeds.

inactivity timeout, the memory usage of Flow Slices is less
sensitive to the slice length. The lower memory usage of
Flow Slices compared to ANF has important consequences
when the sampling rates are adapted dynamically. Given
the same memory constraints, the sampling rate adaptation
algorithm can converge to more aggressive sampling rates
for Flow Slices which results in more accurate estimates.

What is the effect of Denial-of-Service attacks? Fig-
ure 5 compares the estimates obtained by ANF and Flow
Slices in the presence of a DoS attack. We varied the at-
tack rate from 1000 packets-per-second (pps) to 1.6 mil-
lion pps; each attack packet represents a different flow as
source addresses are spoofed at random. We configured
ANF and Flow Slices to operate within a memory budget
of 8,000 flow records (not including the buffering needed
by ANF to transmit the records at the end of the measure-
ment bin). ANF converged to smaller sampling probabili-
ties as attack traffic gained intensity; the sampling proba-
bility varied from 0.155% at 1,000 pps to 0.0026% at 1.6
million pps. Similarly, for Flow Slices, while the random
packet sampling probability remained constant at � 
 � � ���
(to simulate real hardware constraints), the combined sam-

pling probability � � � varied from 0.781% to 0.0156%. Flow
Slices could afford more aggressive sampling mainly due
to the use of an inactivity timeout of 15 seconds (the slice
length for Flow Slices and bin size for ANF were 60 sec-
onds). On the left, we plot the attack rate on the x-axis and
the mean relative error (both for packet and byte counts)
of flows with more than 5,000 packets on the y-axis, both
in log-scale. For comparable memory usage, in the pres-
ence of DoS attacks, Flow Slices produces traffic estimates
an order of magnitude better than those of ANF. On the
right, we plot the average relative error in estimating traf-
fic that belongs to two different applications – telnet and
Kazaa, using the two flow measurement solutions. While
the accuracy of both the estimates reduces as the attack rate
increases, Flow Slices provides better accuracy than ANF.

While these results do not prove that for all traffic mixes,
Flow Slices perform better than other solutions, these re-
sults do show the efficacy of the Flow Slices on realistic
traffic mixes. When we apply inactivity timeouts to the
Flow Slices, it results in much better re-use of memory at
the cost of a small loss in accuracy and a little increase in
the total volume of flow records reported.



7 Conclusions and future work
Processing, memory, and bandwidth constraints make it
impossible for high speed routers to provide full flow mea-
surements, thus forcing us to consider some type of data
reduction. Different flow measurement solutions perform
this data reduction differently, and one can compare them
by comparing their resource consumption and the amount
of error the data reduction causes in various analyses one
wants to perform on the flow data. Flow Slices offers
a unique mix of qualities among flow measurement solu-
tions: dynamic adaptation of sampling parameters to keep
resource usage within limits, separate parameters for con-
trolling the three potential resource bottlenecks, efficient
use of available resources, and algorithmic solutions for
minimizing the errors introduced by the data reduction.
These qualities are possible due to novel algorithms such as
the core flow slicing algorithm and multi-factor smart sam-
pling and various new estimators. Our experiments also
confirm that compared to the currently used Sampled Net-
Flow and Adaptive NetFlow, Flow Slices constitutes a bet-
ter flow measurement solution.

But the fact that Flow Slices supports well the traffic
analyses discussed in this paper, does not mean there is no
room for improvement. There are many useful analyses of
unsampled flow data that we haven’t considered. For in-
stance, correlation across flows has been used in [19, 13]
to classify different flows (such as control and data con-
nections for the same FTP session) into one application.
Additional metrics such as flow duration and the variability
of packet inter-arrival times have been used to divide flows
into different application categories [21]. Such analyses
require additional information to be preserved by sampling
techniques in order for them to be effective. It is an impor-
tant challenge to adapt data reduction techniques such as
sampling to enable such sophisticated traffic analyses.

8 Acknowledgments
We wish to thank Nick Duffield for discussions that con-
tributed to the idea of the

��
estimator and Ken Keys for

helping us with the code of Adaptive NetFlow. We also
wish to thank the anonymous reviewers whose comments
helped greatly improve this paper. This work was made
possible through NSF grant ANI0074004.

References
[1] Ipmon - packet trace analysis.

http://ipmon.sprintlabs.com/ packstat/

packetoverview.php.
[2] N. Brownlee, C. Mills, and G. Ruth. Traffic flow mea-

surement: Architecture. RFC 2722, Oct. 1999.
[3] N. Brownlee and D. Plonka. IP flow information ex-

port (ipfix). IETF working group.
[4] Cooperative association for internet data analysis.

http://www.caida.org/.

[5] S. Chaudhuri, R. Motwani, and V. Narasayya. Ran-
dom sampling for histogram construction: How much
is enough? In SIGMOD, 1998.

[6] C. Cranor, T. Johnson, O. Spatschek, and
V. Shkapenyuk. Gigascope: A stream database
for network applications. In SIGMOD, June 2003.

[7] The DAG project. http://dag.cs.waikato.ac.nz/.
[8] N. Duffield, C. Lund, and M. Thorup. Charging from

sampled network usage. In IMW, Nov. 2001.
[9] N. Duffield, C. Lund, and M. Thorup. Properties

and prediction of flow statistics from sampled packet
streams. In IMW, Nov. 2002.

[10] C. Estan, K. Keys, D. Moore, and G. Varghese. Build-
ing a better netflow. In Proceedings of the ACM SIG-
COMM, Aug. 2004.

[11] C. Estan and G. Varghese. New directions in traffic
measurement and accounting: Focusing on the ele-
phants, ignoring the mice. In ACM Trans. Comput.
Syst., Aug. 2003.

[12] A. Feldmann, A. Greenberg, C. Lund, N. Reingold,
J. Rexford, and F. True. Deriving traffic demands
for operational ip networks: Methodology and expe-
rience. In SIGCOMM, Aug. 2000.

[13] T. Karagiannis, A. Broido, M. Faloutsos, and
K. claffy. Transport layer identification of p2p traf-
fic. In IMC, Oct. 2004.

[14] K. Keys, D. Moore, R. Koga, E. Lagache, M. Tesch,
and k claffy. The architecture of CoralReef: an In-
ternet traffic monitoring software suite. In PAM, Apr.
2001.

[15] R. R. Kompella and C. Estan. The power of slicing in
internet flow measurement. Technical report, UCSD,
May 2005.

[16] K. McCloghrie and M. T. Rose. Rfc 1213, Mar. 1991.
[17] Cisco NetFlow. http://www.cisco.com /warp

/public /732 /Tech /netflow.
[18] V. Paxson. Bro: a system for detecting network in-

truders in real-time. In Computer Networks, vol-
ume 31, 1999.

[19] D. Plonka. Flowscan: A network traffic flow reporting
and visualization tool. In USENIX LISA, Dec. 2000.

[20] M. Roesch. Snort - lightweight intrusion detection for
networks. In USENIX LISA, 1999.

[21] M. Roughan, S. Sen, O. Spatscheck, and N. Duffield.
Class-of-service mapping for QoS: A statistical
signature-based approach to IP traffic classification.
In IMC, Oct. 2004.

[22] Sampled NetFlow. http://www.cisco.com/

univercd/cc/td/ doc/product/software/ios120/

120newft/120limit/120s/120s11/ 12s sanf.htm.


