
The virtue of dependent failures in multi-site systems

Flavio P. Junqueira
flavio@cs.ucsd.edu

Keith Marzullo
marzullo@cs.ucsd.edu

Department of Computer Science and Engineering
University of California, San Diego

La Jolla, CA - USA

Abstract

A multi-site system consists of a collection of locally-
managed networks called sites, each containing a collec-
tion of processors. In this paper, we present the multi-site
threshold model: a new failure model for multi-site systems
that accounts for failures of sites. Using this model, we
then derive quorum constructions that have two interest-
ing features. First, they generate quorum systems that are
more available than majority quorums. Second, our con-
structions reduce quorum sizes compared to the majority
construction, thus reducing load on the processors and in-
creasing the total capacity of the system. To show that our
model is realistic, we discuss the implementability of this
new model, motivating with data from a real system.

1 Introduction

Determining the failure model is an integral part of the de-
sign of any fault-tolerant distributed system. Understanding
how components fail is important not only for the design
of algorithms and mechanisms, but also to enable proper
evaluation of a system. In this paper, we argue that assum-
ing a single threshold on the number of faulty components
along with independence of failures is not adequate as a
failure model for an important class of distributed systems.
The class of systems we discuss is exemplified by grids.
Grids, like BIRN [4], Geon [7], and TeraGrid [15], are
multi-site systems: they consist of a collection of locally-
managed networks (sites), each containing a collection of
processors. There are other multi-site systems that are not
normally considered grids, such as PlanetLab [13].

In such systems, failures are more often the common case
than the exception. One kind of failure familiar to users are
partitions, in which two sites become inaccessible to each
other. If partitions can occur, then replicating state using
quorum consensus (either directly, or as part of an agree-

ment protocol like Paxos [11]) seems like a bad idea; one
cannot construct a coterie in which it is ensured that there is
always a quorum that can be constructed, where a coterie is
a set of minimal quorums that intersect each other [6]. Be-
cause of this, perhaps it is not surprising that grids often use
replication techniques with consistency properties weaker
than one-copy serializability or simply no replication at all.

In fact, there has been little work done in determining
failure models for multi-site systems. From a protocol point
of view, an ideal failure model strikes a balance between
completeness and simplicity. If it is too simple, then it does
not characterize failure patterns with enough accuracy, but
if it is too complete, it becomes complex to be useful in de-
veloping flexible protocols. For example, quorums formed
from a majority of the processors is based on a simple
failure model, and such quorums have optimal availability
when processors fail independently and with the same fail-
ure probability p < 0.5 [2, 3]. The availability of majority
systems, however, can be seriously impacted by correlation
of failures [1, 16]. A partition is an example of a corre-
lated failure: when two sites fail, then the communication
between the two sites fails while the communication within
the sites does not. Another example is a catastrophic site
failure, such as an A/C failure, that potentially causes all
the processors in the site to crash. A quorum construction
to overcome the traditional coterie construction based on
majorities was proposed in [17]. This approach, however,
guarantees consistency probabilistically and assumes a uni-
form distribution of servers across the Internet.

In this paper, we consider a dependent failure model, as
opposed to an independent and identically distributed one,
that is simple but which we believe better captures the fail-
ure patterns that multi-site systems exhibit. We call it the
multi-site threshold model. First, we give a characterization
of the failure model (Section 2) that is based on a set of
threshold values. We then describe methods for construct-
ing quorums (Section 3) for this model that uses a compact

representation of quorums, minimizes the number of par-
ticipating sites in any quorum, and guarantees consistency
deterministically. We then compare the availability of the
quorums in this construction with quorums constructed of
majorities. To some extent, this is not a fair comparison
because failures are not independent by assumption, but it
gives us an idea of how much better we can do by taking
correlation of failures into account. Finally, based on re-
ported availability figures for BIRN and our own experi-
ences, we argue that the failure model is in fact plausible
(Section 4).

2 The multi-site threshold model

A multi-site system is a collection of processors P and a
collection S of sites such that S is a partition of P , where
processors within the same site are connected by a local
area network and processors in different sites are connected
by a wide area network, such as the Internet or the Internet2.
The processors represent the computing resources available
in the system, whereas the sites correspond to the organiza-
tion of these processors. In a multi-site system deployed on
the Internet, a site represents an institution that hosts pro-
cessors that are part of the system.

We differentiate two types of failures in a multi-site sys-
tem: site failures and processor failures. Site failures cor-
respond to all the processors of a particular site becoming
unavailable. A processor fails when it stops providing ser-
vice, i.e., we assume a crash model for processor failures.

Typically, fault-tolerant systems are designed using the
threshold model: out of n components at most t can fail.
This model is appropriate when failures are independent
and identically distributed. As a principle learned from the
threshold model, for every part of a system in which the
replicated components fail independently, using a threshold
is an appropriate way of modeling failures. We therefore
propose a model with two parameters: fs and Fp. The pa-
rameter fs corresponds to a threshold on the number of sites
that can be simultaneously unavailable, and Fp is a vector
of thresholds, one for each site. We use Fp[i] to denote
the threshold on the number of processor failures in site Si

when Si is available.
This failure model is dependent because it enables a sep-

aration of failures that cause the simultaneous unavailability
of multiple processors from the ones that cause processors
to fail independently. The use of thresholds as opposed to a
more expressive model, as the one in [9], is due both to the
similar availability characteristics of sites and to the homo-
geneity of processors in a single site. If there are either sites
or processors that are unreliable compared to others, then

these unreliable components can be simply ignored. We
discuss further the implementability of the model in Sec-
tion 4.

Compared to the threshold model, our model enables
more flexibility in expressing the sets of processors that can
fail. Because sites can have different numbers of proces-
sors and different sites can have different thresholds, the
minimum number of available processors at a given time is
actually dependent upon the sites available, the number of
processors in these sites, and their threshold on the number
of faulty processors. In fact, such minimum sets are sur-
vivor sets in the model of [9].

In the following section, we describe quorum construc-
tions for the multi-site threshold model.

3 Choosing quorums

Recall that a coterie Q is a collection of quorums such that
every quorum is a subset of P , no quorum is strictly con-
tained in another, and every pair of quorums intersect. We
say that a coterie is available when there is at least one quo-
rum in this coterie that contains only available processors.

From the multi-site threshold model, it is clear that we
have to use quorum systems that span multiple sites if
fs ≥ 1. However, this principle is not sufficient for achiev-
ing high availability, as processors in an available site can
fail. We now describe two constructions that improve over
Majority, where Majority denotes the set of quorums com-
posed of majorities of processors.

Consider the following construction. Let fs and Fp be
values such as in the model described in Section 2. To deter-
mine quorums, we first pick 2fs+1 sites out of S. Then, for
each Si, we choose a quorum system such that the quorums
are composed only of processors of Si using the thresh-
old Fp[i]. We select a subset S′ of Si of size 2Fp[i] + 1,
and we choose the quorums for Si to be all the subsets of
S′ of size Fp[i] + 1. A quorum in Q is then composed of
quorums from fs + 1 sites.

To illustrate the use of this construction, suppose that
|S| = 3, fs = 1, |Si| = 3, and Fp[i] = 1, i ∈ {1, 2, 3}.
First, we select the sites to use. Since 2fs + 1 = 3, we use
all the sites. A quorum for a site Si is composed of two
processors of Si. From the construction, a quorum in Q is
hence composed of four processors, two from a site Si and
two from a site Sj , i 6= j.

We call this construction Qsite. Qsite shares many of the
features of the hierarchical constructions in [10] and [5].
These constructions, however, do not consider placement
of replicas. In fact, the construction in [10] assumes inde-
pendent and identical probability of failure for processes.

t = 1 t = 2

fs Majority Qsite Majority Qsite
1 5 4 8 6
2 8 6 13 9
3 11 8 18 12
4 14 10 23 15

Table 1: Quorum sizes.

The construction in [5] goes a step further and assumes that
replicas are spread across many sites, but it assumes that
the set of replicas is given, and hence it does not propose a
strategy for replica placement.

We now compare Qsite with Majority, using quorum
sizes as a metric. For this comparison, we assume that all
the sites have the same threshold t on the number of faulty
processors, and both constructions use the same processors.
Table 1 shows quorum sizes for different values of fs and t.
The main observation is that Qsite requires fewer proces-
sors in all the cases, and the difference between the two
constructions increases with the value of fs. Using fewer
processors in each quorum reduces the load handled by any
particular processor. Assuming that quorums are uniformly
chosen by clients, having smaller quorums implies that pro-
cessors have to handle fewer requests. Load is inversely
proportional to the capacity, and by reducing load we are
actually increasing the total capacity of the system, where
the capacity is the number of requests the system can handle
per unit of time [12].

For both constructions, Majority and Qsite, the quorum
system is available as long as there are fs+1 sites available.
However, because Majority uses larger quorums, it tolerates
fewer processor failures. For example, suppose that fs =
t = 1. From the table, we have that Majority uses quorums
of size 5. This implies that Majority not only requires that
two sites are available, but also that at least one of the sites
contains no faulty processors. A coterie generated by Qsite
does not have this same constraint, and it is available as
long as there are two sites available, each site containing
some majority of processors available.

Of course, the number of processors per quorum in-
creases with the value of fs and the values in Fp[i] for both
constructions. We can alleviate this problem by sacrificing
availability, but still obtaining better availability and load
compared to Majority.

Suppose that fs = 2 and Fp[i] = 1 for every Si ∈ S. We
constructQ using four sites instead of five as in the previous
construction. For this, we assume that S contains at least
four sites, and each site contains at least three processors.
As for Qsite, we first select quorums for each site. Suppose
that we are to use sites Sa, Sb, Sc, and Sd. For each site

Si, i ∈ {a, b, c, d}, we select three processors. Now let
Qi be the set of quorums for site Si such that each quorum
contains two out of the three processors selected from Si.
We then have the following quorum system:

Q = {qaqbqc : qa ∈ Qa ∧ qb ∈ Qb ∧ qc ∈ Qc} ∪
∪ {qaqd : qa ∈ Qa ∧ qd ∈ Qd} ∪
∪ {qbqd : qb ∈ Qb ∧ qd ∈ Qd} ∪
∪ {qcqd : qc ∈ Qc ∧ qd ∈ Qd}

where qiqj denotes the union of qi and qj .
It is easy to observe that any pair of quorums in Q in-

tersect, and that no quorum is strictly contained in another.
According to this construction, if there is a single site un-
available, then Q is available. As for Majority, if a single
site is unavailable, then the coterie is available only if at
least one of the available sites has all processors available.
If there are two sites Si and Sj unavailable, then Q is avail-
able as long as i, j ∈ {a, b, c}. Using Majority, however,
requires seven processors and the set of quorums is unavail-
able whenever there are two sites unavailable.

Similar constructions can be obtained for other values
of fs.

4 Failures in multi-site systems
We have shown that the multi-site threshold model has use-
ful properties. In this section, we argue why we believe it is
also realistic.

4.1 Site failures
To understand how sites fail in a multi-site system, we
studied the failure data of a particular system, the BIRN
Grid [4]. We obtained monthly availability data for 15
BIRN sites from January 2004 through August 2004.1 The
monthly availability of a site is given by:

Availability =
Total hours− Unplanned outages

Total hours
× 100

where “Total hours” is the total number of hours in a month
deducted the scheduled down time, and “Unplanned out-
ages” is the total number of hours that the site was not avail-
able not considering scheduled down time.

According to this availability data, a site becoming un-
available is a surprisingly common event. On average, each
site did not have 100% availability on 5 out of the 8 months,
which implies that in a given month several sites have un-
planned outages and become unavailable as a consequence.

1This data is consistently collected by the BIRN staff, and made avail-
able through their web page. To determine availability of a site, they use
pings and notifications from the SRB (Storage Resource Broker) service.

 0

 2

 4

 6

 8

 10

 12

< 97< 98< 99< 99.8< 100

A
ve

ra
ge

 n
um

be
r

of
 s

ite
s

Monthly availability

Figure 1: Number of sites with availability under α, for various
values of α. The error bars correspond to the standard error for
each point.

Figure 1 summarizes the availability of sites. For each
month, we counted the number of sites that had availabil-
ity below some value α, for different values of α. We
then computed the average across the eight months for each
value. This average is what we plot in Figure 1. From the
figure, on average over 10 sites do not have 100% availabil-
ity in a month.

According to our definition of availability, if the avail-
ability of a site is 99%, then it was down for approximately
7 hours in that month, and hence every 1% of unavailability
corresponds to 7 hours of unplanned down time. From Fig-
ure 1, there is on average at least one site with availability
less than 97%, which implies that such a site is unavailable
for over 21 hours. In fact, we observed availability values
as low as 79%.

Because we aim at constructing coteries that leverage the
existence of multiple sites, we computed the average worst-
case down time. Table 2 shows the worst-case unavailabil-
ity for different numbers of sites averaged across the eight
months. In more detail, for each month we determine the
x sites, x ∈ {1, 2, 3, 4}, with lowest availability, and then
compute how many minutes during that month we expect
the x sites to be simultaneously unavailable. To compute
such numbers, we assume that the events causing the sites to
be unavailable happen independently. For each value of x,
we then average the number of minutes obtained across the
eight months. We observe that the average worst case varies
from over 55 hours for a single site to a fraction of a minute
for four sites.

Back to the model of Section 2, one can determine the

Number of sites Unavailability in minutes
1 3288 (979)
2 87 (33)
3 1.9 (1.0)
4 0.017 (0.009)

Table 2: Average worst-case unavailability across eight months
with standard error in parentheses.

value of fs by looking at the values of Table 2 and choosing
the one that corresponds to requirements of the application.
For example, if an application sets fs to zero and uses a
single site, then it will experience, considering the worst
case, 55 hours of unavailability in a month on average.

In trying to determine the causes of low monthly avail-
abilities in multi-site systems, we identified a few causes
for a site to be unavailable, observed in BIRN sites, in Tera-
Grid sites, and in a local computer cluster. These causes
are:

1. Software incompatibility/misconfiguration;
2. Power failures;
3. Failure of shared resources (e.g. storage);
4. Broken pipes causing floodings;
5. Local campus network problems;
6. Loss of air-conditioning.
Note that the order in this list is arbitrary. We are cur-

rently attempting to further quantify these failures.

4.2 Processor failures
Even when sites remain available, individual processors can
become unavailable due to, for example, hardware faults.
Within a site, it is often the case that most or all the pro-
cessors have the same hardware and software platforms be-
cause of the difficulty in managing a heterogeneous envi-
ronment. We hence assume that the reliability of proces-
sors within a site is uniform and independent. Of course,
this assumption may be violated by viruses and worms, but
their effects are outside the scope of this work. Replication
techniques for coping with Internet pathogens are discussed
in [8].

In multi-site systems, it is uncommon to have several un-
available nodes at a time in a single site, although it is fairly
common to have several sites with faulty processors simul-
taneously.2 This happens because the failure of any proces-
sor triggers a repair process on the site, and the probabil-
ity of a processor being repaired is usually higher than the
probability of a new failure for a production system.

2Note that failures affecting most or all of the nodes of a site are mod-
eled with site failures.

. . . .0 1 2 n

p ppp

r0 r1 rn-1r2

Figure 2: Model for a single site with n processors.

We can then model failures in sites using a Markov
chain [14]. Instead of modeling the whole system, we
model sites individually. By the characteristics of the sys-
tems we are assuming, sites operate independently, and the
operation of the processors at a site has little or no influ-
ence on the operation of processors at another site. As a
consequence, sites change states concurrently. In addition,
modeling the whole system as opposed to modeling sites
individually causes the number of states to increase signifi-
cantly with the number of sites.

To model failures in a site, we assume that processors
fail independently. Thus, states correspond to the number
of faulty processors in that site, and the probability of un-
dergoing a transition from a state with f faulty processors to
a state with f + 1 processors is p. On the other hand, repair
transitions (the ones from f + 1 to f) may have probabili-
ties that change with the value of f . For example, resources
to repair processors can be progressively allocated as more
processors fail. As a result, the repair probability remains
constant or even increases with the value of f . If there is
a fixed amount of resources allocated to repair processors,
and these resources are used independently of the number of
failures, then the repair probability decreases with the value
of f because these resources have to be shared among the
faulty processors.

Figure 2 depicts the chain we just described. Assuming
that no transition probability is zero, we have that this chain
is irreducible and ergodic. According to the model, proces-
sors fail independently, but the probability of repair (under-
going a transition from state f + 1 to f) may change with
the value of f . In our model, we use rf to denote the prob-
ability that the site undergoes a transition from state f + 1
to state f .

Repairs in different sites happen independently, and
therefore the probability of a repair transition does not in-
crease with failures in different sites. That is, if a processor
fails in site Si and another in site Sj , i 6= j, they do not mu-
tually affect their repair probabilities. This probability is
affected, according to the previous description, if Si = Sj .

Using this model, we can easily compute a threshold on

the number of failures for each site. First, we need to de-
termine a target degree of reliability R, which is the proba-
bility that the number of simultaneous processor failures in
any site is higher than expected. Because our model is an
irreducible ergodic Markov chain, we can compute the lim-
iting probabilities of all states [14]. That is, the probability
of being at a state j after a long time has elapsed, indepen-
dent of the initial state i (limn→∞ Pn

ij). Using these lim-
iting probabilities, we can determine a threshold for each
site: the threshold for a site Si is the number of failures
associated to the first state that has a limiting probability
smaller than R.

To illustrate the process of obtaining thresholds for the
sites of a system, we give two examples. Let S be a collec-
tion of sites such that each site has three processes. Suppose
that in both examples, the probabilities of failure and repair
are the same across all the sites. In the first example, these
probabilities are as follows: p = 0.01, r0 = 0.3, r1 = 0.4
and r2 = 0.5. Computing the limiting probabilities, we
have the following:

limn→∞ Pn
i0 = 0.96695

limn→∞ Pn
i1 = 0.03223

limn→∞ Pn
i2 = 0.00080

limn→∞ Pn
i3 = 0.00002

If R is 0.001, for instance, we have that the threshold is
one for every site. For the second example, we maintain the
value of a failure probability, but we reverse the order of the
repair probabilities. We then have that the probabilities for
this example are: p = 0.01, r0 = 0.5, r1 = 0.4, r2 = 0.3.
Computing the limiting probabilities, we have that:

limn→∞ Pn
i0 = 0.97989

limn→∞ Pn
i1 = 0.01960

limn→∞ Pn
i2 = 0.00049

limn→∞ Pn
i3 = 0.00002

Comparing these two examples, we observe that the lim-
iting probabilities for one or more failures are smaller in
the second example than in the first, and this is because re-
pair probabilities are higher in the second for fewer failures.
Thus, repair probabilities are ideally high for fewer proces-
sor failures, although they may degrade as the number of
processor failures increase. From this observation, it seems
that allocating as much resources as possible for a first pro-
cessor failure is a better strategy than the one of allocating
resources progressively.

5 Future work

Although we have discussed quorum constructions that im-
prove over the traditional majority construction, we have
not shown that these constructions are optimal. Thus, one of
our goals is to determine optimal constructions for settings
in which failures are not independent. We conjecture, how-
ever, that different classes of systems require different mod-
els, and as a consequence have different optimal construc-
tions. As an illustration, the model proposed here matches
well the characteristics of homogeneous multi-site systems,
but certainly not the ones of heterogeneous systems. In par-
ticular, if processors of a site are not equally reliable, then
it may be more appropriate to use a more expressive model
that directly states minimal subsets of faulty processors in-
stead of using a threshold. The solution for this particular
instance happens to be trivial, as we can easily adapt the
multi-site threshold model to use the more expressive model
of [9] for processor failures and perhaps for site failures if
sites are not equally reliable.

The failure characterization that we presented in Sec-
tion 4 is based on information from one system, and we
need to validate with information from other systems. One
of the possibilities is that the properties observed are par-
ticular to the BIRN style of operation. We have, however,
observed, but not quantified, similar properties in Planet-
Lab.3 Regarding processor failures, we have to determine
suitable values for the failures probabilities for the Markov
model. This task requires more detailed information than
we obtained to date.

Finally, our preliminary results show that multi-site sys-
tems can benefit from models that allow for more expres-
sive descriptions of failures such as the one we proposed in
this paper. It remains to study alternative models to deter-
mine whether there are other models that are more expres-
sive than the traditional threshold model and that provide
a more accurate representation. Further investigating the
benefit to algorithms for problems other than quorum con-
sensus is also one of our goals.

Acknowledgements

We would like to express our gratitude to Karan Bhatia, Jef-
frey Grethe, and Mark James for their assistance with the
BIRN system. We also would like to thank Geoff Voelker
for helpful discussions and suggestions, and the anonymous
reviewers for their helpful comments. Support for this work

3PlanetLab does show other failure behaviors, such as highly corre-
lated failures due to high demands that occur near submission deadlines of
certain conferences.

was provided by AFOSR MURI Contract F49620-02-1-
0233.

References
[1] Y. Amir and A. Wool. Evaluating quorum systems over the

Internet. In Proceedings of the 26th IEEE FTCS, pages 26–
37, Sendai, Japan, June 1996.

[2] Y. Amir and A. Wool. Optimal availability quorum sys-
tems: Theory and practice. Information Processing Letters,
65(5):223–228, Mar. 1998.

[3] D. Barbara and H. Garcia-Molina. The reliability of
voting mechanisms. ACM Transactions on Computers,
36(10):1197–1208, Oct. 1987.

[4] The Biomedical Informatics Research Network (BIRN).
http://www.nbirn.net.

[5] J.-M. Busca, M. Bertier, F. Belkouch, P. Sens, and
L. Arantes. A performance evaluation of a quorum-based
state-machine replication algorithm for computing grids. In
Proceedings of the 16th IEEE SBAC-PAD’04, Foz do Iguaçú,
PR, Brazil, Oct. 2004.

[6] H. Garcia-Molina and D. Barbara. How to assign votes in
a distributed system. Journal of the ACM, 32(4):841–860,
Oct. 1985.

[7] The Geosciences Network. http://www.geongrid.
org/.

[8] F. Junqueira, R. Bhagwan, A. Hevia, K. Marzullo, and G. M.
Voelker. Surviving Internet catastrophes. In Proceedings
of USENIX Annual Tech. Conference, General Track, pages
45–60, Anaheim, CA, Apr. 2005.

[9] F. Junqueira and K. Marzullo. Synchronous Consensus for
dependent process failures. In Proceedings of the 23rd IEEE
ICDCS, pages 274–283, Providence, RI, May 2003.

[10] A. Kumar. Hierarchical Quorum Consensus: A new algo-
rithm for managing replicated data. IEEE Transactions on
Computers, 40(9):996–1004, Sept. 1991.

[11] L. Lamport. The part-time parliament. ACM Transactions
on Computer Systems, 16(2):133–169, May 1998.

[12] M. Naor and A. Wool. The load, capacity, and availability of
quorum systems. SIAM Journal on Computing, 27(2):423–
447, Apr. 1998.

[13] The Planetlab testbed. http://www.planet-lab.
org/.

[14] S. Ross. Introduction to probability models. Harcourt Aca-
demic Press, 2000.

[15] The TeraGrid project. http://www.teragrid.org/.

[16] P. Yalagandula, S. Nath, H. Yu, P. B. Gibbons, and S. Seshan.
Beyond availability: Towards a deeper understanding of ma-
chine failure characteristics in large distributed systems. In
Proceedings of the 1st USENIX WORLDS, San Francisco,
CA, Dec. 2004.

[17] H. Yu. Signed quorum systems. In Proceedings of the
23rd ACM PODC, pages 246–255, St. Johns, Newfound-
land, Canada, July 2004.

http://www.nbirn.net
http://www.geongrid.org/
http://www.geongrid.org/
http://www.planet-lab.org/
http://www.planet-lab.org/
http://www.teragrid.org/

