
Replication predicates for dependent-failure algorithms

Flavio Junqueira and Keith Marzullo

Department of Computer Science and Engineering
University of California, San Diego

La Jolla, CA – USA
{flavio, marzullo}@cs.ucsd.edu

Abstract. To establish lower bounds on the amount of replication, there is a common par-
tition argument used to construct indistinguishable executions such that one violates some
property of interest. This violation leads to the conclusion that the lower bound on process
replication is of the form n > bkt/bc, where t is the maximum number of process failures in
any of these executions and k, b are positive integers. In this paper, we show how this argu-
ment can be extended to give bounds on replication when failures are dependent. We express
these bounds in terms of our model of cores and survivors sets using set properties instead
of predicates of the form n > bkt/bc. We give two different properties that express the same
requirement for k > 1 and b = 1. One property comes directly from the argument, and the
other is more useful when designing an algorithm that takes advantage of dependent failures.
We also consider a somewhat unusual replication bound of n > b3t/2c that arises in the
Leader Election problem for synchronous receive-omission failures. We generalize the repli-
cation bound for dependent failures, and develop an algorithm that shows that this generalized
replication bound is tight.

1 Introduction
Lower bounds for the amount of process replication are often arrived at by an argument of the
following flavor:

1. Partition the n processes into k blocks, where each block has at most dt/be processes, t ≥
dnb/ke, and k, b are positive integers such that k > b ≥ 1.

2. Construct a set of executions. For each block A, there is at least one of the executions in which
all the processes in A are faulty.

3. Given the set of executions, show that some property of interest is violated. Conclude that if
the maximum number of faulty processes in an execution is never larger than t, then t < dnb/ke
and n > bkt/bc.1

Examples of such proofs include Consensus with arbitrary processor failures and no digital signa-
tures requiring n > 3t (k = 3, b = 1) [20], Primary Backup with general omission failures requiring
n > 2t (k = 2, b = 1) [23], and Consensus with the eventually strong failure detector 3S requiring
n > 2t (k = 2, b = 1) [6,7].

We call a predicate like n > bkt/bc a replication predicate: it gives a lower bound on the number
of processes that are required given all possible sets of faulty processes.

Expressing bounds in terms of t is often referred to as a threshold model. Using t to express the
number of faulty processes is convenient, but the bounds can lead to mistaken conclusions when
processes do not fail independently or do not have identical probabilities of failure. This is because
one is assuming that any subset of t or fewer processes can be faulty, which implies that failures are
independent and identically distributed (IID). To use an algorithm developed under the threshold
model on a system that does not have IID failures, one can compute the maximum number of
processes that can fail in any execution, and then use that number as t. On the other hand one
may be able to use fewer processes if an algorithm based on non-IID failures is used instead.

In an earlier paper we introduced a method for modeling non-IID failures [16] and studied
Consensus under this model. We derived replication requirements in our new model and presented
1 Some authors have used different symbols, such as f , to indicate an upper bound on the number of

faulty processes.

protocols that showed these bounds to be tight. This paper generalizes the results of our earlier
paper to protocols other than Consensus. We show how the lower bound argument given above
can be easily generalized to accommodate our model of non-IID failures. This argument leads to
a replication predicate that we call k–Partition, which generalizes the replication predicate n > kt
(b = 1) for when failures are not IID.

The k–Partition property, however, may not prove to be very useful when designing an algo-
rithm. An equivalent property, which we call k–Intersection, is often more useful for this purpose.
It is more useful for designing algorithms because algorithms often refer to minimal sets of cor-
rect processes (n− t processes when process failures are IID). These properties generalize the two
properties we developed for Consensus in our earlier paper.

In this paper, after reviewing our failure model, we define the replication predicate k–Partition
for k > 1. We then define k–Intersection and show that it is equivalent to k–Partition. We illus-
trate the utility of k–Intersection by showing that the M-Availability property [21] for Byzantine
Quorum Systems is equivalent to 4–Intersection. Thus, a system that requires M-Availability has
a replication predicate of 4–Partition.

Finally, we examine one point in the space of replication predicates for b > 1. We do so by
considering a weak version of the Leader Election problem for synchronous systems that can suffer
receive-omission failures. We review a previously-given lower bound proof that argues n > b3t/2c
(k = 3, b = 2) for IID failures. This proof yields a definition that we call (3,2)–Partition. We derive
an equivalent (3,2)–Intersection property and use it to develop an optimal protocol for Weak Leader
Election. An immediate consequence is that the lower bound n > b3t/2c for IID failures is tight.
We believe that this is the first time this has been shown.

2 System model
We assume a system that is amenable to the lower bound proof described in the previous section.
Such systems are often comprised of processes that communicate with messages. We consider
systems in which processes can be faulty (as compared, for example, to systems in which the
failure of messages to be delivered are attributed to faulty links rather than omission failures of
processes).

Our work is based on a model of non-independent, non-identically distributed failures. We
characterize failure scenarios with cores and survivor sets [15,16]. A core is a minimal subset of
processes such that, in every execution, there is at least one process in the core that is not faulty.
A core generalizes the idea of a subset of processes of size t+ 1 in the threshold model. A survivor
set is a minimal set of processes such that there is an execution in which none of the processes
in the set are faulty. A survivor set generalizes the idea of a subset of processes of size n − t in
the threshold model, where n is the total number of processes. Cores and survivor sets are duals
of each other: from the set of cores one can obtain the set of survivor sets by finding all minimal
subsets of processes that intersect every core.

More formally, we define cores and survivor sets as follows. Consider a system with a set
Π = {p1, p2, . . . , pn} of processes. Let Φ be all of the executions of a distributed algorithm alg run
by the processes in Π, and let Correct(φ) be the set of processes that are not faulty in an execution
φ ∈ Φ.

Definition 1. A subset C ⊆ Π is a core if and only if:

1. ∀φ ∈ Φ, Correct(φ) ∩ C 6= ∅;
2. ∀pi ∈ C, ∃φ ∈ Φ such that C \ {pi} ∩ Correct(φ) = ∅.

Definition 2. A subset S ⊆ Π is a survivor set if and only if:

1. ∃φ ∈ Φ, Correct(φ) = S;
2. ∀φ ∈ Φ, pi ∈ S, Correct(φ) 6⊆ S \ {pi}.

In [16], we defined cores and survivor sets using probabilities. In this paper, we use an alternative
definition, based on executions, that is more convenient when discussing algorithms. In practice, one
can use failure probabilities and a target reliability (or availability) to compute the sets of faulty

processes that can be tolerated, and these sets determine the possible failures of an execution.
However, one does not have to determine tolerated sets of faulty processes on probabilities. As our
example below show, it can be based on a combination of quantitative and qualitative information.

We use the term system profile to denote a description of the tolerated failure scenarios. In the
threshold model, a system profile is a pair 〈Π, t〉, which means that any subset of t processes in Π
can be faulty. In our dependent failure model, the system profile is a triple 〈Π, CΠ ,SΠ〉, where CΠ

is the set of cores and SΠ is the set of survivor sets.2 We assume that each process is a member
of at least one survivor set (otherwise, that process can be faulty in each execution, and ignored
by the other processes), and that no process is a member of every survivor set (otherwise, that
process is never faulty). The threshold system profile 〈Π, t〉 is equivalent to the profile 〈Π, CΠ ,SΠ〉
where CΠ is all subsets of Π of size t+ 1 and SΠ is all subsets of Π of size |Π| − t.

We treat the kind of failure—crash, omission, arbitrary, etc.—as a separate part of the failure
model. The kind of failure is important both in the design of algorithms and in the derivation of
lower bounds. In some situations, such as with hybrid failure models (for example, [8]), separating
the kind of failures from the system profile would be complex. In general, we do not assume any
particular kind of failure, but we do so when discussing specific problems.

Determining the system profile requires one to consider the possible causes of processes failures.
For example, a process running on a particular processor fails if the processor hardware fails (crash
failure). As another example, if one is concerned about software faults (bugs), then a process can
fail if there is an error in one of the software packages it depends upon, and the system executes
the erroneous instructions (which can result in an arbitrary failure) [11].

2.1 Determining a system profile
We now give an example of a system profile that uses qualitative information. In the work by Castro
et al. [5], the authors observe that independent software development ideally produces disjoint sets
of software faults. This observation is the basic idea of n-version programming, whose goal is to
render software failures independent. Of course, there is still a marginal probability that two or
more replicas fail in the same execution, but this probability is assumed to be small enough so that
it can be ignored.

Suppose we want to implement a fault-tolerant service using the State Machine approach [4,25],
and we are concerned about arbitrary failures arising from software faults. Moreover, we want to
leverage the existence of multiple standalone implementations of this service we are interested
in, as in BASE [5]. Thus, each replica has two components: a standalone implementation and a
replica-coordination component that implements a distributed Consensus algorithm.

For this particular service, suppose that there are five standalone versions available: v1 through v5.
Looking more carefully at the history of these versions, we discover that two of them reuse code
from previous versions. More specifically, v2 reuses a set X of modules from v1, and v3 reuses
modules Y from v1 and Z from v2.3 We also assume that X, Y , and Z are disjoint sets, and that
v4 and v5 were developed independently.

Assuming that every software module potentially has

E2

E1

E3

E4 E5

Fig. 1: Ei is the set of executions that
have at least one faulty replica run-
ning version vi

software faults, we have: 1) faults in the modules in X
can affect both v1 and v2; 2) faults in the modules in Y
can affect both v1 and v3; 3) faults in the modules in Z
can affect both v2 and v3.

Consider a system in which there is at least one replica
running each of the five versions. Let Ei be the set of ex-
ecutions in which at least one replica is faulty because
of a fault in the version vi. These sets of executions are
related to each other as shown in Figure 1.

Assuming one replica for each version, and assuming
that at most one software fault can be exercised in an
execution, then we have the following system profile:
2 Since CΠ and SΠ can be computed from each other, in fact the system profile could contain only one of

these two sets. We include both for convenience.
3 A module is a collection of functions and data structures.

Example 1.

Π = {p1, p2, p3, p4, p5}
CΠ = {{p1, p2, p3}, {p4, p5}} ∪ {{pi, pj} : i ∈ {1, 2, 3} ∧ j ∈ {4, 5}}
SΠ = {{pi, p4, p5} : i ∈ {1, 2, 3}} ∪ {{p1, p2, p3, pi} : i ∈ {4, 5}}

This system has sufficient replication to implement Consensus in a synchronous system with
arbitrarily faulty processes and no digital signatures [16]. The amount of replication is also sufficient
to implement a fault-tolerant state machine for arbitrarily faulty processes using PBFT [4].

PBFT is an attractive protocol because it assumes a weak failure model. It was designed,
however, assuming a threshold failure model. In the system profile given above, the smallest survivor
set has three processes, which means that there are executions in which two processes are faulty.
Hence, there is not enough replication to run PBFT: seven processes are required to tolerate two
faulty processes. PBFT can be used by having one process execute v1, one process execute v2, one
process executes v3, two processes execute v4, and two processes execute v5. It is easy to check
that there is no more than two failures in any execution of this configuration. Alternatively, we
can implement a replica coordination component with a modified version of PBFT that can be run
in the five process system of the example. In this case, the PBFT implementation needs to know
the system profile in the same way that an unmodified PBFT (one assuming a threshold) needs to
know the maximum number of faulty processes in an execution.4

This example illustrates an important point about dependent failures. Since IID failures can
be represented as a particular system profile, lower bound proofs that hold for IID failures also
hold in our model. But, if one has a system in which failures are not IID, then one should use an
algorithm that explicitly uses a system profile. By using such an algorithm, it is often possible to
use less replication than it requires when using an algorithm developed using the threshold model.

2.2 Relating survivor sets to fail-prone systems and adversary structures
We are not the first to consider non-IID behaviors: quorum systems have addressed the issues of
non-IID behavior for some time. In [21], the idea of fail-prone systems was introduced. This paper
gives the following definition for a set of servers U :

A fail-prone system B ⊆ 2U is a non-empty set of subsets of U , none of which is contained
in another, such that some B ∈ B contains all the faulty servers.

This paper then observes that a fail-prone system can be used to generalize to less uniform
assumptions than a typical threshold assumption. Their definition does not give a name to the
elements of B; we call each one a fail-prone set. As fail-prone sets are maximal, a fail-prone set is
the complement of a survivor set and B = {Π \ S : S ∈ SΠ}. Although both survivor sets and
fail-prone sets characterize failure scenarios, survivor sets have a fundamental use: if a process is
collecting messages from the other processes, it can be fruitless to wait for messages from a set
larger than a survivor set. Of course, there are times when fail-prone sets are more useful. For
example, if Bmax is the largest fail-prone set, then |Bmax| is the value of t to use if one wishes to
use a threshold-based protocol.

Non-threshold protocols were also considered in the context of secure multi-party computation
with adversary structures [1,13,18]. Adversary structures are similar to fail-prone systems. They
differ in two ways. First, adversary structures can represent more than one failure mode, e.g., crash
failures and arbitrary failures. Each failure mode is described with sets of possibly faulty processes
(processes are referred to as players in this literature). Second, the sets of possibly faulty players
given in an adversary structure are not necessarily maximal; all sets of possibly faulty players are
given. Using all possible sets of players that can deviate from the correct protocol behavior as
opposed to only maximal sets (or minimal sets of correct processes, as with survivor sets) gives one
more expressiveness in modeling system failures. Using fail-prone systems or survivor sets, however,
is sufficient for establishing the bounds on process replication we show in this paper. Moreover,

4 Although the original PBFT algorithm assumes a threshold on the number of failures, it is possible to
modify it to work with cores and survivor sets. A discussion of these modifications, however, is outside
of the scope of this paper.

these bounds hold even for a more expressive model such as adversary structures. This is because
we use properties about the intersections of sets of correct processes. If the intersection property
holds for some sets of processes A1, A2, ..., Am then it holds for the sets of processes A′

1 ⊃ A1,
A′

2 ⊃ A2, ..., A′
m ⊃ Am. Hence, one only has to consider the minimal sets of correct processes in

these intersection properties. The more expressive failure models have no benefit when establishing
bounds on process replication.

3 k properties
In the generic lower bound proof described in Section 1, one first partitions the set of processes into
k blocks, and then constructs a set of executions. For each block A, there is at least one execution
in which all the processes in A are faulty. Being able to fail all the processes of a particular block
then enables the construction of an execution in which some property is violated. For example,
for Consensus, the property violated is agreement. For Primary-Backup algorithms, the property
violated is the one that says that at any time there is at most one primary.

Having derived a contradiction, the proof concludes by stating that one cannot partition the
processes in the manner that was done. With the threshold model and b = 1, this implies that
not all processes of any subset of size dn/ke can be faulty, and consequently t < dn/ke. In our
dependent failure model, this implies that in any partition of the processes into k blocks, there is
at least one block A that does not contain only faulty processes: A contains a core. More formally,
let Pk(Π) be the set of partitions of Π into k blocks. We then have the following property for a
system profile 〈Π, CΠ ,SΠ〉:

Property 1. k–Partition, k > 1, |Π| > k: ∀A ∈ Pk(Π) : ∃Ai ∈ A : ∃C ∈ CΠ : C ⊆ Ai

Although k–Partition is useful for lower bound proofs, it is often not very useful for the design
of algorithms. Survivor sets are often more convenient to refer to than cores. For example, the
algorithm for Consensus by Chandra and Toueg for crash failures in asynchronous systems with
failure detectors of the class 3S assumes at least 2t + 1 processes. For this number of processes,
any pair of subsets of size n− t has a non-empty intersection, and this property is crucial to avoid
the violation of agreement. This is equivalent to stating that any two survivor sets intersect, or
equivalently that SΠ is a coterie [10]. In the algorithm for Interactive Consistency by Lamport et
al. [20], at least 3t + 1 processes are required, and for this number of processes any intersection
between a pair of subsets of size n − t contains at least t + 1 processes. Consequently, every
intersection between such subsets contains at least one correct process. This is equivalent to saying
that the intersection of any two survivor sets contains a core, or equivalently that the intersection
of any three survivor sets is not empty.5

3.1 k–Intersection
We now state the property that we show to be equivalent to k–Partition and that references
survivor sets instead of cores. We call it k–Intersection. k–Intersection states that for a system
profile 〈Π, CΠ ,SΠ〉, for every set T ⊂ SΠ of size k, there is some process that is in every element
of T . Let Gx(A) be the set of all the subsets of A of size x; if |A| < x, then Gx(A) = ∅. We have
the following property for a system profile 〈Π, CΠ ,SΠ〉:

Property 2. k–Intersection, k > 1, |Π| > k, |SΠ | > k: ∀T ∈ Gk(SΠ) : (∩S∈TS) 6= ∅

As an illustration, we have that the set SΠ in Example 1 satisfies 3–Intersection.
We now show the equivalence between k–Partition and k–Intersection. For both directions,

we prove by contrapositive. To show that k–Partition implies k–Intersection, we assume that k–
Intersection does not hold (there are k survivor sets that do not intersect), and build a partition

5 Recall that a survivor set is a minimal subset of Π that intersects every C ∈ CΠ . Equivalently, a core is a
minimal subset of Π that intersects every S ∈ SΠ . Hence, if the intersection of two survivor sets contains
a core, it also intersects every survivor set. And, if the intersection of two survivor sets intersects every
other survivor set, then the intersection contains a core.

that violates k–Partition. This partition is such that every block of the partition does not contain
elements from some survivor set. For the other direction, we assume that there is a partition of Π
into k blocks such that no block contains a core. If a block does not contain a core, then the union
of the remaining k−1 blocks must contain a survivor set. We use this argument to show that there
is a set of at most k survivor sets that do not intersect, thus violating k–Intersection.

Theorem 1. k–Partition ≡ k–Intersection

Proof. ⇒: Proof by contrapositive. Suppose a system profile 〈Π, CΠ ,SΠ〉 such that there is a subset
S = {S1, . . . , Sk} ⊂ SΠ such that

⋂
S = ∅. We then build a partition A = {A1, . . . , Ak} as follows:

A1 = Π \ S1

A2 = Π \ (S2 ∪A1)
...

Ai = Π \ (Si ∪A1 ∪A2 . . . ∪Ai−1)
...

Ak = Π \ (Sk ∪A1 . . . ∪Ak−1)

Suppose without loss of generality that no Ai is empty. It is clear from the construction that no
two distinct blocks Ai, Aj intersect. It remains to show that: 1)

⋃
A = Π; 2) ∀i ∈ {1, . . . , k} : Ai

does not contain a core. To show 1), consider the following derivation:⋃
A = (Π \ S1) ∪ (Π \ (S2 ∪A1)) ∪ . . . ∪ (Π \ (Sk ∪A1 ∪A2 . . . ∪Ak−1)) (1)

= Π \ ((S1 ∩ (S2 ∪A1)) ∩ . . . ∩ (Sk ∪A1 ∪A2 . . . ∪Ak−1)) (2)
= Π \ (S1 ∩ S2 ∩ . . . ∩ (Sk ∪A1 ∪A2 . . . ∪Ak−1)) (3)
...
= Π \ (∩iSi) (4)
= Π (5)

Explaining the derivation:

– Line 1 to Line 2 follows from the observation that for any subsets A,B of Π, we have that
(Π \A) ∪ (Π \B) = Π \ (A ∩B);

– Line 2 to Line 3: the intersection between S1 and A1 has to be empty, since S1 contains exactly
the elements we removed from Π to form A1;

– Line 3 to Line 4: by repeating inductively the process used to derive Line 3, we remove every
term Ai present in the equation;

– Line 4 to Line 5: By assumption, the intersection of S1 through Sk is empty.

To show 2), we just need to observe that any Ai is such that we removed all the elements of Si.
By the definitions of a core and of a survivor set, a subset that does not contain elements from
some survivor set does not contain a core.

⇐: Proof also by contrapositive. Let 〈Π, CΠ ,SΠ〉 be a system profile such that there is a partition
{A1, . . . , Ak} of Π in which no Ai contains a core. Because no block contains elements from every
survivor set (no block contains a core), we have that for every Ai, there is a survivor set Si such
that Si ∩Ai = ∅. Consequently, we have that ∩iSi is empty, otherwise either some Ai contains an
element that is in

⋂
i Si or {A1, . . . , Ak} is not a partition, either way contradicting our previous

assumptions.

In the remainder of this section, we discuss the utility of these properties. In particular, we
show the equivalence between 4–Intersection and M-Consistency. M-Consistency is a property that
a set of quorums have to satisfy to mask Byzantine failures [21].

3.2 4–Intersection and M-Consistency
In [21], the following M-Consistency property was defined. It was stated that this property was
necessary for one to implement a Masking Byzantine Quorum System. This property allows a
process to identify a result from a non-faulty server. The set Q used in this definition is the set of
quorums, and B is the fail-prone system.

Property 3. M-Consistency, k > 1: ∀Q1, Q2 ∈ Q : ∀B1, B2 ∈ B : (Q1 ∩Q2) \B1 6⊆ B2

The paper then shows that if all sets in B have the same size t, then M-Consistency implies
n > 4t.

We show that M-Consistency is equivalent to 4–Intersection. Since a faulty process can stop
sending messages, we can use SΠ as the set of quorums: waiting to receive messages from more
than a survivor set could prove fruitless. A fail-prone set is the complement of a survivor set, and
for any two sets X and Y , (X \ Y) ≡ (X ∩ Ȳ), where Ȳ is the complement of Y . Hence, we can
rewrite M-Consistency as:

∀Q1, Q2 ∈ SΠ : ∀B1, B2 ∈ B : (Q1 ∩Q2) ∩ B̄1 6⊆ B2

Then, for any two sets X and Y , (X 6⊆ Y) ≡ (X ∩ Ȳ 6= ∅), and so:

∀Q1, Q2 ∈ SΠ : ∀B1, B2 ∈ B : Q1 ∩Q2 ∩ B̄1 ∩ B̄2 6= ∅.

Since the complement of a fail-prone set is a survivor set, this can be more compactly written as:

∀Q1, Q2, S1, S2 ∈ SΠ : Q1 ∩Q2 ∩ S1 ∩ S2 6= ∅.

which is 4–Intersection. Hence, another way to write the replication requirement stated in M-
Consistency is 4–Intersection, or equivalently 4–Partition.

4 An example of fractional k

The results of the previous section are perhaps not surprising to those who have designed Consensus
or quorum algorithms. For example, 2–Intersection states that the survivor sets are a coterie, and
3–Intersection states that the intersection of any two survivor sets contains a nonfaulty process. It
takes some effort to show that 4–Intersection is equivalent to M–availability, and we expect that
it will not be difficult to show that the n > 5t requirement of Fast Byzantine Paxos [22] can be
understood from 5–Intersection. We conjecture that it is possible to define classes of algorithms
that, as for Consensus [12,14], are built on top of quorums of various strengths, and whose commu-
nication requirements are easily understood in terms of k–Intersection. Such algorithms developed
for the threshold model should be easily translatable into our model of non-IID failures. Potential
candidates are algorithms for the abstractions in [9].

Less well understood are algorithms that have fractional replication predicates. To further
motive the utility of intersection properties, we consider a problem that we call Weak Leader
Election. Given a synchronous system and assuming receive-omission failures (that is, a faulty
process can crash or fail to receive messages), the replication predicate for this problem is n >
b3t/2c. This lower bound is not new, but to the best of our knowledge, it has not been shown that
the lower bound is tight. We show here that the bound is tight, which is a result of some theoretical
value. Our primary reason for choosing this algorithm, however, is the insight we used from the
intersection property to arrive at the solution.

Leader Election arises in the context of Primary-Backup protocols. Leader election is an im-
portant problem in this context because a new primary has to emerge every time the current
primary is non-responsive, and there must be a single primary at a time. Systems that implement
a Primary-Backup protocol often run on a local area network. This has two implications. First,
if a network with high transfer rates connects the processes, then it becomes important to con-
sider receive-omission failures as processes may fail to receive messages due to buffer overflows [2].
Second, it enables the assumption of a synchronous system, which is common for Primary-Backup
protocols.

We first specify the problem. Our specification allows for faulty (but non-crashed) processes to
become elected. Such a feature is necessary because it requires more replication to detect receive-
omission failures [23], and the original lower bound proof allowed such behaviors. We then discuss
the lower bound on process replication for this problem using our model of dependent failures.
Finally, we provide an algorithm showing that the lower bound is actually tight in our model.

4.1 Weak Leader Election
Each process pi has a local boolean variable pi.elected (pi.elected is false for a crashed process).
We then describe Weak Leader Election with two safety and two liveness properties.

Safety : 2(|{pi ∈ Π : pi.elected}| < 2).
LE-Liveness: 23(|{pi ∈ Π : pi.elected}| > 0).
FF-Stability : In a failure-free execution, only one process ever has elected set to true.
E-Stability : ∃pi ∈ Π : 32(∀pj ∈ Π : pj .elected ⇒ (j = i)).

These properties basically state that infinitely often some process elects itself (LE-Liveness), and
no more than one process elects itself at any time (Safety). The third property states that, in a
failure-free execution, a single process is ever elected. This property, however, does not rule out
executions with failures in which two or more processes are elected infinitely often. We hence define
E-Stability.

4.2 Lower bound on process replication
In [3], the following lower bound was shown. The proof was given in the context of showing a lower
bound on replication for Primary-Backup protocols.

Claim. Weak Leader Election for receive-omission failures requires n > b3t/2c.

Proof. Assume that Weak Leader Election for receive-omission failures can be solved with n =
b3t/2c. Partition the processes into three blocks A, B and C, where |A| = |B| = bt/2c and
|C| = dt/2e. Consider an execution φA in which the processes in B and C initially crash. From
LE-Liveness and E-Stability, eventually a process in A will be elected infinitely often. Similarly, let
φB be an execution in which the processes in A and C crash. From LE-Liveness and E-Stability,
eventually a process in B will be elected infinitely often.

Finally, consider an execution φ in which the processes in A fail to receive all messages except
those sent by processes in A, and the processes in B fail to receive all messages except those
sent by processes in B. This execution is indistinguishable from φA to the processes in A and is
indistinguishable from φB to the processes in B. Hence, there will eventually be two processes, one
in A and one in B, elected infinitely often, violating either Safety or E-Stability.

To develop the algorithm, we first generalize the replication predicate for this problem using
cores and survivor sets. From the lower bound proof, we consider any partition of the processes into
three blocks. Then, one constructs three executions, where in each execution all of the processes in
two of the three subsets are faulty. The conclusion of the proof is the following property for k = 3:

Property 4. (k, k − 1)–Partition, k > 1, |Π| > 2: ∃k′ ∈ {2, . . . ,min(k, |Π|)} : ∀A ∈ Pk′(Π) :
∃A′ ∈ Gk′−1(A) : ∃C ∈ CΠ : C ⊆ A′

The equivalent intersection property is then:

Property 5. (k, k − 1)–Intersection, k > 1, |Π| > 2, |SΠ | > 2: ∃k′ ∈ {2, . . . ,min(k, |Π|)} : ∀T ∈
Gk′(SΠ) : ∃T ∈ G2(T) : (∩S∈TS) 6= ∅

Stated more simply, (k, k − 1)–Intersection says that for any set of k′ survivor sets, k′ ∈
{2, . . . ,min(k, |Π|)}, at least two of them have a non-empty intersection. (k, k − 1)–Intersection
and (k, k − 1)–Partition generalize replication predicates in the threshold model of the form

n > bkt/(k − 1)c. Thus, a profile that satisfies (k + 1, k)–Intersection must also satisfy (k, k − 1)–
Intersection. To illustrate, a system profile satisfies (3, 2)–Intersection if either it satisfies (2, 1)–
Intersection or for every three survivor sets, two intersect. Also, note that (2, 1)–Intersection is
2–Intersection.

Consider now an example of a system that satisfies (3, 2)–Intersection. It is based on a simple
two-cluster system. A process can fail by crashing, and there is a threshold t on the number of
crash failures that can occur in a cluster. A cluster can also suffer a total failure, which causes
all of the processes in that cluster to crash. Such a total failure can result from the failure of a
cluster resource such as a disk array or a power supply, or from an administrative fault. We assume
that total failures are rare enough that the probability of both clusters suffering total failures is
negligible. However, processes can crash in one cluster at the same time that the other cluster
suffers a total failure. Assuming that each cluster has three processes and t = 1, we have the
following system profile, where processes with identifier ai belong to one cluster and processes with
identifier bi belong to the other cluster:

Example 2.

Π = {pa1 , pa2 , pa3 , pb1 , pb2 , pb3}
CΠ = {{pi1 , pi2 , pi3 , pi4} : (i1, i2 ∈ {a1, a2, a3}) ∧ (i3, i4 ∈ {b1, b2, b3} ∧ i1 6= i2 ∧ i3 6= i4)}
SΠ = {{pi1 , pi2} : ((i1, i2 ∈ {a1, a2, a3}) ∨ (i1, i2 ∈ {b1, b2, b3})) ∧ i1 6= i2};

To see why this profile satisfies (3, 2)–Intersection, we just have to observe that out of any three
survivor sets, at least two intersect.

The equivalence of (k, k − 1)–Partition and (k, k − 1)–Intersection can be shown with a proof
similar to the one of Theorem 1, and we include it here for completeness.

Theorem 2. (k, k − 1)–Partition ≡ (k, k − 1)–Intersection

Proof. ⇒: Proof by contrapositive. Consider a system profile 〈Π, CΠ ,SΠ〉 such that, for every k′,
k′ ∈ {2, . . . ,min(k, |Π|)}, there is a subset S = {S1, S2, . . . , Sk′} ⊆ SΠ such that Si∩Sj = ∅, i 6= j.
That is,

⋃
P∈G2(S)

⋂
P = ∅. We then build a partition A = {A1, A2, . . . , Ak′} as follows:

A1 = Π \ (S2 ∪ S3 ∪ . . . ∪ Sk′)
A2 = Π \ (S1 ∪ S3 ∪ . . . ∪ Sk′ ∪A1)

...
Ai = Π \ (S1 ∪ S2 ∪ . . . ∪ Si−1 ∪ Si+1 ∪ . . . ∪ Sk′ ∪A1 ∪A2 . . . ∪Ai−1)

...
Ak′ = Π \ (S1 ∪ S2 ∪ . . . Sk′−1 ∪A1 . . . ∪Ak′−1)

It is clear that Ai, Aj are disjoint, i 6= j. We now have to show that: 1)
⋃
A = Π; 2) For every subset

A′ = {Ai1 , Ai2 , . . . , Aik′−1
} ⊂ A,

⋃
A ′ does not contain a core. To show 1), let ψi = ∪(Sj∈S\Si)Sj ,

i ∈ {1, . . . , k′}. We then have the following derivation:⋃
A = (Π \ ψ1) ∪ (Π \ ψ2 ∪A1) ∪ . . . ∪ (Π \ (ψk′ ∪A1 ∪A2 . . . ∪Ak′−1)) (1)

= Π \ ((ψ1 ∩ (ψ2 ∪A1)) ∩ . . . ∩ (ψk′ ∪A1 ∪A2 . . . ∪Ak′−1)) (2)
= Π \ (ψ1 ∩ ψ2 ∩ . . . ∩ (ψk′ ∪A1 ∪A2 . . . ∪Ak′−1)) (3)
...
= Π \ (∩iψi) (4)
= Π (5)

– Line 1 to Line 2 follows from the observation that for any subsets A,B of Π, we have that
(Π \A) ∪ (Π \B) = Π \ (A ∩B);

– Line 2 to Line 3: the intersection between ψ1 and A1 has to be empty, since ψ1 contains exactly
the elements we removed from Π to form A1.

– Line 3 to Line 4: by repeating inductively the process used to derive Line 3, we are able to
remove every term Ai present in the equation.

– Line 4 to Line 5: Transforming from a conjunctive form to a disjunctive form, we have that⋂
P∈Gk′−1(S)

⋃
P =

⋃
P∈G2(S)

⋂
P . To see why this is true, note that for every pair Si, Sj ∈

S, i 6= j, and P ∈ Gk′−1(S), we have that (Si ∈ P) ∨ (Sj ∈ P). Finally, we have that⋃
P∈G2(S)(∩Si∈PSi) = ∅ by assumption.

By the construction of the partition and from the assumption that for every Si, Sj ∈ S, Si∩Sj =
∅, we have that for every i ∈ {1, . . . , k′}, there is Si ∈ S such that Si ⊆ Ai. From this, we conclude
that for any A′ = {Ai1 , Ai2 , . . . , Aik′−1

} ⊂ A,
⋃
A′ does not contain elements from some survivor

set, and consequently it does not contain a core.

⇐: Proof also by contrapositive. Suppose a system profile 〈Π, CΠ ,SΠ〉 such that for every k′,
k′ ∈ {2, . . . ,min(k, |Π|)}, there is a partition A = {A1, A2, . . . , Ak′} of Π in which no union of k′−1
blocks of A contains a core. If a subset of processes does not contain a core, then it contains no
elements from some survivor set. The complement of such a set of processes consequently contains a
survivor set. Because no union of k′−1 blocks in A contains a core, for every Ai there is an Si ∈ SΠ

such that Si ⊆ Ai. Thus, for all Ai, Aj ∈ A, i 6= j, we have by construction that Ai ∩Aj = ∅, and
hence Si ∩ Sj = ∅. We conclude that no pair Si, Sj ∈ {S1, S2, . . . , Sk′} is such that Si ∩ Sj 6= ∅.

4.3 A Weak Leader Election algorithm
We now develop a synchronous algorithm WLE for Weak Leader Election for receive-omission
failures. For this algorithm, we assume a system profile 〈Π, CΠ ,SΠ〉 that satisfies (3, 2)–Intersection.
WLE is round based: in each round a process receives messages sent in the previous round and then
send messages to all processes. We use pi.M(r) to denote the set of messages that pi receives in
round r, and pi.s(r) to denote the set of processes from which process pi receives messages in
round r.

We developed this algorithm by first observing what (3, 2)–Intersection means. Given three
survivor sets, at least two of them intersect. Put another way, if two survivor sets S1 and S2 are
disjoint, then any survivor set S3 intersects S1 ∪ S2. Since a core is a minimal set that intersects
every survivor set, the above implies that S1 ∪ S2 contains a core. Thus, given any two disjoint
survivor sets, at least one of them contains a correct process.

Our algorithm uses as a building block a weak version of Uniform Consensus that we call
RO Consensus. We call it RO Consensus because of its resemblance to Uniform Consensus. RO
Consensus, however, is tailored to suit the requirements of WLE and therefore is fundamentally
different.

In RO Consensus, each process pi has an initial value pi.a ∈ V ∪ {⊥}, where V is the set of
initial values, and a decision value pi.d [1 . . . n], where pi.d is a list and pi.d[j] ∈ V ∪ {⊥}. We use
v ∈ pi.d to denote that there is some p` ∈ Π such that pi.d[`] = v. If a process pi crashes, then
we assume that its decision value pi.d is N , where N stands for the n element list [⊥, . . . ,⊥]. To
avoid repetition throughout the discussion of our algorithm, we say that a process pi decides in an
execution φ if pi.d 6= N .

As we describe later, we execute our algorithm for RO Consensus, called ROC, multiple times
in electing a leader. We then have that processes may crash before starting an execution φ of ROC.
Such processes consequently have initial value undefined in φ. We therefore use ⊥ to denote the
initial value of crashed processes. That is, if pi.a =⊥, then pi has crashed.

We also use the relation x ⊆ y for x and y lists of n elements to denote that: ∀i, 1 ≤ i ≤ n :
(x[i] 6=⊥) ⇒ (x[i] = y[i]).

The specification of RO Consensus is composed of four properties as follows:
Termination: Every process that does not crash eventually decides on some value;
Agreement If pi.d[`] 6=⊥, pi, p` ∈ Π, then for every non-faulty pc, pi.d[`] = pc.d[`];
RO Uniformity: Let vals be the following set: {d : ∃pi ∈ Π s.t. (pi.d = d)} \ N . Then:∧

1 ≤ |vals| ≤ 2∧
∀d, d′ ∈ vals : d ⊆ d′ ∨ d′ ⊆ d

∧
∀df , dc ∈ vals, df ⊆ dc : ∃Sf , Sc ∈ SΠ :
∧ ∀p ∈ Sf : (p crashes) ∨ (p.d = df)
∧ ∀p ∈ Sc : (p.d = dc) ∧ (p is not faulty)

That is, there can be no more than two non-N decision values, and if there are two then one is
a subset of the other. Furthermore, if there are two different decision values, then these are the
values that processes in two disjoint survivor sets decide upon, one for the processes of each
survivor set.

Validity:
∧

If pj ∈ Π does not crash, then for all non-faulty pi, pi.d[j] = pj .a∧
If pj ∈ Π does crash, then exists v ∈ {⊥, pj .a} such that for all non-faulty

pi, pi.d[j] = v∧
If there are survivor sets Sc, Sf ∈ SΠ and values vc, vf ∈ V, vc 6= vf , such that:
∧ ∀p ∈ Sf : p.a ∈ {vf ,⊥}
∧ ∀p ∈ Sc : ((p.a = vc) ∧ (p is not faulty))
∧ ∃pi, p` ∈ Π : pi.d[`] = vf

then for all pj that does not crash, vf ∈ pj .d

That is, if a process pi is not faulty and pi.d[j] 6=⊥, then the value of pi.d[j] must be pj .a.
The value of pi.d[j], however, can be ⊥ only if pj crashes. The third case exists because we
use the decision values of an execution as the initial values for another execution. From RO
Uniformity, there can be two different non-N values df and dc. If this is the case, then there
is a survivor set Sc containing only correct processes such that all processes in Sc decide upon
dc, and another survivor set Sf containing only faulty processes such that all the processes
in Sf either crash or decide upon df . Let vf be df and vc be dc. By the third case, if some
process that decides includes vf in its decision value, then every process that does not crash
also includes vf in its decision value.

Figure 2 shows an algorithm that implements RO Consensus. In each round r, a process pi

collects messages and updates its list of initial values pi.A. Once it updates pi.A, pi sends a
message containing pi.A to all processes. A process pi also assigns pi.A to pi.Ap(r) once it updates
pi.A at round r. This enables pi to verify in round r + 2 if a process pj has received the message
pi sent in round r. As we describe below, pi uses pi.Ap(r) to determine if it is faulty.

ROC is an adaptation of a classic round-based synchronous Consensus algorithm for crash
failures. There are two main differences. First, it uses survivor sets rather than a threshold scheme.
It does use a constant t to bound the number of rounds; t is the number of processes subtracted
the size of the smallest survivor set. Second, it has each process verify if it has committed a
receive-omission failure. There are two ways that a process can notice this.

1. Recall that pi.s(r) is the set of processes from which process p receives a message in round r.
Let pi.s(0) be an initial value, which for now consider to be the set of all processes. Since
processes that have not decided or crashed send messages to all processes, for all non-faulty pi

that receives messages in rounds r and r + 1: pi.s(r + 1) ⊆ pi.s(r). If this does not hold, then
pi must have failed to receive some message.

2. Consider a message m that pi receives from pj in round r > 1. Unless it crashes or discovers
that it is faulty, a process sends a message to all processes in each round except the last. Let
m′ be the message that pi sent to pj in round r− 2. If m indicates that pj has not received m′

(pi.Ap(r − 2) 6⊆ m′.A), then pi knows that pj is faulty. Let pi.sr(r) be the processes in pi.s(r)
with all processes that pi knows to be faulty removed. By definition, we know that there is
some survivor set that contains only correct processes. If pi.sr(r) does not contain a survivor
set, then there is some correct process from which pi did not receive a message. Hence, pi can
conclude it has failed to receive a message.

Note that RO Consensus differs from the definition of Uniform Consensus in that faulty pro-
cesses may decide upon different values, although these values are not arbitrary and must be such
as described by the RO Uniformity property. In the algorithm by Parvèdy and Raynal, for example,
every process that decides must decide upon the same value [24].

Algorithm ROC on input pi.a, pi.Procs
round 0:

pi.s(0)← pi.Procs; pi.sr(0)← pi.s(0)
pi.A [i]← pi.a
for all pk ∈ Π, pk 6= pi : pi.A [i]← ⊥
pi.Ap(0)← pi.A
send pi.A to all

round 1:
pi.sr(1)← pi.s(1)
if ∨ pi.s(1) 6⊆ pi.s(0)
∨ 6 ∃S ∈ SΠ : S ⊆ pi.sr(1)

then decide [⊥, . . . ,⊥]
else for each message mj ∈ pi.M(1), pk ∈ Π:

if (pi.A [k] = ⊥) pi.A [k]← mj .A [k]
pi.Ap(1)← pi.A
send pi.A to all

round r: 2 ≤ r ≤ t:
pi.sr(r)← pi.s(r) \ {pj : ∃m ∈ pi.M(r) : pi.Ap(r − 2) 6⊆ m.A ∧m.from = pj}
if ∨ pi.s(r) 6⊆ pi.s(r − 1)
∨ 6 ∃S ∈ SΠ : S ⊆ pi.sr(r)

then decide [⊥, ...,⊥]
else for each message m ∈ pi.M(r), pk ∈ Π:

if (pi.A [k] = ⊥) pi.A [k]← m.A [k]
pi.Ap(r)← pi.A
send pi.A to all

round t + 1:
pi.sr(t + 1) ← pi.s(t + 1) \ {pj : ∃m ∈ pi.M(t + 1) : pi.Ap(t− 1) 6⊆ m.A ∧m.from = pj}
if ∨ pi.s(t + 1) 6⊆ pi.s(t)
∨ 6 ∃S ∈ SΠ : S ⊆ pi.sr(t + 1)

then decide [⊥, ...,⊥]
else for each message m ∈ pi.M(t + 1), pk ∈ Π:

if (pi.A [k] = ⊥) pi.A[k]← m.A[k]
pi.Ap(t + 1)← pi.A
decide pi.A

Fig. 2: ROC - Algorithm run by process pi.

Informally, ROC satisfies RO Uniformity because (3, 2)–Intersection holds. To decide on a value
other than N , a process must receive in each round messages from a set of processes that contains
a survivor set. (3, 2)–Intersection implies a low enough replication that there can be a set S of
non-crashed faulty processes that communicate only among themselves. But, there cannot be two
such sets S and S′: if S and S′ do not intersect, then (3, 2)–Intersection implies that their union
contains a core, violating the assumption that all of the processes in S and S′ are faulty.

A set S of faulty processes that communicate only among themselves will decide on a value
d where d[i] = ⊥ for pi 6∈ S and d[i] = pi.a for pi ∈ S. In addition, a correct process will also
decide d[i] = pi.a for pi ∈ S. Of course, a non-crashed faulty process can read from different sets
of processes in each round, but by using the two rules given above, such a process can determine
that it is faulty. Hence, at worst some faulty processes will decide on a value df and the correct
processes will decide on a value dc such that df ⊆ dc.

The algorithm in Figure 3 uses ROC to implement Weak Leader Election. Algorithm WLE
proceeds in iterations of an infinite repeat loop, where each iteration consists of two phases. In
Phase 1, processes use ROC to distribute their process identifiers. In Phase 2, they use ROC to
distribute what they decided on in Phase 1.

Informally, this algorithm satisfies Safety because of the following: it is possible for a set of faulty
processes S to decide on the smaller value df in Phase 1, but by the end of Phase 2 the correct
processes will know this. By Validity and RO Uniformity, every process that finishes Phase 2 uses
the same list df to determine whether it is the current leader or not. Having the processes decide
based on the smaller list df forces the receive-omission faulty processes to elect the same process
as the correct processes. Note though, as mentioned above, that in this case the correct processes
know that the elected process is faulty (although the elected process does not know).

LE-Liveness is obtained by repeat-
Algorithm WLE
P ← Π
repeat {
pi.elected← FALSE
Phase 1:

Run ROC with
pi.a← i; pi.Procs ← P

P ← pi.s(t + 1)
if (pi.d = [⊥, . . . ,⊥]) then stop

Phase 2:
Run ROC with

pi.a← pi.d from Phase 1; pi.Procs ← P
P ← pi.s(t + 1)
if (pi.d = [⊥, . . . ,⊥]) then stop
let x ∈ pi.d be a value such that pi.d [x] 6= [⊥, . . . ,⊥]

and it has the least number of non-⊥ values
if (pi is the first index of x such that x[i] 6= ⊥)

then pi.elected← TRUE
}

Fig. 3: WLE - Algorithm run by process pi.

edly running the algorithm without re-
sorting to a failure detector (which would
require higher replication).

If there are no faulty processes, each
election will always elect the process with
the lowest identifier, which implies FF-
Stability. To guarantee that there is no
alternating behavior in which two pro-
cesses are leaders infinitely often, non-
crashed processes move forward the set
of processes they believe are not crashed
or have not stopped. That is, the input
pi.Procs in ROC takes the value pi.s(t+
1) from the previous execution of ROC
(Π if it is the first execution of ROC).
This implies E-Stability.

A formal proof of WLE appears in [17].
As WLE relies on the correctness of ROC,
we also present in [17] a formal specifica-
tion of this algorithm using TLA+ [19].
We model-checked this specification using TLC for some small models.

5 Conclusions

In this paper we generalized a common argument used in proofs of lower bounds on process repli-
cation. The argument is based on the threshold model: it makes the assumption that, given n
processes, any subset of dnb/ke processes can be faulty. Then, after deriving a contradiction, the
proof concludes that n > bkt/bc. In our generalization of the proof for b = 1, we conclude that
k–Partition holds: if one partitions the processes into k subsets, then at least one of the subsets
contains a core. Thus, lower bounds for many protocols can be trivially generalized for when process
failures are not IID.

We then gave an equivalent property, k–Intersection, that is often useful when designing a
protocol that takes advantage of non-IID process failures. Finally, we considered a problem for
which the lower bound has b = 2. The lower bound on process replication for Weak Leader Election
in a synchronous system with receive-omission failures was known to be n > b3t/2c, but this bound
was not known to be tight. We showed that this bound is tight by first determining the intersection
property for this replication predicate ((3, 2)–Intersection, equivalent to (3, 2)–Partition) and using
it to guide our development of a protocol.

We have also studied further replication predicates for dependent failures. First, we have studied
other problems that require the (k, k−1)–Intersection property for values of k greater than 3. One
set consists also of problems of leader election. Finally, we have studied in more detail other
dependent-failure replication predicates. Some of them are particularly interesting because they do
not have an equivalent n > bkt/bc in the threshold model. Such predicates arise, for example, in
problems from Grid computing. One of our goals in studying replication predicates is to establish
a hierarchy on the predicates based on implication. The main challenge has been to find problems
that motivate the definition of a particular predicate.

Acknowledgements
We would like to express our gratitude to Geoffrey M. Voelker for useful insights, Marcos Aguil-
era for helpful discussions, and to the anonymous reviewers for comments that helped improving
considerably this paper. Support for this work was provided by AFOSR MURI Contract F49620-
02-1-0233.

References
1. B. Altmann, M. Fitzi, and U. Maurer. Byzantine Agreement secure against general adversaries in the

dual failure model. In Proceedings of DISC, volume 1693/1999 of LNCS, pages 123–139. Springer-
Verlag, Sep 1999.

2. Y. Amir, D. Dolev, S. Kramer, and D. Malkhi. Transis: A communication sub-system for high avail-
ability. In 22nd International Symposium on Faul-Tolerant Computing, pages 76–84, San Francisco,
CA, 1992.

3. N. Budhiraja, K. Marzullo, F. Schneider, and S. Toueg. Optimal Primary-Backup protocols. In
Proceedings of the 6th WDAG, pages 362–378, Nov 1992.

4. M. Castro and B. Liskov. Practical Byzantine fault tolerance and proactive recovery. ACM Transactions
on Computer Systems, 20(4):398–461, Nov 2002.

5. M. Castro, R. Rodrigues, and B. Liskov. BASE: Using abstraction to improve fault tolerance. ACM
Transactions on Computer Systems, 21(3):236–269, Aug 2003.

6. T. Chandra, V. Hadzilacos, and S. Toueg. The weakest failure detector for solving Consensus. Journal
of the ACM, 43(4):685–722, Jul 1996.

7. T. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems. Journal of the
ACM, 43(2):225–267, March 1996.

8. F. Christian. Synchronous Atomic Broadcast for redundant broadcast channels. Journal of Real-Time
Systems, 2:195–212, Sep 1990.

9. R. Friedman, A. Mostefaoui, and M. Raynal. Intersecting Sets: A basic abstraction for asynchronous
agreement problems. Technical Report PI-1598, IRISA, Rennes, France, Jan 2004.

10. H. Garcia-Molina and D. Barbara. How to assign votes in a distributed system. Journal of the ACM,
32(4):841–860, Oct 1985.

11. J. Gray and D. Siewiorek. High-availability computer systems. IEEE Computer, (9):39–48, Sep 1991.
12. R. Guerraoui and M. Raynal. A generic framework for indulgent Consensus. In Proceedings of 23rd

IEEE ICDCS, pages 88–95, 2003.
13. M. Hirt and U. Maurer. Complete characterization of adversaries tolerable in secure multi-party

computation. In ACM PODC, pages 25–34, Santa Barbara, California, 1997.
14. F. Junqueira and K. Marzullo. Consensus for dependent process failures. Technical Report CS2003-

0737, UCSD, La Jolla, CA, Sep 2002.
15. F. Junqueira and K. Marzullo. Designing algorithms for dependent process failures. In Proceedings of

FuDiCo, volume 2584/2003 of LNCS, pages 24–28. Springer-Verlag, Jan 2003.
16. F. Junqueira and K. Marzullo. Synchronous Consensus for dependent process failures. In Proceedings

of the 23rd IEEE ICDCS, pages 274–283, May 2003.
17. F. Junqueira and K. Marzullo. Weak Leader Election in the receive-omission failure model. Technical

Report CS2005-0829, UCSD, La Jolla, CA, Jun 2005.
18. K. Kursawe and F. Freiling. Byzantine fault tolerance on general hybrid adversary structures. Technical

Report AIB-2005-09, Aachen University, Aachen, Germany, Jan 2005.
19. L. Lamport. Specifying systems: The TLA+ language and tools for hardware and software engineers.

Pearson Education, Inc., 2002.
20. L. Lamport, R. Shostak, and M. Pease. The Byzantine Generals Problem. ACM Transactions on

Programming Languages and Systems, 4(3):382–401, Jul 1982.
21. D. Malkhi and M. Reiter. Byzantine Quorum Systems. In 29th ACM Symposium on Theory of

Computing, pages 569–578, May 1997.
22. J.-P. Martin and L. Alvisi. Fast Byzantine Consensus. In Proceedings of DSN, Jun 2005.
23. S. Mullender, editor. Distributed Systems, chapter 8. Addison-Wesley, 2nd edition, 1995.
24. P. R. Parvèdy and M. Raynal. Optimal early stopping Uniform Consensus in synchronous systems

with process omission failures. In Proceedings of the 16th ACM Symposium on Parallel Algorithms and
Architectures, pages 302–310, Barcelona, Spain, 2004.

25. F. B. Schneider. Implementing fault-tolerant services using the State-Machine approach: A tutorial.
ACM Computing Surveys, 22(4):299–319, Dec 1990.

