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Abstract

After more than a decade of usage, bilinear groups have established their place in the crypto-
graphic canon by enabling the construction of many advanced cryptographic primitives. Unfortu-
nately, this explosion in functionality has been accompanied by an analogous growth in the complexity
of the assumptions used to prove security. Many of these assumptions have been gathered under the
umbrella of the “uber-assumption,” yet certain classes of these assumptions — namely, q-type as-
sumptions — are stronger and require larger parameter sizes than their static counterparts.

In this paper, we show that in certain bilinear groups, many classes of q-type assumptions are
in fact implied by subgroup hiding (a well-established, static assumption). Our main tool in this
endeavor is the dual-system technique, as introduced by Waters in 2009. As a case study, we first
show that in composite-order groups, we can prove the security of the Dodis-Yampolskiy PRF based
solely on subgroup hiding and allow for a domain of arbitrary size (the original proof only allowed a
logarithmically-sized domain). We then turn our attention to classes of q-type assumptions and show
that they are implied — when instantiated in appropriate groups — solely by subgroup hiding. These
classes are quite general and include assumptions such as q-SDH. Concretely, our result implies that
every construction relying on such assumptions for security (e.g., Boneh-Boyen signatures) can, when
instantiated in appropriate composite-order bilinear groups, be proved secure under subgroup hiding
instead.

1 Introduction

For the past decade, bilinear groups — i.e., groups equipped with a bilinear map, or pairing — have
allowed for the efficient construction of a wide variety of advanced cryptographic primitives, including
(but by no means limited to): signatures [13, 6, 8, 38], group signatures [10, 16, 23], zero-knowledge
proofs [24, 25], (hierarchical) identity-based encryption [11, 7, 9, 34], and functional and attribute-
based encryption [32, 36, 37]. As such, pairings are now used as a standard general-purpose tool in
cryptographic constructions.

Unfortunately, this growth in the complexity of cryptographic primitives has been accompanied by
an analogous growth in the complexity of the assumptions required to prove security. While assumptions
such as Bilinear Diffie Hellman (BDH) [11] and Decision Linear [10] have become relatively standard, the
use of pairings has also ushered in various classes of assumptions such as q-type assumptions, in which
the size of the assumption grows dynamically, or interactive assumptions, in which the adversary is given
access to some oracle(s). For example, in the q-DBDHI (Decisional Bilinear Diffie Hellman Inversion)
assumption, the adversary is given (g, gx, gx

2
, . . . , gx

q
) and is asked to produce e(g, g)1/x. While the

“uber-assumption” [9, 15] generalizes many q-type assumptions (as well as many static assumptions) and
provides a lower bound for their security in the generic group model [46], such assumptions nevertheless
remain less understood than their static counterparts.
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Beyond the lack of understanding of such assumptions, the fact that they scale asymptotically with
the security of the scheme can be problematic. In a reduction, the value of q is frequently tied to the
number of queries that the adversary makes to an oracle. As a result, q must scale with some parameter
of the system; e.g., for identity-based encryption, q must be at least as big as the number of parties
that the adversary is able to corrupt. As it is typically the case that an assumption parameterized by
q′ implies the same assumption parameterized by q for q′ > q (as the assumption parameterized by q′

gives out strictly more information), this means that the assumption gets stronger as the adversary is
able to corrupt more parties. In some cases, this correlation is more striking. For example, Dodis and
Yampolskiy [20] use the a(λ)-DBDHI assumption to prove the security of their pseudorandom function
(PRF), where a(λ) is the size of the domain of the PRF (and λ is the security parameter); as a result, the
domain is restricted to be of logarithmic size. This correlation is furthermore not always an artifact of
proof techniques, as Jao and Yoshida [27] showed that Boneh-Boyen signatures were in fact equivalent to
the q-SDH assumption that they rely on for security. Finally, Cheon [19] showed that the time required
to recover a secret key scales inversely with q,so that if recovering a secret key takes time t when using
q = 1 (e.g, it takes t steps to recover x given g and gx), then it takes time t/

√
q in the general case (e.g.,

given (g, gx, . . . , gx
q
)). This means that constructions rely on asymptotically stronger assumptions to

obtain stronger security guarantees, so the parameters must grow appropriately in order to maintain a
constant level of security (e.g., 128-bit security).

On the positive side, one technique that has proved particularly effective at avoiding q-type as-
sumptions — and boosting security as a result — is the dual-system technique, which was introduced by
Waters [47] in 2009 and has been used extensively since [34, 32, 33, 36, 31, 37]. Briefly, this technique
takes advantage of subgroup hiding in bilinear groups [12]; i.e., the assumption, in a group of composite
order N = p1p2, that a random element of the full group is indistinguishable from a random element
of order p1. (Subgroup hiding can also be defined, albeit in a more complex way, for vector spaces
over prime-order bilinear groups.) Using this core assumption, the dual-system technique begins with a
scheme in a particular subgroup (for concreteness, the subgroup of elements of order p1); i.e., a scheme
in which all elements are contained solely within the subgroup. To prove security, a “shadow” copy of
the original scheme is first added in a new subgroup (e.g., the subgroup of order p2); the addition of
this shadow copy goes unnoticed by subgroup hiding. Using a property called parameter hiding [31],
this shadow copy is then randomized, so the value in the additional subgroup is now unstructured; in
Waters’ terminology, this object is now semi-functional. This randomness is then pushed back into the
original subgroup, again using subgroup hiding, and is used to blind the structure of the original scheme;
e.g., in an IND-CPA game it can be used to obscure all information about the challenge message.

Our contributions. In this paper, we expand the usage of the dual-system technique. Rather than
work at the level of constructions, we show directly that many q-type assumptions can be implied —
with a crucial looseness of q— by subgroup hiding. In some sense, we thus interpret our approach as
absorbing rather than avoiding q-type assumptions, and believe our work takes a (perhaps surprising)
step in expanding the power of the dual-system technique.

As a first exercise, we prove in Section 3 that the Dodis-Yampolskiy PRF — unmodified, but instan-
tiated in a composite-order group — can be proved secure using only the subgroup hiding assumption.
Because of the limitations (described above) in the original security proof, our result not only moves to
a static assumption, but also boosts security to allow for domains of arbitrary size, which is useful in
and of itself for the many applications of the Dodis-Yampolskiy PRF [17, 5, 18, 29].

Next, in Section 4, we look beyond cryptographic primitives and instead focus directly on the
underlying assumptions, and in particular on the class of q-type assumptions that are instantiations of
the uber-assumption. Here we show that many instantiations of the uber-assumption can be reduced —
following a modified version of the dual-system technique, which still assumes subgroup hiding — to
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instantiations that are significantly weaker; in fact, in many cases we can reduce to an assumption
so weak that it actually holds by a statistical argument. As examples, we revisit two well-known q-
type assumptions. By applying our general theorem to these assumptions, we can reduce them to
assumptions in which all secret information (e.g., the exponent x in q-DBDHI) is statistically hidden, so
an adversary can do no better than a random guess and the security of the entire assumption collapses
down to subgroup hiding.

Finally, in Section 5, we discuss the concrete implications of our work; i.e., in which concrete bilinear
settings the abstract requirements of the dual-system technique (namely, subgroup hiding and parameter
hiding) can be expected to hold. Due to current limitations in the parameter hiding supported by prime-
order bilinear groups, our strongest results can be applied only in asymmetric composite-order bilinear
groups [14, 40].

Putting it all together, we obtain the following concrete results:

• In a composite-order group (such as the target group of a composite-order pairing, or any composite-
order elliptic curve group without a pairing), subgroup hiding implies any q-type assumption where
the exponents are linearly independent rational functions.

• In an asymmetric composite-order bilinear group, subgroup hiding implies any q-type assumption
where the adversary is given elements with secret exponents on only one side of the pairing,
where the exponents are linearly independent rational functions, and where the adversary must
distinguish a particular value of the group (or target group) from a random value.

• In an asymmetric composite-order bilinear group, subgroup hiding implies any q-type assumption
where the exponents are linearly independent rational functions and the adversary must compute
a value in the source group.

Related work. As mentioned above, the dual-system technique was first introduced by Waters in
2009 [47], and was applied subsequently to achieve a wide variety of results [34, 32, 44, 33, 36, 35, 31, 45],
all involving randomized public-key primitives (e.g., identity-based encryption) in bilinear groups.

To the best of our knowledge, we are the first to systematically apply the dual-system technique
directly to assumptions, and in particular to q-type assumptions. Boneh, Boyen, and Goh [9] analyzed
the security of the uber-assumption — which includes many q-type assumptions — in the generic group
model, and derived generic lower bounds on the runtime of an adversary that could break the uber-
assumption; this work was later extended by Jager and Rupp [26], who showed the equivalence of
many assumptions in the semi-generic group model. Our result is somewhat orthogonal to theirs,
as we seek to show that in certain concrete (i.e., non-generic) settings these assumptions actually
reduce to subgroup hiding. Anecdotally, several results use the dual-system technique to eliminate
the requirement on q-type assumptions for specific primitives or constructions: for example, Gerbush
et al. [21] obtained Camenisch-Lysyanskaya signatures under static assumptions, as opposed to the
interactive LRSW assumption; Abe et al. [1] achieve efficient structure preserving signatures under DLIN
while previous efficient constructions [3, 2] required q-type or interactive assumptions; Attrapadung and
Libert achieved the first identity-based broadcast encryption scheme with short ciphertexts [4]; and the
original result of Waters [47] achieved the first secure HIBE under non-q-type assumptions.

2 Definitions and Notation

2.1 Preliminaries

If x is a binary string then |x| denotes its bit length. If S is a finite set then |S| denotes its size and

x
$←− S denotes sampling a member uniformly from S and assigning it to x. λ ∈ N denotes the security
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parameter and 1λ denotes its unary representation.
Algorithms are randomized unless explicitly noted otherwise. “PT” stands for “polynomial-time.”

By y ← A(x1, . . . , xn;R) we denote running algorithm A on inputs x1, . . . , xn and random coins R and

assigning its output to y. By y
$←− A(x1, . . . , xn) we denote y ← A(x1, . . . , xn;R) for coins R sampled

uniformly at random. By [A(x1, . . . , xn)] we denote the set of values that have positive probability of
being output by A on inputs x1, . . . , xn. Adversaries are algorithms.

We use games in definitions of security and in proofs. A game G has a main procedure whose output
is the output of the game. Pr[G] denotes the probability that this output is true.

2.2 Bilinear groups

We refer to a bilinear group as a tuple G = (N,G,H,GT , e), where N can be either prime or composite,
|G| = |H| = kN and |GT | = `N for some k, ` ∈ N, and e : G × H → GT is a bilinear map, meaning
it is (1) efficiently computable; (2) satisfies bilinearity: e(xa, yb) = e(x, y)ab for all x ∈ G, y ∈ H, and
a, b ∈ Z/NZ; and (3) satisfies non-degeneracy: if e(x, y) = 1 for all y ∈ H then x = 1 and if e(x, y) = 1
for all x ∈ G then y = 1. When G and H are cyclic, we may include in G generators g and h of G
and H respectively, and when the groups G and H decompose into cyclic subgroups G = G1 ⊕G2 and
H = H1 ⊕H2, we may additionally include descriptions of these subgroups and/or their generators. In
what follows, we use BilinearGen to denote the algorithm by which bilinear groups are generated, and
provide it with an argument n that specifies the number of subgroups.

There are two additional structural properties of bilinear groups that are exploited in the dual-system
technique: subgroup hiding and parameter hiding. Subgroup hiding is a computational assumption
that requires that, if G (respectively H) decomposes into two subgroups, then distinguishing between
a random element of the full group and a random element of one of the subgroups should be hard.
(This is actually the specific simple case of subgroup hiding originally introduced by Boneh, Goh, and
Nissim [12]; more general definitions exist as well [31, 30].)

In fact, subgroup hiding can be defined for arbitrary groups; e.g., groups over general elliptic curves,
or composite-order subgroups of finite fields. As some of our results (in particular, our PRF in Section 3)
apply to these more general settings, we define a more general version of subgroup hiding and treat the
version in bilinear groups as a special case.

Let GroupGen denote an algorithm that, on input 1λ and an integer n ∈ N, outputs (N,G, µ),
where G is a group of order N that decomposes into n subgroups, and µ is any relevant additional

information; e.g., (N,G,H,GT , e)
$←− BilinearGen(1λ, n) can be cast as (N,G, µ)

$←− GroupGen(1λ, n) for
µ = (H,GT , e), and for regular finite fields µ might contain generator(s) of G or its subgroups.

Assumption 2.1 (Subgroup hiding). For a group generation algorithm GroupGen(·, ·), subgroup hiding
holds if no PT adversary A has a non-negligible chance of distinguishing a random element of the
subgroup G1 from a random element of the group G. Formally, define Advsgh

A (λ) = 2Pr[SGHA
µ (λ)]− 1,

where SGHA
µ (λ) is defined as follows:

main SGHA
µ (λ)

b
$←− {0, 1}; (N,G,G1, µ)

$←− GroupGen(1λ, 2)

if (b = 0) then T
$←− G

if (b = 1) then T
$←− G1

b′
$←− A(N,G, µ, T )

return (b′ = b)
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Then subgroup hiding holds with respect to GroupGen and the auxiliary information µ if for all PT
adversaries A there exists a negligible function ν(·) such that Advsgh

A (λ) < ν(λ). (Subgroup hiding in
G2 is defined analogously.)

There are often limits to the auxiliary information that can be provided to A; e.g., in the bilinear

setting, if A is attempting to distinguish T = gr1 from T = gr for r
$←− Z/NZ and has access to a

canceling pairing e(·, ·) — i.e., a pairing such that e(G1, H2) = e(G2, H1) = 1 — and h2 ∈ µ, it can easily
distinguish between these elements by checking if e(T, h2) = 1 or not. Thus, if an adversary is trying
to distinguish between a random element of G1 and a random element of G1 ⊕G2 (analogously, if it is
trying to distinguish between G2 and G1⊕G2), the problem becomes easy if µ includes h2 (analogously,
h1).

Parameter hiding, unlike subgroup hiding, is a statistical property of the group that allows certain
distributions across subgroups to be independent. In composite-order groups, for example, the Chinese
Remainder Theorem tells us that the values of x mod p1 and x mod p2 are independent, so that given
gx1 , the value of gx2 is unconstrained. In prime-order groups, Lewko [31] demonstrated how to support
parameter hiding with respect to linear functions; i.e., how — using appropriate constructions of G1

and G2 — the distributions of gax2 and gr2 for a, r
$←− Fp are identical, even given x and ga1 . The first

formal notion of parameter hiding with respect to these linear functions was later given by Lewko and
Meiklejohn [30]; we generalize their notion as follows:

Definition 2.2 (Parameter hiding). For a group (N,G,G1, G2, µ) ∈ [GroupGen(1λ, 2)], parameter hid-
ing holds with respect to a family of functions F if for all g1 ∈ G1 and g2 ∈ G2, the distribution

{gf(x1,...,xn)1 g
f(x1,...,xn)
2 }f∈F is identical to {gf(x1,...,xn)1 g

f(x′1,...,x
′
n)

2 }f∈F for x1, x
′
1 . . . , xn, x

′
n

$←− Z/NZ.

As a simple example, if F = {1, x1}, then for x1, x
′
1

$←− Z/NZ, the distributions of (g1g2, g
x1
1 g

x1
2 ) and

(g1g2, g
x1
1 g

x′1
2 ) are identical.

This definition of parameter hiding works well for many classes of functions F , and applies to many
of the concrete q-type assumptions we consider in Section 4. For more interactive settings, however, in
which some of the inputs might be provided by an adversary — for example, for our PRF in Section 3,
in which the adversary provides the input x— we can no longer model all inputs to the function as
uniformly random. This in and of itself might not be a problem (in fact, if the class of functions satisfies
the above definition, then we can still capture adversarial inputs without requiring a new definition),
but for certain classes of functions an unbounded adversary might be able to easily distinguish the two
distributions if allowed to query on all possible adversarial inputs. As this is the case for the class of
functions we consider in Section 3, a new definition is required.

We now consider a potentially unbounded adversary that is allowed to see only polynomially many
evaluations, but on inputs that it can choose adaptively. To match our intuition, we switch things
around slightly: rather than consider all functions f and uniformly random inputs, we consider ran-
domly sampled functions f and f ′— with potentially different but overlapping domains f.D and f ′.D —

applied to adversarially chosen inputs (x1, . . . , xn), and require that the values g
f(x1,...,xn)
1 g

f(x1,...,xn)
2 and

g
f(x1,...,xn)
1 g

f ′(x1,...,xn)
2 are statistically indistinguishable. Our resulting definition, which we call adaptive

parameter hiding, follows a game-based approach, but we stress that this notion of parameter hiding is
still a statistical property, as we allow the distinguisher to be computationally unbounded.

Definition 2.3 (Adaptive parameter hiding). For a group (N,G,G1, G2, µ) and functions f, f ′ in a

family F , let O(·) return g
f(·)
1 g

f(·)
2 if the input is in f.D and 1 otherwise, and let O′(·) return g

f(·)
1 g

f ′(·)
2

if the input is in f.D ∩ f ′.D and 1 otherwise. Then adaptive parameter hiding holds with respect to
F if for all λ ∈ N, (N,G,G1, G2, µ) ∈ [GroupGen(1λ, 2)], and g1 ∈ G1, g2 ∈ G2, the oracles O and O′
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are statistically indistinguishable if they are queried polynomially many times; i.e., for any (potentially
unbounded) distinguisher D making poly(λ) queries, there exists a negligible function ν(·) such that

Pr[f
$←− F : DO(·) = 1]− Pr[f, f ′

$←− F : DO′(·) = 1] < ν(λ).

We use these definitions in Sections 4, and discuss the different families of functions that can be
supported in different types of bilinear groups in Section 5.

2.3 Pseudorandom functions

A pseudorandom function family [22] F specifies the algorithms F.Pg, F.Keys, F.Dom, F.Rng, and

F.Ev. Via fp
$←− F.Pg(1λ) one generates a description fp of a function F.Ev(1λ, fp) : F.Keys(1λ, fp) ×

F.Dom(1λ, fp)→ F.Rng(1λ, fp). The evaluation algorithm F.Ev is PT and deterministic.

Definition 2.4. For a function family F and an adversary A, let Advprf
F,A(λ) = 2 Pr[PRFA

F (λ)] − 1,

where PRFA
F (λ) is defined as follows:

main PRFA
F (λ) Procedure Fnsk (x)

b
$←− {0, 1}; fp

$←− F.Pg(1λ); sk
$←− F.Keys(1λ, fp) if b = 0 y

$←− F.Rng(1λ, fp)

b′
$←− AFn(1λ, fp) if b = 1 y ← F.Ev(1λ, fp, sk , x)

return (b′ = b) return y

Then F is pseudorandom if for all PT algorithms A there exists a negligible function ν(·) such that

Advprf
F,A(λ) ≤ ν(λ).

3 Pseudorandom Functions

In this section, we explore the security of the Dodis-Yampolskiy PRF [20]. First, we recall the Dodis-
Yampolskiy PRF, instantiated for our purposes in a group of composite order N = p1p2:

• F.Pg(1λ): Sample (N,G, (G1, G2))
$←− GroupGen(1λ, 2) and u

$←− G; output (N,G, u). With this
setup, F.Keys = F.Dom = Z/NZ, and F.Rng = G.

• F.Ev(1λ, fp, sk , x): Output u(sk+x)
−1

. If (sk + x)−1 is undefined in Z/NZ, output 1.

Dodis and Yampolskiy originally showed that, when instantiated in the target group of a bilinear

pairing (i.e., when using BilinearGen and u
$←− GT ), this is a verifiable random function — a more powerful

primitive than a PRF, as it comes with the additional ability to prove that the PRF value was computed
correctly — under the q-DBDHI assumption, which states that when given (g, gx, . . . , gx

q
), it should be

hard to distinguish e(g, g)1/x from random. Their reduction, however, is quite loose: if the size of the
PRF domain is a(λ), they use the a(λ)-DBDHI assumption and show that

Advpr-vrf
F,A (λ) ≤ a(λ) ·Adv

a(λ)-DBDHI
A (λ),

which means that the scheme is provably secure only if the domain is restricted to be of polynomial size
(i.e., its size is polynomial in the size of the security parameter).

We instead show that
Advprf

F,A(λ) ≤ q ·Advsgh
A (λ)
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for an adversary A that makes q queries to the PRF oracle; while the reduction is still not tight, our
approach nevertheless allows for a domain of arbitrary size. We have made two minor modifications:
First, as mentioned above, Dodis and Yampolskiy considered the PRF in the target group GT of a
symmetric prime-order bilinear pairing, while we require an abstract group G in which subgroup hiding
and parameter hiding hold. Our second modification is to use, rather than the “canonical” generator
e(g, h), a random generator u ∈ G. We stress that these modifications are purely syntactical and do
not fundamentally alter the spirit of the construction (and, in particular, do not affect its usage in
applications). They do, however, allow us to prove the following two results:

Lemma 3.1. For all λ ∈ N and (N, g, u) ∈ [F.Pg(1λ)], if N = p1p2 for distinct primes p1, p2 ∈
Ω(2poly(λ)), then adaptive parameter hiding holds with respect to {fsk (·) : fsk (x) = 1

sk+x}sk∈F.Keys, where
the domain for each function is Dsk = {x | gcd(x+ sk , N) = 1}.

Proof. We first show that for x such that gcd(s+ x,N) = 1,

((s+ x)−1 mod N) mod p1 = (s mod p1 + x mod p1)
−1 mod p1.

This is fairly straightforward: by definition, (s+x)−1 mod N is a value y ∈ Z such that (s+x)y+Nz = 1
for some z ∈ Z. Since N = p1p2, (s+ x)y + p1p2z = 1, and thus (s+ x)y + p1z

′ = 1 for z′ = p2z, which
means y ≡ (s+ x)−1 mod p1 as well. Since gcd(x+ s,N) = 1, this inverse is well defined.

With this established, we define fsk (x) = 1
sk+x and Dsk = {x | gcd(x + sk , N) = 1}, and observe

that whenever gcd(x + sk , N) = 1, u
fsk (x)
1 can be computed knowing only the value of sk mod p1, and

that similarly u
fsk (x)
2 can be computed knowing only the value of sk mod p2. By the Chinese Remainder

Theorem, these values are independent and thus, for any sk , sk ′, x ∈ Z/NZ such that gcd(sk +x,N) = 1

and gcd(sk ′ + x,N) = 1, u
fsk (x)
1 u

fsk (x)
2 and u

fsk (x)
1 u

fsk′ (x)
2 are distributed identically.

Now, suppose we choose f, f ′
$←− F and consider a hybrid oracle OH that outputs g

f(·)
1 g

f(·)
2 for

inputs x ∈ f.D ∩ f ′.D and 1 otherwise. For this choice of domain, OH is statistically close to O as
long as the distinguisher makes only polynomially many queries. To see this, note that as long as
the distinguisher does not query x ∈ f.D \ f ′.D, the two oracles are indistinguishable. Then, since
f ′.D = {x | gcd(sk ′ + x,N)} = 1, N is the product of two exponentially large primes, and sk ′ is
not used in the rest of the oracle response, an adversary making only polynomially many queries has
negligible probability of querying on x such that gcd(sk ′ + x,N) = 1.

We finally argue that interactions with OH and O′ are identically distributed. To see this, suppose we

choose sk1, sk ′1
$←− Z/p1Z and sk2, sk ′2

$←− Z/p2Z, and set sk , sk ′ such that sk = sk1 mod p1, sk = sk2

mod p2, sk ′ = sk ′1 mod p1, and sk ′ = sk ′2 mod p2; this is identical to the choice of f, f ′ above.

As described above, OH outputs g
(sk1+x)−1

1 g
(sk2+x)−1

2 on inputs x /∈ {−sk1,−sk ′2} mod p1 and x /∈
{−sk2,−sk ′2} mod p2, and 1 otherwise. Finally, if we instead set sk , sk ′ such that sk = sk1 mod p1,

sk = sk ′2 mod p2, sk ′ = sk ′1 mod p1, and sk ′ = sk2 mod p2 (which again corresponds to f, f ′
$←− F),

O′ will perform exactly the same computation. We thus conclude that the distribution of the two oracles
is identical.

Putting this together with the above, we conclude that no distinguisher that makes polynomially
many queries can distinguish O and O′ with more than negligible probability.

Theorem 3.2. For all λ ∈ N and fp ∈ [F.Pg(1λ)], if subgroup hiding holds with respect to GroupGen
and N = p1p2 for distinct primes p1, p2 ∈ Ω(2poly(λ)), then F is a pseudorandom function family.

A proof of Theorem 3.2 can be found in Appendix A. Intuitively, our approach amplifies the only
unknown value present in the PRF — namely, the sk value — as follows: first, we switch to using u ∈ G1.
Then this secret value sk is replicated in the G2 subgroup, which is indistinguishable from the original
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by subgroup hiding. The secret value in the G2 subgroup is then decoupled from the secret value in the
G1 subgroup, which is indistinguishable by adaptive parameter hiding. Finally, the new secret value
from the G2 subgroup is moved back into G1, which is again indistinguishable by subgroup hiding. At
this point, we now have one additional secret value in the PRF values we return. By repeating the
process, we can embed polynomially many secret values (in particular, we embed as many values as
there are oracle queries), at which point we have enough entropy to argue that the values returned by
the PRF are statistically indistinguishable from truly random values.

One interesting feature of our approach is that — because we are using a deterministic primitive —
we do not need to follow the traditional dual-system structure and adhere to a “query hybrid,” in which
each query to the oracle must be treated separately. Nevertheless, we do need to add enough additional
degrees of randomness to cover all of the adversary’s queries, so we still end up with a looseness of q in
our reduction (but where q is the number of queries, not the size of the PRF domain).

4 Reducing q-Type Assumptions to Subgroup Hiding

Our main result in this section is to show that — if subgroup hiding holds and parameter hiding holds
with respect to certain functions in the exponent — certain q-type assumptions are equivalent to signif-
icantly weaker assumptions. In fact, these equivalent assumptions are often so weak that they hold by
a purely statistical argument, so the original assumption is fully implied by subgroup hiding.

We begin by recalling the uber-assumption, which serves as an umbrella for many q-type assump-
tions. We then describe two approaches: roughly, the first reduces any uber-assumption to subgroup
hiding, but only if the assumption gives out meaningful functions on only one side of the pairing (or
in the target group), and the second reduces any computational uber-assumption in the source group
to subgroup hiding. Both of our reductions incur a looseness of q in the reduction, so we can think of
them as “absorbing” the factor of q from the assumption rather than eliminating it outright.

4.1 The uber-assumption

We are able to examine many q-type assumptions at the same time using the “uber-assumption” [9, 15],
which was first introduced by Boneh, Boyen, and Goh as a way to reason generally about a wide variety
of pairing-based assumptions. They prove that if the parameters of the uber-assumption meet certain
independence requirements then the assumption is hard in the generic group model, which eliminates
the need to prove generic lower bounds for every individual instantiation of the assumption that is
introduced. Our motivation, on the other hand, is to prove that many common instantiations of the
assumption are in fact implied — assuming subgroup hiding holds in the bilinear group — by weaker
versions of the assumption.

Formally, for a bilinear group G = (N,G,H,GT , e, g, h) (where N can be either prime or composite)
the uber-assumption is parameterized by five values: an integer c ∈ N, three sets R, S, and T of
polynomials over Z/NZ (which represent the values we are given in G, H, and GT respectively), and a
polynomial f over Z/NZ. For the sets of polynomials, we write R = 〈ρ1(x1, . . . , xc), . . . , ρr(x1, . . . , xc)〉
and as shorthand use ρi(~x) = ρi(x1, . . . , xc) and gR(x1,...,xc) = {gρi(~x)}ri=1 (and similarly for S and T ).

Assumption 4.1 (Computational). For an adversary A, define Advuber
A (λ) = Pr[c-UBERA

c,R,S,T,f (λ)],

where c-UBERA
c,R,S,T,f (λ) is defined as follows:

main c-UBERA
c,R,S,T,f (λ)

(N,G,H,GT , e)
$←− BilinearGen(1λ, 2); g

$←− G, h $←− H; x1, . . . , xc
$←− Z/NZ

y
$←− A(1λ, (N,G,H,GT , e), g

R(x1,...,xc), hS(x1,...,xc), e(g, h)T (x1,...,xc))

return (y = e(g, h)f(x1,...,xc))
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Then the uber-assumption holds if for all PT algorithms A there exists a negligible function ν(·) such that
Advuber

A (λ) < ν(λ). If instead the adversary must compute y = gf(x1,...,xc), we call it the computational
uber-assumption in the source group.

As an example, CDH in a symmetric group G uses c = 2, R = S = 〈1, x1, x2〉, T = 〈1〉, and
f(x1, x2) = x1x2, so that given (g, gx1 , gx2), it should be hard to compute gx1x2 . As a more complicated
example, exponent q-SDH [48] in the target space GT uses c = 1, R = S = 〈1〉, T = 〈1, {xi}qi=1〉, and

f(x) = xq+1, so that given (e(g, h), e(g, h)x, . . . , e(g, h)x
q
), it should be hard to compute e(g, h)x

q+1
. As

long as R and S both include 1, the computational uber-assumption in the target group implies the
computational uber-assumption in the source group, since given X = gf(~x) one can always compute
e(X,h) = e(g, h)f(~x).

The game d-UBERA
c,R,S,T,f (λ) for the decisional uber-assumption is defined analogously, except

rather than compute e(g, h)f(x1,...,xc) at the end, the adversary has only to distinguish it from random.

Assumption 4.2 (Decisional). For an adversary A, define Advuber
A (λ) = 2Pr[d-UBERA

c,R,S,T,f (λ)]− 1,

where d-UBERA
c,R,S,T,f (λ) is defined as follows:

main d-UBERA
c,R,S,T,f (λ)

b
$←− {0, 1}; (N,G,H,GT , e)

$←− BilinearGen(1λ, 2); g
$←− G, h

$←− H; x1, . . . , xc
$←− Z/NZ

if (b = 0) then y
$←− G

if (b = 1) then y ← gf(x1,...,xc)

b′
$←− A(1λ, (N,G,H,GT , e, g, h), gR(x1,...,xc), hS(x1,...,xc), e(g, h)T (x1,...,xc), y)

return (b′ = b)

Then the uber-assumption holds if for all PT algorithms A there exists a negligible function ν(·) such
that Advuber

A (λ) < ν(λ).

Unlike the computational version, the decisional uber-assumption in the source group implies the
decisional uber-assumption in the target group, since one can use a decider between e(g, h)f(~x) and RT
to decide between gf(~x) and R by computing the pairing. Furthermore, the decisional uber-assumption
(in either group) implies the computational uber-assumption, since the ability to compute the target
value immediately implies the ability to distinguish it from random. The strongest version of the uber-
assumption, and the one we therefore choose to aim for in the next section, is the decisional assumption
in either of the source groups.

4.2 A first approach: functions on one side of the pairing

Our first approach shows that certain classes of the uber-assumption are equivalent to significantly
weaker classes, and that in fact these weaker classes are so weak that the assumption holds by a
statistical argument. The subclass of uber-assumptions we cover includes q-type assumptions such as
exponent q-SDH (defined above), and implies that any schemes that currently rely on such assumptions
can be instantiated so that they rely solely on subgroup hiding.

Theorem 4.3. For a bilinear group G = (N,G,H,GT , e,G1, G2) ∈ [BilinearGen(1λ, 2)], consider the
decisional uber-assumption parameterized by c, R = 〈1, ρ1(~x), . . . , ρr(~x)〉, S = T = 〈1〉, and f(~x).
Then, if subgroup hiding holds in G with respect to µ = {g1, g2} and parameter hiding holds with
respect to R ∪ {f}, this assumption is implied by the decisional uber-assumption parameterized by `c,
R′ = 〈

∑`
i=1 ri,

∑`
i=1 riρ1(~xi), . . . ,

∑`
i=1 riρr(~xi)〉, S, T , and f ′ =

∑`
i=1 rif(~xi) for all ` = poly(λ) and

for r1, . . . , r`
$←− Z/NZ. 1

1In fact, the proof for this theorem can easily be extended to the case that adaptive parameter hiding holds for R∪{f}.

9



A proof of this theorem can be found in Appendix B, and also applies when R = S = 〈1〉 and only
T contains meaningful functions, or more generally in the case when there might not be an efficiently
computable pairing (i.e., in the case when we use the more general GroupGen, provided subgroup hiding
holds for µ = g1 and for µ = g2).This theorem also trivially generalizes to the case when T 6= 〈1〉, as long
as parameter hiding holds with respect to R∪T ∪{f}. We are not aware of any concrete instantiations
of the uber-assumption that have meaningful R and T though, so we focus on the above case for the
sake of a cleaner exposition.

Intuitively, the transitions rely on the same modified dual-system technique that we used in the
proof of Theorem 3.2. First, we switch to a setting where all elements exist only in the G1 subgroup,
operating over the original set of variables ~x1. A shadow copy of these elements is then added into
the G2 subgroup, which goes unnoticed by subgroup hiding. This shadow copy is then switched to
operate over a new set of variables ~x2, which is identical by parameter hiding. These new values are
then folded back into the G1 subgroup, which is again indistinguishable by subgroup hiding. Finally,
the G2 component is eliminated, which is once again indistinguishable by subgroup hiding. The result
is now a G1 component that operates over both ~x1 and ~x2 (which can be shifted back into the full
group G using another application of subgroup hiding), and the effect is analogous to the extra degree
of randomness we obtain in the proof of Theorem 3.2. Repeating this process `− 1 more times proves
the theorem.

To now show why this theorem is useful, we illustrate that the resulting game is often statistically
hard, and thus the original uber-assumption is implied solely by subgroup hiding. To start, consider

V =



1 ρ1(~x1) ρ2(~x1) · · · ρq(~x1) f(~x1)
1 ρ1(~x2) ρ2(~x2) · · · ρq(~x2) f(~x2)

...
...

. . . ...
.... . .

1 ρ1(~x`) ρ2(~x`) · · · ρq(~x`) f(~x`)


(1)

We then have the following lemma, which relates the linear independence of the polynomials with
the invertibility of the matrix:

Lemma 4.4. For all λ ∈ N, if the functions in R∪{f} are linearly independent and of maximum degree
poly(λ), ` = q+ 2 for q = poly(λ), and N = p1 · . . . · pn for distinct primes p1, . . . , pn ∈ Ω(2poly(λ)), then
with all but negligible probability the matrix V is invertible.

Proof. If the matrix V is invertible in Z/piZ for each prime pi | N , then it is also invertible in Z/NZ. To
see that V is invertible (with all but negligible probability) in Z/piZ for all i, define F = Z/piZ (or, in
the case that N is itself prime, define F = Z/NZ); then V is a matrix over F , where |F | is exponential
in λ. If we consider V instead as a matrix over the polynomial ring F [x1,1, . . . , x1,c, . . . , xq+2,c], then we
can define its determinant to be the polynomial D(~x1, . . . , ~xq+2). By the definition of polynomial linear
independence, the columns of V are linearly independent, so D is not the zero polynomial.

To consider the linear independence of the matrix over F , we must consider an assignment of
concrete values ~a1, . . . ,~aq+2 for the variables ~x1, . . . , ~xq+2. To see that D(~a1, . . . ,~aq+2) 6= 0 with all
but negligible probability — and thus the matrix V is invertible — consider d = maxqi=0(di), where
d0 = deg(f) and di = deg(ρi) for all ρi ∈ R; then deg(D) ≤ (q + 1)d. By the Schwartz-Zippel lemma,

Pr[D(~a1, . . . ,~aq+2) = 0] ≤ (q+ 1)d/|F | for ~a1, . . . ,~aq+2
$←− F . As |F | is exponential in λ and both q and

d are polynomial in λ, the probability is bounded by a negligible function in λ.

We then have the following corollary, which indicates when we can show that the original decisional
assumption is implied by subgroup hiding.
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Corollary 4.5. The decisional uber-assumption parameterized by (c,R, S, T, f) holds with all but negli-
gible probability if (1) subgroup hiding holds in G with respect to µ = {g1, g2}, where G is of order N for
N = p1 · . . . · pn for distinct primes p1, . . . , pn ∈ Ω(2poly(λ)), (2) parameter hiding holds with respect to
R∪{f}, (3) S = T = 〈1〉, and (4) the polynomials in R∪{f} are linearly independent and of maximum
degree poly(λ).

Proof. By requirements (1), (2), and (3), Theorem 4.3 tells us that the (c,R, S, T, f)-uber assumption is
equivalent to the (`c, R′, S, T, f ′)-uber-assumption. In this latter assumption, the adversary sees values
with exponents of the form ~y = ~r · V , where ~r is a random vector of length ` and V is the ` × (q + 2)
matrix defined in Equation 1. If we use ` = q + 2, then by requirement (4), Lemma 4.4 tells us that V
is invertible with all but negligible probability.

We can now use a bijection argument similar to the one in the proof of Theorem 3.2: ~r and ~y are
both members of the set S containing all sets of size q + 2 over Z/NZ, so multiplication by V maps S
to itself. As V is invertible, the map is invertible as well, and is thus a permutation over S. Sampling
~r uniformly at random and then multiplying by V thus yields a vector ~y that is distributed uniformly
at random over Z/NZ.

When V is invertible, an adversary A thus has no advantage in distinguishing between ~y and
a uniformly random vector in S, as the distributions over the two are identical, and thus has only
negligible overall advantage in d-UBERA

`c,R′,S,T,f ′(λ).

As observed by Boneh, Boyen, and Goh, if f is not linearly independent from all polynomials in
R∪T , then the assumption becomes trivially false. It furthermore unnecessarily expands the size of the
tuple to use polynomials in R or T that are linearly dependent, as, e.g., g2x is redundant given gx. We
therefore believe that the requirement that the polynomials in R ∪ T ∪ {f} be linearly independent is
not restrictive, and in fact — to the best of our knowledge — it is satisfied by all existing instantiations
of the uber-assumption.

As a concrete example, we examine the exponent q-SDH assumption.

Example 4.6. For exponent q-SDH, R = 〈1, α, α2, . . . , αq〉 and f(α) = αq+1. Plugging these values
into the matrix V gives

V =



1 α α2 · · · αq αq+1

1 γ2 γ22 · · · γq2 γq+1
2

1 γ3 γ23 · · · γq3 γq+1
2

...
...

. . . ...
.... . .

1 γq+2 γ2q+2 · · · γqq+2 γq+1
q+2


This is a Vandermonde matrix, which is invertible. By Corollary 4.5, exponent q-SDH is thus implied
by subgroup hiding (with µ = g1 and µ = g2), assuming parameter hiding holds with respect to the
set {fk(α) = αk}q+1

k=0 (which, given our discussion in Section 5, currently restricts us to composite-order
groups).

4.3 A second approach: computational assumptions in the source group

Although our results in the previous section have potentially broad implications, the requirements for
Theorem 4.3 — and in particular the requirement that S = 〈1〉— are somewhat restrictive, as many
q-type assumptions require meaningful functions on both sides of the pairing. We furthermore do not
seem able to relax this requirement using our current proof strategy: briefly, the fact that we need
subgroup hiding between both G1 and G1×G2 and between G1×G2 and G2 means that we cannot give
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out the subgroup generators h1 and h2 on the other side of the pairing. To get around this restriction
and allow meaningful functions on both sides of the pairing, we now consider an alternate approach in
which we require subgroup hiding only between G1 and G1 ×G2, which allows us to give out h1.

Now, however, we may be giving meaningful information about the variables ~x in the group H as
well as in G. This means we will need to extend our definition of parameter hiding to allow for the case
where some additional information about ~x is revealed.

Definition 4.7 (Extended parameter hiding). For a group (N,G,G1, G2, µ) ∈ [GroupGen(1λ, 2)], ex-
tended parameter hiding holds with respect to a family of functions F and auxiliary information defined

by Aux if for all g1 ∈ G1 and g2 ∈ G2, the distribution {gf(x1,...,xn)1 g
f(x1,...,xn)
2 , a(x1, . . . , xn)}f∈F ,a∈Aux is

identical to {gf(x1,...,xn)1 g
f(x′1,...,x

′
n)

2 , a(x1, . . . , xn)}f∈F ,a∈Aux for x1, x
′
1 . . . , xn, x

′
n

$←− Z/NZ.

For our purposes, we need this to hold for Aux = {hf(·)1 }f∈S∪T , where h1 is a generator of H1 and S

and T are the sets of polynomial functions specified by the uber-assumption (note that h
τ(~x)
1 is sufficient

to compute e(g1, h1)
τ(~x)). Fortunately, we can — and do, in Lemma 5.2 — show that this holds in certain

bilinear groups.

Theorem 4.8. For a bilinear group G = (N,G,H,GT , e) ∈ [BilinearGen(1λ, 2)], consider the computa-
tional uber-assumption in the source group parameterized by c, R = 〈1, ρ1(~x), . . . , ρr(~x)〉, S, T , and f .
Then, if subgroup hiding holds in G with respect to µ = {g1, g2, h1} and extended parameter hiding holds

with respect to F = R ∪ {f} and Aux = {hσ(·)1 }σ∈S∪T for any h1 ∈ H1, this is implied by the following
assumption for all ` = poly(λ): given

(G, {g1g
∑`

i=1
ri

2 , g
ρk(~x)
1 g

∑`

i=1
riρk(~xi)

2 }rk=1, h
S(~x)
1 , e(g1, h1)

T (~x))

for g1
$←− G1, g2

$←− G2, and ~x, r1, ~x1, . . . , r`, ~x`
$←− Z/NZ, it is difficult to compute g

f(~x)
1 g

∑`

i=1
rif(~xi)

2 .2

A proof of this theorem can be found in Appendix C. Intuitively, the starting point is the same
as in our previous proofs: all elements are first shifted to a setting in which they exist only in the G1

subgroup, operating over the original set of variables ~x, and a shadow copy of these elements is added
into the G2 subgroup, which goes unnoticed by subgroup hiding. This shadow copy is then switched to
operate over a new set of variables ~x1, which is identical by parameter hiding. Now, rather than attempt
to move these new variables back into G1, we simply repeat the process of adding and re-randomizing
the original set of variables into the G2 subgroup, until we end up with ` sets of variables there.

Once again, the usefulness of this theorem is revealed only when we examine what this more complex
assumption provides. Interestingly, it is not clear how to show that the decisional assumption holds
by a statistical argument, as the isolation of the ~x variables in the G1 subgroup provides a potentially
detectable distribution. Instead, we restrict our attention to computational assumptions in the source

group, in which the adversary is required to compute g
f(~x)
1 g

∑`

i=1
rif(~xi)

2 rather than distinguish it from
random. In this setting, we have the following corollary, analogous to Corollary 4.5.

Corollary 4.9. The computational uber-assumption parameterized by (c,R, S, T, f) holds in the source
group with all but negligible probability if (1) subgroup hiding holds in G with respect to µ = {g1, g2, h1},
(2) extended parameter hiding holds with respect to F = R ∪ {f} and Aux = {hσ(·)1 }σ∈S∪T for any
h1 ∈ H1, (3) the polynomials in R ∪ {f} are linearly independent and have maximum degree poly(λ).

2Again, the proof for this theorem can easily be extended to the case that adaptive parameter hiding holds for R∪{f}.
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Proof. Let ρ0 = 1. By requirements (1) and (2), Theorem 4.8 tells us that the original assumption

is equivalent to one in which the adversary is given {gρk(~x)1 g

∑q+2

i=1
riρk(~xi)

2 }rk=0, h
S
1 = {hσm(~x)

1 }sm=1, and

e(g1, h1)
T = {e(g1, h1)τj(~x)}tj=1, and is asked to compute g

f(~x)
1 g

∑q+2

i=1
rif(~xi)

2 . Assume, for the sake of
simplicity, that g1, ~x are public, so A can compute the G1 component of this target, and all it needs to

compute is g

∑q+2

i=1
rif(~xi)

2 . Immediately, it is clear that hS1 and e(g1, h1)
T provide no advantage, as they

operate in different groups over a completely independent set of variables (namely, ~x as opposed to ~xi
for i = 1 . . . q + 2).

In the G2 subgroup, if we use ` = q+ 2 and define ~y = ~r · V — where ~r is a random vector of length
q+2 and V is the matrix defined in Equation 1 — then A is given the first q+1 entries of ~y and is asked
to compute the last. By requirement (3), Lemma 4.4 tells us that V is invertible with all but negligible
probability. We can now apply an analysis similar to the proof of Corollary 4.5: by the same bijection
argument (i.e., the argument that if V is invertible then it is a permutation over vectors of length q+ 2
over Z/NZ), the fact that ~r is distributed uniformly at random means that the vector ~y is distributed
uniformly at random as well; in particular, the distribution over both the values that A is given and
the target value that it is trying to compute is uniformly random. A therefore has at most negligible
probability in computing this target value.

To bring everything together, we examine the q-SDH assumption, as defined by Boneh and Boyen [8].

Example 4.10. The q-SDH assumption uses R = 〈1, α, . . . , αq〉, S = 〈1, α〉, T = 〈1〉, and asks A
to compute (c, u

1
α+c ). Using Theorem 4.8,3 this is equivalent (under subgroup and parameter hid-

ing) to an assumption in which A is given (u1g

∑q+2

i=1
ri

2 , uα1 g

∑q+2

i=1
riγi

2 , . . . , uα
q

1 g

∑q+2

i=1
riγ

q
i

2 , v1, v
α
1 ), where

γ1, . . . , γq+2
$←− Z/NZ, and is asked to compute (c, u

1
α+c

1 g

∑
i

ri
γi+c

2 ). Applying the same analysis as above,
we can ignore G1 and focus on G2, in which we use the matrix

A =


1 γ1 · · · γq1

1
γ1+c

1 γ2 · · · γq2
1

γ2+c
...

...
. . .

...
...

1 γ` · · · γq`
1

γ`+c


First, note that for any c such that gcd(γi + c,N) = 1 for all i, this matrix is invertible. To see this,
consider the additional matrices

B =


γ1 + c γ1(γ1 + c) · · · γq1(γ1 + c) 1
γ2 + c γ2(γ2 + c) · · · γq2(γ2 + c) 1

...
...

. . .
...

...
γ` + c γ`(γ` + c) · · · γq` (γ` + c) 1

 , C =


γ1 γ1(γ1 + c) · · · γq1(γ1 + c) 1
γ2 γ2(γ2 + c) · · · γq2(γ2 + c) 1
...

...
. . .

...
...

γ` γ`(γ` + c) · · · γq` (γ` + c) 1

 , and

D =


γ1 γ1(γ1) · · · γq1(γ1) 1
γ2 γ2(γ2) · · · γq2(γ) 1
...

...
. . .

...
...

γ` γ`(γ`) · · · γq` (γ`) 1


Each of these matrices is obtained from the previous one by elementary row or column operations, so if
D is invertible then A is as well. Since D is a Vandermonde matrix with shifted columns, it is invertible

3Technically, this assumption doesn’t meet the requirements of the theorem, as A produces a new value c rather than
a function f(~x). The proof of the theorem can, however, be trivially extended to support assumptions of this type as well,
as long as the group satisfies adaptive parameter hiding.

13



with all but negligible probability (following the argument in Lemma 4.4), so A is invertible with all
but negligible probability.

Now, the game chooses ~r
$←− Z/NZ, and A is given the first q + 1 entries of ~r · A; these values

y1, . . . , yq+1 are uniformly distributed by the same bijection argument as in Corollary 4.9. The adversary
then chooses c, which defines a permutation (assuming gcd(c + γi, N) = 1 for all i), and then must
produce ŷq+2. The adversary wins only if y1, . . . , yq+1, ŷq+2 is consistent with the original ~r. However,
as multiplication with A is a permutation, every value ŷq+2 corresponds to some vector ~r′, and the
probability that the adversary chooses a value consistent with the original ~r is then 1/N .

Finally, note that y1, . . . , yq+1 are uniformly distributed and independent of γ1, . . . , γq+2, so the
probability that A produces c such that gcd(γi + c,N) = 1 for some i is at most (q+ 2)(p1 + p2− 1)/N ,
which is negligible as long as p1 and p2 are exponential.

Putting this together, we get that A can produce the correct value with at most negligible probability,
which implies that for these groups q-SDH is implied by subgroup hiding (with appropriate µ).

5 Instantiating Our Results

Abstractly, our results provide quite a strong guarantee: as long as subgroup hiding and parameter
hiding hold, many instantiations of the uber-assumption hold (as well as non-uber-assumptions, such
as q-SDH), as they reduce to assumptions that hold by a statistical argument. Concretely, we need to
examine which groups support these underlying assumptions.

Parameter hiding. Our strongest requirement in our analysis was the generality of parameter hiding:
to reason about any q-type assumption, we need a group where parameter hiding holds for all rational
functions. While this seems hard to achieve in general, it does hold for any composite-order group (e.g.,
any group of order N = p1p2 for primes p1 and p2).

Lemma 5.1. For all groups G of order N = p1p2 with subgroups G1 = 〈g1〉 and G2 = 〈g2〉, all c ∈ N, if

F is the class of all polynomial functions f(·) over Z/NZ, the distribution over {gf(x1,...,xc)1 g
f(x1,...,xc)
2 }f∈F

is identical to the distribution over {gf(x1,...,xc)1 g
f(x′1,...,x

′
c)

2 }f∈F for x1, x
′
1, . . . , xc, x

′
c

$←− Z/NZ.

Proof. This follows directly from the Chinese Remainder theorem. For a polynomial p(·), one can

compute g
p(x1,...,xc)
2 knowing just the values xi mod p2, which (by the Chinese Remainder Theorem) are

independent of their values modulo p1.

Moreover, we can show that in the bilinear setting, extended parameter hiding holds when Aux is

the set {hσ(·)1 }σ∈S for any h1 ∈ H1 and set of polynomials S.

Lemma 5.2. For all groups (N,G,H,GT , e, g1, g2, h1) ∈ [BilinearGen(1λ, 2)] where N = p1p2, all c ∈
N, and the class F of all polynomials f(·) over Z/NZ, the distribution over {gf(x1,...,xc)1 g

f(x1,...,xc)
2 ,

h
f(x1,...,xc)
1 }f∈F is identical to the distribution over {gf(x1,...,xc)1 g

f(x′1,...,x
′
c)

2 , h
f(x1,...,xc)
1 }f∈F for x1, x

′
1, . . . ,

xc, x
′
c

$←− Z/NZ.

Proof. Again, this follows directly from the Chinese Remainder Theorem. The generator h1 has order p1,
so the auxiliary information reveals information about only ~x mod p1, which is information-theoretically
independent of the values modulo p2.
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Subgroup hiding. In groups without a pairing — such as the target group of a bilinear tuple or a
group over a non-pairing-friendly elliptic curve — subgroup decision is fairly straightforward. In groups
with a pairing, however, the concerns mentioned in Section 2 (in which certain subgroup generators on
the other side of the pairing could render subgroup decision easy) mean we have to be more careful. Our
first approach in Section 4.2 relies on being unable to distinguish random elements of both G1 and G2

from G1×G2, even when given g1 and g2. This cannot hold, for example, in a symmetric bilinear group,
so this assumption is reasonable only in the asymmetric setting. Our second approach in Section 4.3
requires that subgroup hiding holds even given h1 and g2, so it again requires an asymmetric pairing.

Instantiations. As mentioned above, our results in Sections 3 and 4 can be applied in any composite-
order group where we can assume subgroup hiding. Reasonable candidates for such a group include
composite-order elliptic curve groups without efficient pairings, the target group of a composite-order
bilinear group, or composite-order subgroups of finite fields.

In the case where we do have a pairing, we need an asymmetric composite-order bilinear group in
order to make subgroup hiding a reasonable assumption. Although most composite-order bilinear groups
are symmetric (as they are groups of points on supersingular curves), ordinary composite-order curves
were first introduced by Boneh, Rubin, and Silverberg [14], and their applicability for cryptography —
and in particular an examination of the nature of the resulting asymmetric composite-order bilinear
group — was very recently explored by Meiklejohn and Shacham [40].

Applications. In asymmetric composite-order bilinear groups we can prove a wide range of con-
structions secure based on just subgroup hiding. For example, our examination of q-SDH means that
the Boneh-Boyen signature, the Boneh-Boyen-Shacham group signature [10], and the attribute-based
signature due to Maji et al. [39] can all be proved secure under subgroup hiding, and the fact that
q-DHI [41] — which states that given (g, gx, . . . , gx

q
) it should be hard to compute g1/x — is also equiva-

lent to subgroup hiding implies the Dodis-Yampolskiy VUF and the Jarecki-Liu PRF [28] can also both
be proved secure based on subgroup hiding.

6 Conclusions and Open Problems

This paper demonstrated the applicability of the dual-system technique (and variants on it) by first
proving the security of the Dodis-Yampolskiy PRF — using a domain of arbitrary size — under subgroup
hiding, and then proving equivalence between many classes of the uber-assumption. This latter result
further implies that many of these classes are in fact implied solely by subgroup hiding, as they reduce
to assumptions that hold by a purely statistical argument. Our paper thus demonstrates that many
common q-type assumptions — and the constructions that rely on them for security — can be implied
directly by subgroup hiding when instantiated in the appropriate bilinear groups.

As our paper is a first step, many interesting directions and open problems remain. For example, we
currently cannot prove anything about, e.g., decisional assumptions — such as q-DDHE — that require
meaningful functions on both sides of the pairing. Perhaps the biggest open problem is obtaining more
robust forms of parameter hiding in prime-order groups. Prime-order groups have the benefit of being
significantly more efficient, and it is possible to construct groups with the appropriate subgroup hiding
requirements using dual pairing vector spaces [42, 43], as exemplified most recently by Lewko and
Meiklejohn [30].

For parameter hiding in prime-order bilinear groups, however, it is currently known how to obtain
parameter hiding only for linear functions. Papers that have focused on translating these structural
properties into prime-order settings, however, have indicated that they focus on such simple functions to
keep their “constructions. . . simple and tailored to the requirements that [they] need” [30], so we consider
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constructing parameter hiding for more robust functions in the prime-order setting an interesting open
problem rather than an impossibility.
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$←− G, u1
$←− G1, u2

$←− G2 ; b
$←− {0, 1}

2 sk1, r1
$←− Z/NZ

3 b′
$←− AFn(·)(1λ)

Procedure Fn(x) // PRFA
F (λ) / GA

1 (λ)

4 if b = 0 then y
$←− G

5 if b = 1 then
6 if gcd(x+ sk1, N) 6= 1 then y ← 1

7 else y ← g
1

sk1+x , y ← u
r1

sk1+x

1

Figure 1: Games for the proof of Theorem 3.2 (Equation 2). The boxed game uses the boxed code and the other
game does not.
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A A Proof of Theorem 3.2

Proof. Let A be a PT adversary playing game PRFA
F (λ) that makes q = q(λ) queries to its Fn oracle.

We provide PT adversaries B0 and Bfinal, a family of PT adversaries Bi,1, Bi,2, and Bi,3, and negligible
functions ν2(·) and ν(·) such that

Advprf
F,A(λ) ≤ 2(Advsgh

B0
(λ) + Advsgh

Bfinal
(λ)) + (2q)(Advsgh

Bi,1(λ) + ν2(λ) + Advsgh
Bi,2(λ) + Advsgh

Bi,3(λ))

+ (q2 + q)ν(λ)
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main GA
i (λ) / GA

i,1(λ) / GA
i,2(λ) / GA

i,3(λ) / GA
i+1(λ)

2 sk1, r1, . . . , sk i, ri, sk i+1, ri+1
$←− Z/NZ

Procedure Fn(x) // GA
i (λ) / GA

i,1(λ)

5 if b = 1 then
6 if gcd(x+ sk j , N) 6= 1 for j ∈ [i] then y ← 1

7 else y ← u

∑i

j=1

rj
skj+x

1 , y ← u

∑i

j=1

rj
skj+x

1 u
1

ski+x

2

Procedure Fn(x) // GA
i,1(λ) / GA

i,2(λ)

5 if b = 1 then

6 if gcd(x+ sk j , N) 6= 1 for j ∈ [i], for j ∈ [i+ 1] then y ← 1

7 else y ← u

∑i

j=1

rj
skj+x

1 u
ri

ski+x

2 , y ← u

∑i

j=1

rj
skj+x

1 u
1

ski+1+x

2

Procedure Fn(x) // GA
i,2(λ) / GA

i,3(λ)

7 else y ← u

∑i

j=1

rj
skj+x

1 u
1

ski+1+x

2 , y ← u

∑i+1

j=1

rj
skj+x

1 u
1

ski+1+x

2

Procedure Fn(x) // GA
i,3(λ) / GA

i+1(λ)

7 else y ← u

∑i+1

j=1

rj
skj+x

1 u
1

ski+1+x

2 , y ← u

∑i+1

j=1

rj
skj+x

1

Figure 2: Games for the proof of Theorem 3.2 (Equations 3 through 6). The boxed games use the boxed code
and the other games do not.

for all λ ∈ N, from which the theorem follows. To do this, we build B0,Bfinal, ν2(λ), ν(λ), and Bi,1, Bi,2,
and Bi,3 for all i, 1 ≤ i ≤ q, such that

Pr[PRFA
F (λ)]− Pr[GA

1 (λ)] ≤ Advsgh
B0

(λ) (2)

Pr[GA
i (λ)]− Pr[GA

i,1(λ)] ≤ Advsgh
Bi,1(λ) (3)

Pr[GA
i,1(λ)]− Pr[GA

i,2(λ)] ≤ ν2(λ) (4)

Pr[GA
i,2(λ)]− Pr[GA

i,3(λ)] ≤ Advsgh
Bi,2(λ) (5)

Pr[GA
i,3(λ)]− Pr[GA

i+1(λ)] ≤ Advsgh
Bi,3(λ) (6)

Pr[GA
q+1(λ)]− Pr[GA

final(λ)] ≤ Advsgh
Bfinal

(λ) (7)

2Pr[GA
final(λ)]− 1 = (q2 + q)ν(λ). (8)
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main GA
q+1(λ) / GA

final(λ)

1 (N,G,G1, G2, µ)
$←− GroupGen(1λ); u1

$←− G1, u2
$←− G2; g

$←− G , b
$←− {0, 1}

2 sk1, r1, sk q+1, rq+1
$←− Z/NZ

3 b′
$←− AFn(·)(1λ)

Procedure Fn(x) // GA
q+1(λ) / GA

final(λ)

7 else y ← u

∑q+1

j=1

rj
skj+x

1 , y ← g

∑q+1

j=1

rj
skj+x

Figure 3: Games for the proof of Theorem 3.2 (Equation 7). The boxed game uses the boxed code and the other
game does not.

We then have, defining GA
i,0(λ) = GA

i (λ) and GA
i,4(λ) = GA

i+1(λ), that

Advprf
F,A(λ) = 2Pr[PRFA

F (λ)]− 1

= 2
(
Pr[PRFA

F (λ)]− Pr[GA
1 (λ)]

)
+ 2

 q∑
i=1

3∑
j=0

(Pr[GA
i,j(λ)]− Pr[GA

i,j+1(λ)])


+ 2

(
Pr[GA

q+1(λ)]− Pr[GA
final(λ)]

)
+ 2Pr[GA

final(λ)]− 1

≤ 2(Advsgh
B0

(λ) + Advsgh
Bfinal

(λ)) + (2q)(Advsgh
Bi,1(λ) + ν2(λ) + Advsgh

Bi,2(λ) + Advsgh
Bi,3(λ))

+ (q2 + q)ν(λ).

Equation 2.
B0 behaves as follows:

B0(1
λ, N,G,G1, T )

b
$←− {0, 1}; sk

$←− Z/NZ
b′

$←− ASimFn(·)(1λ)
return (b′ 6= b)

Procedure SimFn(x)

if b = 0 then y
$←− G

if b = 1 then
if gcd(sk + x,N) 6= 1 then y ← 1

else y ← T
1

sk+x

return y

If T
$←− G, then this is identical to the value in PRFA

F (λ). If instead T
$←− G1, then this is identical to

the value in GA
1 (λ).
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Equation 3.
Bi,1 behaves as follows:

Bi,1(1λ, N,G,G1, u1, T )

b
$←− {0, 1}; sk1, r1, . . . , sk i, ri

$←− Z/NZ
b′

$←− ASimFn(·)(1λ)
return (b′ 6= b)

Procedure SimFn(x)

if b = 0 then y
$←− G

if b = 1 then
if gcd(sk j + x,N) 6= 1 for j ∈ [i] then y ← 1

else y ← u

∑i−1

j=1

rj
skj+x

1 · T
1

ski+x

return y

If T
$←− G1, then T = uri1 for ri

$←− Z/NZ and u1 ∈ G1, so y ← u

∑i

j=1

rj
skj+x

1 , which is identical to

the value in GA
i (λ). If instead T

$←− G, then T = uri1 u2 for ri
$←− Z/NZ, u1 ∈ G1, and u2

$←− G2, so

y ← u

∑i

j=1

rj
skj+x

1 u
1

ski+x

2 , which is identical to the value in GA
i,1(λ).

Equation 4.
When b = 0, the two games are identical. When b = 1, consider the class of functions F = {fsk (x) = (x+

sk)−1}sk∈F.Keys with domains fsk .D = {x | gcd(sk +x,N) = 1}. For r1, sk1, . . . , ri−1, sk i−1
$←− Z/NZ and

for O,O′ constructed as in Definition 2.3, consider an oracle that on input x outputs 1 if gcd(x+sk j) = 1
for some j ∈ [i − 1], and otherwise outputs the result of O or O′. If we use O, the result is identical
to the Fn oracle in GA

i,1(λ) with b = 1, and if we use O′, it is identical to the Fn oracle in GA
i,1(λ)

with b = 1. This means that to prove the equation it suffices to show that this function family satisfies
adaptive parameter hiding, which follows from Lemma 3.1.

Equation 5.
Bi,2 behaves as follows:

Bi,2(1λ, N,G,G1, u1, T )

b
$←− {0, 1}; sk1, r1, . . . , sk i, ri, sk i+1

$←− Z/NZ
b′

$←− ASimFn(·)(1λ)
return (b′ 6= b)

Procedure SimFn(x)

if b = 0 then y
$←− G

if b = 1 then
if gcd(sk j + x,N) 6= 1 for j ∈ [i+ 1] then y ← 1

else y ← u

∑i

j=1

rj
skj+x

1 · T
1

ski+1+x

return y
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If T
$←− G2 then T = u2 for u2

$←− G2, so y ← u

∑i

j=1

rj
skj+x

1 u
1

ski+1+x

2 , which is identical to the value in

GA
i,2(λ). If instead T

$←− G, then T = u
ri+1

1 u2 for ri+1
$←− Z/NZ and u2

$←− G2, so y ← u

∑i+1

j=1

rj
skj+x

1 u
1

ski+1+x

2 ,

which is identical to the value in GA
i,3(λ).

Equation 6.
Bi,3 behaves as follows:

Bi,3(1λ, N,G,G1, u1, T )

b
$←− {0, 1}; sk1, r1, . . . , sk i, ri, sk i+1

$←− Z/NZ
b′

$←− ASimFn(·)(1λ)
return (b′ 6= b)

Procedure SimFn(x)

if b = 0 then y
$←− G

if b = 1 then
if gcd(sk j + x,N) 6= 1 for j ∈ [i+ 1] then y ← 1

else y ← u

∑i

j=1

rj
skj+x

1 · T
1

ski+1+x

return y

If T
$←− G, then T = u

ri+1

1 u2 for u1 ∈ G1, ri+1
$←− Z/NZ, and u2

$←− G2, so y ← u

∑i+1

j=1

rj
skj+x

1 u
1

ski+1+x

2 , which

is identical to the value in GA
i,3(λ). If instead T

$←− G1 then T = u
ri+1

1 for u1 ∈ G1 and ri+1
$←− Z/NZ, so

y ← u

∑i+1

j=1

rj
skj+x

1 , which is identical to the value in GA
i+1(λ).

Equation 7.
Finally, Bfinal behaves as follows:

Bfinal(1
λ, N,G,G1, T )

b
$←− {0, 1}; sk1, r1, . . . , sk q+1, rq+1

$←− Z/NZ
b′

$←− ASimFn(·)(1λ)
return (b′ 6= b)

Procedure SimFn(x)

if b = 0 then y
$←− G

if b = 1 then
if gcd(sk j + x,N) 6= 1 for j ∈ [q + 1] then y ← 1

else y ← T

∑q+1

j=1

rj
skj+x

return y

If T
$←− G1, then this y is identical to the value in GA

q+1(λ). If instead T
$←− G, then this y is identical to

the value in GA
final(λ).

Equation 8.

We begin with a modified version of GA
final(λ): rather than pick r1, . . . , rq+1

$←− Z/NZ, pick y1, . . . , yq+1
$←−

Z/NZ and set rj := yj
∏
k 6=j

1
sk−sj for all j, 1 ≤ j ≤ q+ 1. (Note that as long as gcd(si − sj , N) = 1 for
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all pairs si, sj , this will be distributed identically to the original choice of r1, . . . , rq+1 mod p1. Thus,
the adversary has less than q2 ∗ (p1 + p2 − 1)/N advantage in distinguishing this game from GA

final(λ).)
Then in the exponent (as long as sk i + x has an inverse in Z/NZ for all i), we have the expression

q+1∑
i=1

ri
sk i + x

=

∑q+1
i=1 ri

∏
j 6=i(sk j + x)∏q+1

i=1 (sk i + x)
=

∑q+1
i=1 yi

∏
j 6=i

skj+x
skj−sk i∏q+1

i=1 (sk i + x)
.

The numerator is the formula for the Lagrange interpolating polynomial through the points (−sk i, yi);
i.e., the polynomial p(·) such that p(−sk i) = yi for all i, 1 ≤ i ≤ q + 1. As the yi values are distributed
uniformly at random, p(·) is therefore a degree-q polynomial with random coefficients.

To see this argument in more detail, consider the set S1 of all polynomials of degree q over Z/NZ;
then |S1| = N(q + 1) (as a degree-q polynomial can be represented by its q + 1 coefficients, each in
Z/NZ). If we also consider the set S2 of sets of size q+ 1 over Z/NZ, then we have |S2| = N(q+ 1). As
we can compute a unique degree-q polynomial given a set of q+1 output points using interpolation, and
can compute a unique set of q + 1 output points given a polynomial by evaluating the polynomial, S1
and S2 are bijective. This means that sampling randomly from S2 and then applying the bijection gives
us a random sample in S1, which in turn means that, because the set {yi}q+1

i=1 is distributed uniformly
at random, the polynomial p(·) defined by applying Lagrange interpolation is a random polynomial.

We can therefore rewrite the function in the exponent as p(x)∏q+1

i=1
(sk i+x)

. Note that as long as gcd(sk i+

x,N) = 1 for all i, then the response to each query x to the Fn oracle is p(x)/X for some value X 6= 0,
which — because p(·) is a random degree-q polynomial that we see at most q outputs of — is distributed
uniformly at random. Given this, we can also conclude that as long as gcd(sk i + x,N) = 1 for all i, the
oracle responses reveal nothing else about sk1, . . . , sk q+1. Thus, the probability that in q queries, the
adversary finds at least one x for which gcd(sk i + x,N) = 1 for some sk i ∈ {sk1, . . . , sk q+1} is at most
the probability that he can find such an x by random guessing: q(q + 1)(p1 + p2 − 1)/N .

Putting this together with the (q + 1)(p1 + p2 − 1)/N above, we conclude that the adversary’s
advantage of distinguishing b = 0 and b = 1 is O(q(q + 1)( 1

p2
+ 1

p1
)), which is negligible as long as p1

and p2 are exponential.

B A Proof of Theorem 4.3

Proof. Let A be a PT adversary playing game d-UBERA
c,R,S,T,f (λ). We provide PT adversaries B0 and

Bfinal and a family of PT adversaries Bi,1, Bi,2, and Bi,3 such that

Advuber
c,R,S,T,f,A(λ) ≤ 2(Advsgh

B0
(λ) + Advsgh

Bfinal
(λ)) + 2`(Advsgh

Bi,1(λ) + Advsgh
Bi,2(λ) + Advsgh

Bi,3(λ))

+ Advuber
`c,R,S,T ′,f ′,A(λ)
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main d-UBERA
c,R,S,T,f (λ) / GA

1 (λ)

(N,G,H,GT , e)
$←− BilinearGen(1λ, 2); g

$←− G, g1
$←− G1, g2

$←− G2 ; b
$←− {0, 1}

x1, . . . , xc, r1
$←− Z/NZ

vk ← gρk(x1,...,xc), vk ← g
r1ρk(x1,...,xc)
1 ∀k ∈ [q]

if (b = 0) then v′
$←− G

if (b = 1) then v′ ← gf(x1,...,xc), v′ ← g
f(x1,...,xc)
1

b′
$←− A(1λ, (N,G,H,GT , e), v1, . . . , vq, v

′)
return (b′ = b)

Figure 4: Games for the proof of Theorem 4.3 (Equation 9). The boxed game uses the boxed code and the other
game does not.

for all λ ∈ N, from which the theorem follows. To do this, we build B0, Bfinal, and Bi,1, Bi,2, and Bi,3
for all i, 1 ≤ i ≤ `, such that

|Pr[d-UBERA
c,R,S,T,f (λ)]− Pr[GA

1 (λ)]| ≤ Advsgh
B0

(λ) (9)

|Pr[GA
i (λ)]− Pr[GA

i,1(λ)]| ≤ Advsgh
Bi,1(λ) (10)

|Pr[GA
i,1(λ)]− Pr[GA

i,2(λ)]| = 0 (11)

|Pr[GA
i,2(λ)]− Pr[GA

i,3(λ)]| ≤ Advsgh
Bi,2(λ) (12)

|Pr[GA
i,3(λ)]− Pr[GA

i+1(λ)]| ≤ Advsgh
Bi,3(λ) (13)

|Pr[GA
final(λ)]− Pr[GA

` (λ)]| ≤ Advsgh
Bfinal

(λ) (14)

|2Pr[GA
final(λ)]− 1| = Advuber

`c,R,S,T ′,f ′,A(λ). (15)

We then have, defining GA
i (λ) = GA

i,0(λ) and GA
i+1(λ) = GA

i,4(λ), that

Advuber
c,R,S,T,f,A(λ) = |2Pr[d-UBERA

c,R,S,T,f (λ)]− 1|

= |2(Pr[d-UBERA
c,R,S,T,f (λ)]− Pr[GA

1 (λ)]) + 2(
`−1∑
i=1

3∑
j=0

(Pr[GA
i,j(λ)]− Pr[GA

i,j+1(λ)]))

+ 2(Pr[GA
` (λ)]− Pr[GA

final(λ)]) + 2Pr[GA
final(λ)]− 1|

≤ 2(Advsgh
B0

(λ) + Advsgh
Bfinal

(λ)) + 2`(Advsgh
Bi,1(λ) + Advsgh

Bi,2(λ) + Advsgh
Bi,3(λ))

+ Advuber
`c,R,S,T ′,f ′,A(λ).

Finally, the description of H allows us to sample h
$←− H, which is enough to compute hS(x1,...,xc) = h1

and e(g, h)T (x1,...,xc) = e(g, h)1. We can thus ignore these values in the following games as long as we
include the description of H.

We also for simplicity let ρ0 = 1, so R = 〈ρ0, . . . , ρq〉, and define [q] to mean {0, . . . , q}.

Equation 9: d-UBERA
c,R,S,T,f (λ) to GA

1 (λ)
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main GA
i (λ) / GA

i,1(λ) / GA
i,2(λ) / GA

i,3(λ) / GA
i+1(λ)

(N,G,H,GT , e,G1, G2)
$←− BilinearGen(1λ, 2); g1

$←− G1, g2
$←− G2; b

$←− {0, 1}
x1,1, . . . , x1,c, . . . , xi,1, . . . , xi,c, r1, . . . , ri xi+1,1, . . . , xi+1,c

$←− Z/NZ

vk ← g

∑i

j=1
ρk(xj,1,...,xj,c)

1 ∀k ∈ [q] // GA
i (λ)

vk ← g

∑i

j=1
rjρk(xj,1,...,xj,c)

1 g
ρk(xi,1,...,xi,c)
2 ∀k ∈ [q] // GA

i,1(λ)

vk ← g

∑i

j=1
rjρk(xj,1,...,xj,c)

1 g
ρk(xi+1,1,...,xi+1,c)
2 ∀k ∈ [q] // GA

i,2(λ)

vk ← g

∑i+1

j=1
rjρk(xj,1,...,xj,c)

1 g
ρk(xi+1,1,...,xi+1,c)
2 ∀k ∈ [q] // GA

i,3(λ)

vk ← g

∑i+1

j=1
rjρk(xj,1,...,xj,c)

1 ∀k ∈ [q] // GA
i+1(λ)

if (b = 0) then v′
$←− G

if (b = 1) then v′ ← g

∑i

j=1
rjf(xj,1,...,xj,c)

1 // GA
i (λ)

if (b = 1) then v′ ← g

∑i

j=1
rjf(xj,1,...,xj,c)

1 g
f(xi,1,...,xi,c)
2 // GA

i,1(λ)

if (b = 1) then v′ ← g

∑i

j=1
rjf(xj,1,...,xj,c)

1 g
f(xi+1,1,...,xi+1,c)
2 // GA

i,2(λ)

if (b = 1) then v′ ← g

∑i+1

j=1
rjf(xj,1,...,xj,c)

1 g
f(xi+1,1,...,xi+1,c)
2 // GA

i,3(λ)

if (b = 1) then v′ ← g

∑i+1

j=1
rjf(xj,1,...,xj,c)

1 // GA
i+1(λ)

b′
$←− A(1λ, (N,G,H,GT , e), v1, . . . , vq, v

′)
return (b′ = b)

Figure 5: Games for the proof of Theorem 4.3 (Equations 10 through 13). Each game uses the boxed code on its
corresponding line.

B0 behaves as follows:

B0(1
λ, N,G,H,GT , e,W )

b
$←− {0, 1}; x1, . . . , xc

$←− Z/NZ
vk ←W ρk(x1,...,xc) ∀k ∈ [q]

if (b = 0) then v′
$←− G

if (b = 1) then v′ ←W f(x1,...,xc)

b′
$←− A(1λ, (N,G,H,GT , e), v1, . . . , vq, v

′)
return (b′ = b)

If W
$←− G then this is identical to the value in d-UBERA

c,R,S,T,f (λ). If instead W
$←− G1 then this is

identical to the value in GA
1 (λ).
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main GA
` (λ) / GA

final(λ)

(N,G,H,GT , e)
$←− BilinearGen(1λ, 2); g1

$←− G1, g2
$←− G2, g

$←− G ; b
$←− {0, 1}

x1,1, . . . , x1,c, . . . , x`,1, . . . , x`,c, r1, . . . , r`
$←− Z/NZ

vk ← g

∑`

j=1
rjρk(xj,1,...,xj,c)

1 , vk ← g
∑`

j=1
rjρk(xj,1,...,xj,c) ∀k ∈ [q]

if (b = 0) then v′
$←− G

if (b = 1) then v′ ← g

∑`

j=1
rjf(xj,1,...,xj,c)

1 , v′ ← g
∑`

j=1
rjf(xj,1,...,xj,c)

b′
$←− A(1λ, (N,G,H,GT , e), v1, . . . , vq, v

′)
return (b′ = b)

Figure 6: Games for the proof of Theorem 4.3 (Equation 14). The boxed game uses the boxed code and the other
game does not.

Equation 10: GA
i (λ) to GA

i,1(λ)

Bi,1 behaves as follows:

Bi,1(1λ, N,G,GT , e, g1,W )

b
$←− {0, 1}; x1,1, . . . , x1,c, . . . , xi,1, . . . , xi,c, r1, . . . , ri−1

$←− Z/NZ

vk ← g

∑i−1

j=1
rjρk(xj,1,...,xj,c)

1 ·W ρk(xi,1,...,xi,c) ∀k ∈ [q]

if (b = 0) then v′
$←− G

if (b = 1) then v′ ← g

∑i−1

j=1
rjf(xj,1,...,xj,c)

1 ·W f(xi,1,...,xi,c)

b′
$←− A(1λ, (N,G,H,GT , e), v1, . . . , vq, v

′)
return (b′ = b)

If W
$←− G1, then W = gri1 for uniformly distributed ri ∈ Z/NZ, and

vk ← g

∑i

j=1
rjρk(xj,1,...,xj,c)

1 and v′ ← g

∑i

j=1
rjf(xj,1,...,xj,c)

1 ,

which are identical to the values in GA
i (λ). If instead W

$←− G, then W = gri1 g2 for uniformly distributed
ri ∈ Z/NZ and g2 ∈ G2, and

vk ← g

∑i

j=1
rjρk(xj,1,...,xj,c)

1 g
ρk(xi,1,...,xi,c)
2 and v′ ← g

∑i

j=1
rjf(xj,1,...,xj,c)

1 g
f(xi,1,...,xi,c)
2 ,

which are identical to the values in GA
i,1(λ).

Equation 11: GA
i,1(λ) to GA

i,2(λ)

If we define A := g

∑i−1

j=1
rjρk(~xj)

1 , then A is independent from anything involving ~xi or ~xi+1, as it
operates over completely independent sets of variables. The switch from GA

i,1(λ) to GA
i,2(λ) is from

A · (ĝ1ρk(~xi)gρk(~xi)2 ) to A · (ĝ1ρk(~xi)gρk(~xi+1)
2 ) (and similarly for f), where ĝ1 = gri1 is a uniformly random

element of G1. Since parameter hiding is assumed to hold with respect to R ∪ f , the distributions over
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these values are identical.

Equation 12: GA
i,2(λ) to GA

i,3(λ)

Bi,2 behaves as follows:

Bi,2(1λ, N,G,GT , e, g1,W )

b
$←− {0, 1}; x1,1, . . . , x1,c, . . . , xi+1,1, . . . , xi+1,c, r1, . . . , ri

$←− Z/NZ

vk ← g

∑i

j=1
rjρk(xj,1,...,xj,c)

1 ·W ρk(xi+1,1,...,xi+1,c) ∀k ∈ [q]

if (b = 0) then v′
$←− G

if (b = 1) then v′ ← g

∑i

j=1
rjf(xj,1,...,xj,c)

1 ·W f(xi+1,1...,xi+1,c)

b′
$←− A(1λ, (N,G,H,GT , e), v1, . . . , vq, v

′)
return (b′ = b)

If W = g2
$←− G2, then

vk ← g

∑i

j=1
rjρk(xj,1,...,xj,c)

1 g
ρk(xi+1,1,...,xi+1,c)
2 and v′ ← g

∑i

j=1
rjf(xj,1,...,xj,c)

1 g
f(xi+1,1,...,xi+1,c)
2 ,

which are identical to the values in GA
i,2(λ). If instead W

$←− G, then W = g
ri+1

1 g2 for uniformly
distributed ri+1 ∈ Z/NZ and g2 ∈ G2, and

vk ← g

∑i+1

j=1
rjρk(xj,1,...,xj,c)

1 g
ρk(xi+1,1...,xi+1,c)
2 and v′ ← g

∑i+1

j=1
rjf(xj,1,...,xj,c)

1 g
f(xi+1,1...,xi+1,c)
2 ,

which are identical to the values in GA
i,3(λ).

Equation 13: GA
i,3(λ) to GA

i+1(λ)

Bi,3 behaves as follows:

Bi,3(1λ, N,G,GT , e, g1,W )

b
$←− {0, 1}; x1,1, . . . , x1,c, . . . , xi,1, . . . , xi,c, r1, . . . ri

$←− Z/NZ

vk ← g

∑i

j=1
rjρk(xj,1,...,xj,c)

1 ·W ρk(xi+1,1,...,xi+1,c) ∀k ∈ [q]

if (b = 0) then v′
$←− G

if (b = 1) then v′ ← g

∑i

j=1
rjf(xj,1,...,xj,c)

1 ·W f(xi+1,1...,xi+1,c))

b′
$←− A(1λ, (N,G,H,GT , e), v1, . . . , vq, v

′)
return (b′ = b)

If W
$←− G, then W = g

ri+1

1 g2 for uniformly distributed ri+1 ∈ Z/NZ and g2 ∈ G2, and

vk ← g

∑i+1

j=1
rjρk(xj,1,...,xj,c)

1 g
ρk(xi+1,1,...,xi+1,c)
2 and v′ ← g

∑i+1

j=1
rjf(xj,1,...,xj,c)

1 g
f(xi+1,1,...,xi+1,c)
2 ,

which are identical to the values in GA
i,3(λ). If instead W

$←− G1, then W = g
ri+1

1 for uniformly distributed
ri+1 ∈ Z/NZ, and

vk ← g

∑i+1

j=1
rjρk(xj,1,...,xj,c)

1 and v′ ← g

∑i+1

j=1
rjf(xj,1,...,xj,c)

1 ,
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main c-UBERA
c,R,S,T,f (λ) / GA

0 (λ)

(N,G,H,GT , e)
$←− BilinearGen(1λ, 2); g

$←− G, g1
$←− G1, g2

$←− G2 , h
$←− H

x1, . . . , xc
$←− Z/NZ

vk ← gρk(x1,...,xc), vk ← g
ρk(x1,...,xc)
1 ∀k ∈ [q]

yk ← hσk(x1,...,xc) ∀k ∈ [s]

zk ← e(g, h)τk(x1,...,xk), zk ← e(g1, h)τk(x1,...,xc) ∀k ∈ [t]

v′ ← gf(x1,...,xc), v′ ← g
f(x1,...,xc)
1

v′′
$←− A(1λ, (N,G,H,GT , e), v1, . . . , vq, y1, . . . , ys, z1, . . . , zt)

return (v′′ = v′)

Figure 7: Games for the proof of Theorem 4.8 (Equation 16). The boxed game uses the boxed code and the other
game does not.

which are identical to the values in GA
i+1(λ).

Equation 14: GA
final(λ) to GA

` (λ)
Finally, Bfinal behaves as follows:

Bfinal(1
λ, N,G,GT , e,W )

b
$←− {0, 1}; x1,1, . . . , x1,c, . . . , x`,1, . . . , x`,c, r1, . . . , r`

$←− Z/NZ

vk ←W
∑`

j=1
rjρk(xj,1,...,xj,c) ∀k ∈ [q]

if (b = 0) then v′
$←− G

if (b = 1) then v′ ←W
∑`

j=1
rjf(xj,1,...,xj,c)

b′
$←− A(1λ, (N,G,H,GT , e), v1, . . . , vq, v

′)
return (b′ = b)

If W
$←− G1 then this is identical to the value in GA

` (λ). If instead W
$←− G then this is identical to the

value in GA
final(λ).

Equation 15: GA
final(λ) to d-UBERA

`c,R′,S,T,f ′(λ)

GA
final(λ) gives out values of the form vk ← g

∑`

j=1
rjρk(xj,1,...,xj,c) for all k, 1 ≤ k ≤ q, and checks

at the end that v′ = g
∑`

j=1
f(xj,1,...,xj,c). As ρ′k(x1,1, . . . , x1,c, . . . , x`,c) =

∑`
j=1 rjρk(xj,1, . . . , xj,c) and

f ′(x1,1, . . . , x1,c, . . . , x`,c) =
∑`
j=1 rjf(xj,1, . . . , xj,c), this is exactly d-UBERA

`c,R′,S,T,f ′(λ).

C A Proof of Theorem 4.8

Proof. Let A be a PT adversary playing game c-UBERA
c,R,S,T,f (λ), and let Advdual-sys

A (λ) denote its
advantage in the final game specified in the statement of Theorem 4.8. We provide PT adversaries B0
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main GA
0 (λ) / GA

1 (λ)

(N,G,H,GT , e)
$←− BilinearGen(1λ, 2); g1

$←− G1, g2
$←− G2, h

$←− H, h1
$←− H1

x1, . . . , xc
$←− Z/NZ

yk ← hσk(x1,...,xc), yk ← h
σk(x1,...,xc)
1 ∀k ∈ [s]

zk ← e(g1, h)τk(x1,...,xc), zk ← e(g1, h1)
τk(x1,...,xc) ∀k ∈ [t]

Figure 8: Games for the proof of Theorem 4.8 (Equation 17). The boxed game uses the boxed code and the other
game does not.

main GA
i (λ) / GA

i,1(λ) / GA
i+1(λ)

(N,G,H,GT , e)
$←− BilinearGen(1λ, 2); g1

$←− G1, g2
$←− G2

x1, . . . , xc, x1,1, . . . , x1,c, . . . , xi,1, . . . , xi,c, r1, . . . , ri , xi+1,1, . . . , xi+1,c, ri+1
$←− Z/NZ

vk ← g
ρk(x1,...,xc)
1 g

∑i

j=1
rjρk(xj,1,...,xj,c)

2 ∀k ∈ [q] // GA
i (λ)

vk ← g
ρk(x1,...,xc)
1 g

ri+1ρk(x1,...,xc)+
∑i

j=1
rjρk(xj,1,...,xj,c)

2 ∀k ∈ [q] // GA
i,1(λ)

vk ← g
ρk(x1,...,xc)
1 g

∑i+1

j=1
rjρk(xj,1,...,xj,c)

2 ∀k ∈ [q] // GA
i+1(λ)

v′ ← g
f(x1,...,xc)
1 g

∑i

j=1
rjf(xj,1,...,xj,c)

2 // GA
i (λ)

v′ ← g
f(x1,...,xc)
1 g

ri+1f(x1,...,xc)+
∑i

j=1
rjf(xj,1,...,xj,c)

2 // GA
i,1(λ)

v′ ← g
f(x1,...,xc)
1 g

∑i+1

j=1
rjf(xj,1,...,xj,c)

2 // GA
i+1(λ)

v′′
$←− A(1λ, (N,G,H,GT , e), v1, . . . , vq)

return (v′ = v′′)

Figure 9: Games for the proof of Theorem 4.8 (Equations 18 and 19). Each game uses the boxed code on its
corresponding line.
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and C0, and a family of PT adversaries Bi such that

Advuber
c,R,S,T,f,A(λ) ≤ Advsgh

B0
(λ) + Advsgh

C0
(λ) + `Advsgh

Bi (λ) + Advdual-sys
A (λ)

for all λ ∈ N, from which the theorem follows. To do this, we build B0, C0, and Bi for all i, 1 ≤ i ≤ `,
such that

Pr[c-UBERA
c,R,S,T,f (λ)− Pr[GA

0 (λ)] ≤ Advsgh
B0

(λ) (16)

Pr[GA
0 (λ)− Pr[GA

1 (λ)] ≤ Advsgh
C0

(λ) (17)

Pr[GA
i (λ)]− Pr[GA

i,1(λ)] ≤ Advsgh
Bi (λ) (18)

Pr[GA
i,1(λ)]− Pr[GA

i+1(λ)] = 0 (19)

Pr[GA
` (λ)] = Advdual-sys

A (λ). (20)

We then have that

Advuber
c,R,S,T,f,A(λ) = Pr[c-UBERA

c,R,S,T,f (λ)]

= (Pr[c-UBERA
c,R,S,T,f (λ)]− Pr[GA

0 (λ)]) + (Pr[GA
0 (λ)]− Pr[GA

1 (λ)])

+

(∑̀
i=1

((Pr[GA
i (λ)]− Pr[GA

i,1(λ)]) + (Pr[GA
i,1(λ)]− Pr[GA

i+1(λ)]))

)
+ Pr[GA

` (λ)]

≤ Advsgh
B0

(λ) + Advsgh
C0

(λ) + `(Advsgh
Bi,1(λ)) + Advdual-sys

A (λ).

We also for simplicity let ρ0 = 1, so R = 〈ρ0, . . . , ρq〉, and define [q] to mean {0, . . . , q}.

Equation 16: c-UBERA
c,R,S,T,f (λ) to GA

0 (λ)

B0 behaves as follows:

B0(1
λ, N,G,GT , e, h,W )

x1, . . . , xc
$←− Z/NZ

vk ←W ρk(x1,...,xc) ∀k ∈ [q]

yk ← hσk(x1,...,xc) ∀k ∈ [s]

zk ← e(W,h)τk(x1,...,xc) ∀k ∈ [t]

v′ ←W f(x1,...,xc)

v′′
$←− A(1λ, (N,G,H,GT , e), v1, . . . , vq, y1, . . . , ys, z1, . . . , zt)

return (v′′ = v′)

If W
$←− G then this is identical to the value in c-UBERA

c,R,S,T,f (λ). If instead W
$←− G1 then this is

identical to the value in GA
0 (λ).

Equation 17: GA
0 (λ) to GA

1 (λ)
C0 behaves as follows:
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C0(1λ, N,G,GT , e, g1,W )

x1, . . . , xc
$←− Z/NZ

vk ← g
ρk(x1,...,xc)
1 ∀k ∈ [q]

yk ←W σk(x1,...,xc) ∀k ∈ [s]

zk ← e(g1,W )τk(x1,...,xc) ∀k ∈ [t]

v′ ← g
f(x1,...,xc)
1

v′′
$←− A(1λ, (N,G,H,GT , e), v1, . . . , vq, y1, . . . , ys, z1, . . . , zt)

return (v′′ = v′)

If W
$←− H then this is identical to the value in GA

0 (λ). If instead W
$←− H1 then this is identical to the

value in GA
1 (λ).

Equation 18: GA
i (λ) to GA

i,1(λ)

Bi behaves as follows:

Bi(1λ, N,G,GT , e, g2, h1,W )

x1, . . . , xc, x1,1, . . . , x1,c, . . . , xi+1,1, . . . , xi+1,c
$←− Z/NZ

vk ←W ρk(x1,...,xc)g

∑i

j=1
rjρk(xj,1,...,xj,c)

2 ∀k ∈ [q]

v′ ←W f(x1,...,xc)g

∑i

j=1
rjf(xj,1,...,xj,c)

2

yk ← h
σk(x1,...,xc)
1 ∀k ∈ [s]

zk ← e(W,h1)
τk(x1,...,xc) ∀k ∈ [t]

v′′
$←− A(1λ, (N,G,H,GT , e), v1, . . . , vq, y1, . . . , ys, z1, . . . , zt)

return (v′′ = v′)

If T = g1
$←− G1, then

vk ← g
ρk(x1,...,xc)
1 g

∑i

j=1
rjρk(xj,1,...,xj,c)

2 and v′ ← g
f(x1,...,xc)
1 g

∑i

j=1
rjf(xj,1,...,xj,c)

2 ,

which are identical to the values in GA
i (λ). If instead T

$←− G, then T = g1g
ri+1

2 for uniformly distributed
g1 ∈ G1 and ri+1 ∈ Z/NZ, and

vk ← g
ρk(x1,...,xc)
1 g

ri+1ρk(x1,...,xc)+
∑i

j=1
rjρk(xj,1,...,xj,c)

2 and

v′ ← g
f(x1,...,xc)
1 g

ri+1f(x1,...,xc)+
∑i

j=1
rjf(xj,1,...,xj,c)

2 ,

which are identical to the values in GA
i,1(λ).

Equation 19: GA
i,1(λ) to GA

i+1(λ).

If we define A = g

∑i

j=1
rjρk(xj,1,...,xj,c)

2 , then A is independent from ~x, ~xi+1. By parameter hiding with

respect to R ∪ {f}, the distributions over g
ρk(~x)
1 g

ri+1ρk(~x)
2 and g

ρk(~x)
1 g

ri+1ρk(~xi+1)
2 are identical (and the

same is true using f), which proves Equation 19.

Equation 20.
This follows by definition, as the R, S, T , and f values have now changed to the form specified in the
dual-system assumption.
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