Managing self-inflicted nondeterminism

Dmitrii Zagorodnov

Dept of Computer Science
University of Tromsg
dmitrii @ cs.uit.no

1. Introduction

When a computation is replicated for greater avail-
ability — either by simultaneous execution on multiple
machines or by restarting it after a crash — the prob-
lem of keeping replicas consistent arises. Replicas lose
consistency when their run-time states diverge. This
can happen because of differences in hardware inputs
(clock ticks, network packets, keystrokes, etc.), which
in turn lead to differences in “wall clock” time and in
scheduling of events, such as context switches and sig-
nals. Hence, asynchrony in hardware makes software
nondeterministic.

When replicating existing services, one does not
have the ability to change the service to be flexible with
respect to nondeterminism. Given this constraint, the
traditional approach to maintaining replica consistency
is to impose tighter synchronization. By forcing repli-
cas to operate in lockstep — either on the level of hard-
ware signals [8] or on the level of processor instruc-
tions [4] — the entire memory state of replicated ma-
chines can be kept identical. Working on a higher level,
some systems [2, 6, 3] synchronize only the state that
is deemed important for consistent execution. Since it
is difficult to precisely identify the relevant sources of
nondeterminism, these systems are conservative by syn-
chronizing much more than is necessary.

The cost of tighter synchronization is a loss of
performance. For example, Hypervisor [4] suffered
roughly a factor of 2 overhead in execution and TFT [3]
reported between 23% and 58% for gzip, depending on
the compression level. Although the cost of synchro-
nization decreases when it is performed at higher lev-
els, the cost of engineering a high-level solution grows
since changing the OS or the application is usually time-
consuming and error-prone.

Keith Marzullo

Dept of Computer Science & Engineering

University of California, San Diego

marzullo @ cs.ucsd.edu

Our experience in replicating TCP-based network
servers [1, 9] indicates that the overwhelming major-
ity of state inconsistencies among replicas never lead to
differences in the external behavior of the server. One
can draw an analogy between the effects of a nonde-
terministic event (such as a hardware interrupt) and the
effects of a fault (a hardware glitch or a software bug):
both have the potential to cause the service to diverge
from its specification, but neither is guaranteed to do so.
Not every fault leads to an error in the state and, like-
wise, not every event leads to a state divergence. Even
when there is an error or a divergence in the run-time
state, it does not always “leak outside” and cause a fail-
ure of the service. When it does not, we call the event
benign; otherwise, we say that it is malignant.

Furthermore, our experience with several applica-
tions indicates that the most prevalent malignant state
inconsistencies in network servers are the result of ex-
plicit nondeterminism in the service protocol itself. For
example, when a video player opens a stream, the server
returns a handle for the stream. This handle is a random
value; different replicas will generate different handles.
We call such nondeterminism self-inflicted. By defini-
tion, self-inflicted nondeterminism is malignant.

We argue that synchronizing replicas that suffer
from self-inflicted nondeterminism is best done with an
application-specific interceptor that manipulates the 1/0
streams of the replicas so as to mask non-benign differ-
ences among their states. Instead of forcing replicas to
have consistent states, we patch up the differences when
they leak outside (e.g. by adjusting all occurrences of
handles in the 1/0 stream). This approach combines the
benefits of a low-level solution (no changes to the 0S
or the application are required) with the performance
advantage of a high-level solution (it only resolves the
states of replicas that are guaranteed to be malignant).

Our approach incurs the cost of implementing an
interceptor for every application. This cost can be kept
low, however, by relying on a general architecture for
performing stream manipulations, which we present
in the next section. We illustrate the use of this ar-
chitecture with an example interceptor for a popular
application-level protocol (SMB) in Section 3, which
concludes with the description of the two sources of
self-inflicted nondeterminism that we encountered in
the Samba server. In Section 4 we evaluate the over-
head of interception on communication throughput, and
in Section 5 we conclude with a discussion of related
and future work.

2. Architecture

Our approach uses interception of the 1/0 streams
of replicas. The interceptors change divergent values
for data leaving the server and remap the same values to
their different, replica-specific values when coming into
the server. In the following we consider only TCP/1P-
based communication, but the method can be trivially
altered for other transports.

2.1. Stream Parsing

A packet consists of data encapsulated within mul-
tiple levels of headers. At each level there is a header
and the associated encapsulated data, which we call the
remainder. The steps for “unwrapping” the packet are
conceptually the same at each level: first, a fixed-length
header is parsed; then, based on the information in the
header, the remaining data is processed. This may in-
clude scanning for additional headers that were added
after the main one (e.g. TCP options) and checking the
integrity of the payload (e.g. verifying a checksum).
The remainder is then passed to either the next higher
or the lower level, depending on the direction of the
stream. At each level the sizes of the basic header (with-
out options) and the remaining data are known: the
header size is prescribed by the protocol specification
and the data size can be either learned from the header
or from the level that gave it the data.

Since headers are necessarily well-formed, a
protocol-specific filter can locate and change fields in
the data stream. In an earlier paper [1], we showed
how a “wrapper” around the TCP/IP stack can be used
to reconcile differences in the states of network proto-
col drivers on replicas. By manipulating fields in the
packet header (TCP sequence numbers, TCP windows,
and IP addresses), we enabled a backup replica to com-
municate with the client after a crash of the primary,

even though the backup’s notions of the sequence num-
ber and the 1P address are different. This technique can
be generalized and applied to application-level proto-
cols, too, as an efficient solution to self-induced nonde-
terminism.

Conceptually, our architecture allows one to insert
an interceptor at any level in the protocol hierarchy in
which nondeterministic values occur. These intercep-
tors obtain input just before it gets to the receiver (which
is a protocol or an application) and they obtain the out-
put right after it is sent. In the case of application-level
protocols, this mapping of values occurs at the system
call boundary, where the data flows between the proto-
col stack and the application.

An interceptor may manipulate any field in the data
segment, but it may not increase its size. An intercep-
tor can maintain state for each session and any part of
that state may be exchanged with interceptors on other
replicas for coordination purposes.

2.2. Structuring Constraints

In this paper we focus on the application level. A
wrapper technique can be used for other layers [1].

If a recv() system call always returned a complete
packet, then modifying data with an interceptor would
be straightforward. In reality, there are several structur-
ing constraints:

e Fragmentation: Unlike the lower-level packet-
based protocols, TCP provides a stream abstraction
and as such it can return data in chunks of any size.

e Chaining: Certain application-level protocols
may chain several requests together by sending
them back to back, with all but the last one indi-
cating that there is another request. For instance,
Samba’s SMB protocol chains using AndX-type re-
quests, as will be described in Section 3.

e Nesting: Data that comes out of a TCP socket may
contain several layers of headers all of which are
processed inside the same server application. For
example, SMB messages are encapsulated inside
NBT protocol messages, both of which are pro-
cessed by the Samba demon.

In our implementation, a generic protocol-agnostic
interception routine invokes a protocol-specific rou-
tine to parse a header. Accommodating fragmentation,
which amounts to waiting for enough data to collect to
form a unit that can be parsed, is done in the generic
interceptor, which can wait for more inbound data by
blocking the recv(), or collect more outbound data from
several subsequent send()s.

A difficulty is determining how much data the in-
terceptor should wait for before passing it on. For ex-
ample, in the case of inbound data, waiting for more
than the client can send before it blocks would stall the
connection. Also, even if the client never blocks, pro-
cessing data in chunks that are too large may introduce
additional latency.

We chose the following strategy: if we are expect-
ing a header, then we wait for the full header to arrive.
(If fewer bytes arrive on an incoming stream, we make
additional recv() calls; if the application has not sent
enough data, we wait for more send() calls.) If in-
stead we are expecting a remainder, then we process
it in whatever chunks it arrives, with the exception of
special cases (described below), in which the protocol
handler requests the remainder to be processed in mul-
tiples of several bytes. If the chunk that we chose to
process is larger than the buffer supplied with recv(),
the remaining data will be queued until the next invo-
cation of recv(). Although this queuing can introduce
additional latency, we do expect such situations to arise
quite rarely, since applications also tend to read streams
in chunks that are either equal to protocol header size
or are large enough to receive a typical application-level
packet. For the same reason, applications that are sen-
sitive to the timing of packets should not be affected by
our strategy.

To deal with chaining and nesting we allow mul-
tiple levels of protocol-specific routines, which we call
parsers. If a top-level parser — the one that gets invoked
when there is traffic on a specific port — determines that
the remainder encapsulates a higher-level protocol mes-
sage, then it can return a pointer to a different parser for
processing that message. The generic interceptor then
knows to invoke that other parser for all the data in the
remainder.

Chaining is handled by this approach as follows: if
the main protocol header is followed by several chained
requests, each carrying a small additional header (as it
happens in SMB), then the parser for the main header re-
turns a pointer to another parser that is invoked on each
“chained” message in the remainder. The next section
makes all of this more concrete and Section 3 presents
an example.

2.3. Writing a parser

A protocol-specific parser receives two parameters:
areference to the data and its size. The size parameter is
unnecessary when the parser knows what kind of header
it is dealing with, but it can be useful for a parser oper-
ating on unstructured data. The parser also has access
to the connection-specific state which is maintained be-

tween invocations, not unlike private variables of a class
instance.

A parser returns three values: the length of the re-
mainder, the remainder specification, and the remainder
parser function reference. The first value is either a non-
negative integer or a special value unknown, indicating
that the size of the remainder could not be determined
from the header. In that case the general interceptor may
be able to determine the remainder size using the value
returned previously by the lower-level parser. For all
protocols it should be possible to determine the remain-
der size in some manner, since the appropriate protocol
layer needs to be able to wrap or unwrap a packet. The
remainder spec may contain the following values:

e Unrestricted: This means the remainder may be
processed in chunks of arbitrary size. Most likely
this value will be accompanied by a NULL refer-
ence for the parser function, meaning that no pro-
cessing on the remainder is needed, so it just gets
passed to the next layer immediately.

e Multiples of size)M/: This means that the remain-
der should be processed in multiples of M bytes.
This allows passing the data stream through a filter
that decrypts, changes something, and re-encrypts
the stream. Since encryption usually operates on
blocks larger than a byte, it is easier to implement
such parsers if data chunks are always aligned with
the block boundaries.

e Header of size N: This means that the remain-
der encapsulates a higher-level protocol with the
header of size N. This value should be accompa-
nied by a reference to a parser for the protocol that
will be responsible for handling all data in the re-
mainder.

The general interceptor allows registration of
protocol-specific parsers and calls upon them when
needed. Registering a parser associates the parser rou-
tine reference and a standard header size to a port. Our
implementation allows one to attach a different parser
to each direction, but normally the same one is used for
both. For each new connection the general interceptor
checks whether the server port of that connection has
a parser registered with it. If it does, then the general
interceptor allocates an interceptor structure consisting
of the reference to the parser, the standard header size,
the amount of bytes in the remainder (initially zero), the
state reference, and a reference to another, higher-level
interceptor structure (initially NULL).

The last field allows the general interceptor to ar-
range interceptor structures in a linked list as follows:
If a parser returns a reference to another parser, then

a new interceptor structure is linked to the current one
and that parser is called for as long as there is data in the
current remainder. When no bytes are left in the current
remainder, the last interceptor structure is removed from
the list and processing resumes at the lower level. This
linking of structures accommodates an arbitrary amount
of nesting and the repeated calls to the same parser ac-
commodate chaining of indefinite length.

Our architecture naturally lends itself to the
primary-backup style of replication [5], in which at any
point no more than one replica is designated as primary
and all others as backups. Parsers on backup hosts may
wait for state updates from the primary parser for co-
ordination purposes. To assist with that, we provide a
simple broadcast operation. When all replicas are at the
same point in the stream, they invoke this broadcast op-
eration, which returns the same result on all of them: the
result that the primary replica submitted. To use our in-
terception technique with state-machine replication [7],
some other method of choosing the “correct” result out
of many diverging values would be required.

3. Samba interceptor

To illustrate our architecture, we discuss an inter-
ceptor for the NBT/SMB protocols used by Samba. At
the lowest level, Samba messages are encapsulated by
the NBT protocol. Each NBT message can contain a
chain of SMB messages that all share a common header,
which includes information (e.g., the session ID) com-
mon to all messages in the chain. The interceptor uses
three parser functions shown in Figure 1. These func-
tions are called on both the primary replica and the
backups, and they are invoked on messages traveling
in either direction.!

NBT_PARSER is invoked upon the receipt of every
NBT message. To help higher-level parsers process mul-
tiple SMB messages that can be chained together inside
an NBT message, NBT_PARSER saves the full length of
the packet (nbt_length) in the state and resets the size of
the message processed so far. It then returns a reference
to a higher-level parser (SMB_MAIN_PARSER), a spec-
ification of 32 bytes (enough for that parser to make a
decision), and a remainder consisting of the data portion
of the NBT message. After everything in the remainder

!For clarity, we omit some details of the implementation: pars-
ing and verification of protocol headers is delegated to functions that
return an msg structure, which can be used both to read and modify
parts of the data (i.e. the changes to an msg are reflected in the data
upon exiting the parser); performing authentication and management
of handles is also abstracted. Furthermore, we assume that the data
is in the address space of the current context, while in our kernel-
level implementation of parsers the data needs to be copied from user
address space into kernel address space and back.

has been processed, NBT_PARSER is invoked again, at
the boundary of the next NBT message.

To process the remainder, SMB_MAIN_PARSER is
invoked with the first 32 bytes of the Samba header.
SMB_MAIN_PARSER extracts the first command and its
type (REQUEST or REPLY), and, based on these values,
decides how much of what remains in the Samba header
to pass to the next parser (SMB_PARSER). We use two
separate parsers because Samba messages have a gen-
eral header followed by one or more chained messages
with their own mini-headers. SMB_MAIN_PARSER is
invoked once per NBT message to parse the general
header and SMB_PARSER is invoked once for every
chained message contained inside.

SMB_PARSER resolves the application-level state
differences by performing substitutions on header fields
in certain messages. To do so, the primary parser sends
messages to the backups using the broadcast._state()
function. On the primary replica this function sends its
argument to the backups and returns as soon as the argu-
ment is known to be stable; on the backups the function
blocks until the value is available and then returns the
value that the primary sent.

There are two potential sources of nondeterminism
that SMB_PARSER resolves:

(1) There is a potential difference in the random
challenge sent by the server during authentication. The
challenge is sent in a NEGPROT message, at which point
the parser records both the challenge generated locally
and the challenge generated by the primary. When
a client-generated SESSSETUPX message is later inter-
cepted, the parser authenticates the response using the
primary’s challenge, and if that succeeds, it generates a
valid response using the local challenge. Both authen-
ticator() and generate_response() functions need access
to the encrypted password for the user. (Since the pass-
word must be accessible to the server process, it can be
made accessible to the interceptor as well.) If authen-
tication fails then any invalid string can be returned to
ensure that authentication inside Samba also fails.

(2) There is a potential difference in random han-
dles chosen by the server for each open file. Given a
handle, the function find_matching_handle() returns its
match. If there is none, as happens with NTCREATEX
and OPENX reply messages, the mapping is established
by broadcasting the primary’s handle to backups and
having all replicas add the mapping to their state.

The last few lines of the pseudo-code for SMB_
PARSER handle chained messages. The names of such
messages end in AndX, which indicates that another
message follows the current message at a certain off-
set from the beginning of the NBT packet. When SMB_
PARSER is invoked, the command, the type, and the

Overhead Overhead/0.08 Throughput

(psec/byte) (% of 100 Mbps) Loss
Bulk SMB (0.06%) 0.0000028 000.003% 0
Small SMB (13%) 0.0005707 000.713% 0
Full Copy 0.0042402 005.301% 0
Full Scan 0.0046478 005.810% 0

Full Decryption 0.0528111 066.014% 28%

Full De- & Encryption 0.0943686 117.961% 45%

Table 1. Interception overhead.

offset of the next chained message are available in
msg. Unless the command has a special value END._
OF_CHAIN, which indicates that this is the last mes-
sage in the chain, the name and type are remembered
in the state, and the remainder is shortened to the off-
set. SMB_PARSER is then invoked again on the next
message. Since the parser never modifies the contents
of the message, it returns an Unrestricted spec and a
NULL parser pointer.

4. Overhead of interception

The overhead of interception depends on the na-
ture of traffic on the connection, the type of work that
the interceptor has to perform, and the hardware con-
figuration. Table 1 shows what overhead can be ex-
pected for a wide range of applications on contempo-
rary commodity hardware (1.4-GHz Pentium III work-
stations with a 512-KB L2 cache and 1 GB of RAM) and
a saturated 100-Mbps network link. The overhead is
shown in three ways: the average delay in microseconds
imposed on each byte in the stream (as measured by
timers surrounding interceptor invocations), the same
delay as a percentage of time it takes to transfer a byte
at 100 Mbps, and the actual application-level through-
put loss measured at the client.

The first two rows are for Samba interception: in
one, full-sized SMB messages were sent while perform-
ing a bulk data transfer and in the other the session con-
sisted of small SMB messages (the percentages in paren-
thesis show the portion of all transferred bytes that the
interceptor had to extract). We expect this to be rep-
resentative of the range of overheads for a typical un-
encrypted session, in which at most several bytes need
modification in each application message.

The third row shows how much it costs to copy
all bytes in the stream in and out of the interceptor’s
address space;2 in the fourth row, a scan through the
copied data was added to the copy operation. Although

2Most of this overhead can be avoided if the interceptor can ma-
nipulate the data directly.

the imposed delay is significant in relation to the net-
work interface speed, no throughput loss was observed
because TCP buffering absorbed the added delay.
When DES encryption was added as a process-
ing step, though, the client throughput dropped signifi-
cantly, as can be seen in the last two rows. When the in-
terceptor has to decrypt, modify, and re-encrypt the 1/0
stream to remain transparent (e.g. when manipulating
data inside an SSL connection), the throughput drops by
almost a half. Therefore, offloading the encryption al-
gorithm to hardware would be necessary to maintain an
adequate level of performance with such an application.

5. Discussion

Self-induced nondeterminism is by far the major
source of malignant nondeterminism we have found
in servers. Often, it was the only form of malignant
nondeterminism that we observed. In our earlier work
with FT-TCP [1, 9], we removed this nondeterminism
by modifying the server’s code. That approach is not
always available, and so we developed this interception
approach to have a more widely usable method.

Although we are not aware of any prior work in
which nondeterminism is accommodated by manipu-
lating the 1/0 streams of the application, our intercep-
tors are conceptually similar to “middleboxes,” such as
firewalls or NATs, which interpret and modify network
packets. In fact, it seems likely that nondeterminism
interceptors would be deployed together with these de-
vices.

We have written interceptors for several servers, in-
cluding Apache, Samba, and Apple’s Darwin Streaming
Server. We found writing interceptors to be reasonably
straightforward, and as long as re-encrypting data is not
needed, the overhead of using interception is small. In
addition to the random handles and challenges, as seen
in Samba, we also encountered nondeterminism in the
textual messages from the server (e.g. a random “for-
tune” printed by the server upon logging in, a report of
the throughput reached by a transfer) and in the unique
file names chosen by the server upon client’s request
(e.g. the STOU command of the FTP protocol). All of
these could be easily reconciled with an interceptor.

Whether these observations are true for the major-
ity of distributed applications remains a subject of fu-
ture research. We also would like to understand bet-
ter why, once self-inflicted nondeterminism is resolved,
there is so little malignant nondeterminism in the net-
work services we studied. If one can be assured that,
for a wide set of services, it is indeed a rare event, then
it may be best resolved by treating it as a failure: essen-
tially, another rare form of malignant nondeterminism.

var state // connection-specific state

NBT.PARSER (data, size)
msg «— parse_nbt_header(data, size);

state.size «— 0; // portion of the Samba message seen so far
state.nbt_length «— msg.length; // size without NBT header
remainder «+— msg.length;

spec «— 32; // size of the first portion of the Samba header
parser < &SMB_MAIN_PARSER;

return {remainder, spec, parser};

SMB_MAIN_PARSER (data, size)
msg «— parse.main_smb_header(data, size);

state.type «— msg.type; // REQUEST or REPLY

state.command «— msg.command; // first command in the chain
remainder «— state.nbt_length - size;

// enough bytes to parse this specific command

spec «— snap.length(msg.command, msg.type);

parser <— &SMB_PARSER;

return {remainder, spec, parser};

SMB_PARSER (data, size)
// state is necessary for command and the type
msg «— parse_smb_header(data, size, state);
remainder «— state.nbt_length - state.size - size;

I Samba authentication /11111111

if msg.command = NEGPROT

A msg.type = REPLY then
state.my_challenge <— msg.challenge;
state.primary_challenge «— broadcast_state(msg.challenge);

if msg.command = SESSSETUPX
A msg.type = REQUEST then
if authenticator(
state.primary_challenge, msg.response) = VALID then
msg.response «— generate_response(
state.my_challenge);
else
// this will fail to authenticate
msg.response <— ERROR;

/I Samba file handles /11111111

if msg.handle # NULL

A msg.type = REPLY then
handle «<— find_matching_handle(
msg.handle, state.handles, REPLY);

if handle = NULL then
// file handle seen for the first time:
// primary sends, backups receive
handle «+— broadcast_state(msg.handle);
state.handles «— state.handles U { handle,
msg.handle }; // remember the mapping
msg.handle «<— handle;

if msg.handle # NULL N\ msg.type = REQUEST then
msg.handle «— find_matching_handle(msg.handle,
state.handles, REQUEST);

/I Samba request chaining /11111111

if AndXCommand|(state.command) = TRUE

A msg.command 7 END_OF_CHAIN then
state.type «— msg.type; // REQUEST or REPLY
state.command «— msg.command; // next command in chain
// shrink the remainder so this parser is called again
remainder «— msg.offset - state.size - size;

state.size «— state.size + remainder + size;

return {remainder, UNRESTRICTED, NULL};

Figure 1. Pseudocode for Samba parsers.

References

(1]

(2]

(3]

[4]

(6]

(7]

[9]

L. Alvisi, T. C. Bressoud, A. El-Khashab,
K. Marzullo, and D. Zagorodnov. = Wrapping
server-side TCP to mask connection failures. In
Proc. IEEE INFOCOM, pages 329-337, Anchor-
age, Alaska, USA, April 2001.

J.E. Bartlett. A nonstop kernel. In Proc. of the
8th Symposium on Operating Systems Principles
(SOSP), pages 22-29, Asilomar, California, USA,
December 1981.

T.C. Bressoud. TFT: A software system for
application-transparent fault tolerance. In Proc.
28th Annual Intl. Symposium on Fault-Tolerant
Computing (SRDS), pages 128—137, Munich, Ger-
many, June 1998.

T.C. Bressoud and F.B. Schneider. Hypervisor-
based fault tolerance. ACM Trans. on Computer
Systems, 14(1):80-107, 1996.

N. Budhiraja, K. Marzullo, F.B. Schneider, and
S. Toueg. Primary-backup protocols: Lower
bounds and optimal implementations. In Proc. 3rd
IFIP Conf. on Dependable Computing for Criti-
cal Applications, pages 187-198, Mondello, Italy,
September 1992.

Eric Daniel and Gwan S. Choi. TMR for off-the-
shelf Unix systems. Short presentation at IEEE Intl.
Symp. on Fault-Tolerant Computing (FTCS), June
1999.

FB. Schneider. Implementing fault-tolerant ser-
vices using the state-machine approach: a tutorial.
ACM Computing Surveys, 22(4):299-319, Decem-
ber 1990.

D.P. Siewiorek and R.S. Swarz. Reliable Computer
System Design and Evaluation. Digital Press, Bed-
ford, Massachusetts, USA, 1992.

D. Zagorodnov, K. Marzullo, L. Alvisi, and
T.C. Bressoud. Engineering fault-tolerant TCP/IP
servers using FI-TCP. In Proc. IEEE Intl. Conf. on
Dependable Systems and Networks (DSN), pages
393-402, San Francisco, California, USA, June
2003.

	. Introduction
	. Architecture
	. Stream Parsing
	. Structuring Constraints
	. Writing a parser

	. Samba interceptor
	. Overhead of interception
	. Discussion

