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Abstract—This paper presents the first Datalog evaluation engine
for executing graph analytics over BSP-style graph processing engines.
Building on recent advances in Datalog that support efficient evaluation
of aggregates functions, it is now easy for data scientists to author many
important graph algorithms succinctly. Without the burden of low-level
parallelization and optimization, data scientists can avoid programming
to the quirks of the latest high-performance distributed computing
framework. Where prior approaches build bespoke evaluation engines or
modify generalized dataflow processing engines to achieve performance,
this work shows how to efficiently evaluate Datalog directly on BSP-style
graph processing engines such as Giraph.

Datalography incorporates both traditional Datalog optimizations,
such as semi-naive evaluation, and new evaluation algorithms and
optimization techniques for efficient distributed evaluation of Datalog
queries on graph processing engines. In particular we develop evaluation
techniques that take advantage of super vertices, eager aggregation,
and asynchronous execution to optimize graph processing on Pregel-
like systems. We implement our algorithms on top of Apache Giraph
and our results indicate that Datalography competes with native, tuned
implementations, with some analytics running up to 9 times faster.

I. INTRODUCTION

Analyzing graph data is a critical capability for today’s data
scientist. Graph data arises in many contexts, including the day-
to-day operation of social media sites, mobile ad networks, finan-
cial institutions, health care, genomic, and drug companies, and
telecommunication networks. Analyzing and extracting knowledge
from graphs require the ability to compute graph queries such as
reachability, shortest paths, and measuring connected components, as
well as more sophisticated analytics for training machine learning
models (recommenders, classifiers, etc.). Many of these algorithms
are iterative in nature, repeatedly executing over the graph until
reaching a threshold or fixed point.

To that end, recent projects have proposed using Datalog, a recur-
sive language with declarative semantics that allows data scientists
to succinctly describe iterative graph analytics [1], [2], [3]. As a
recursive language, Datalog naturally expresses graph queries due to
the recursive/iterative nature of graph constructs. Moreover, Datalog
can express useful aggregate functions that make fixed-point graph
analytics easier to author, such as min, max, and count. Here we
illustrate this expressivity using single-source shortest path, weakly
connected components, and PageRank analytics. Each requires up
to 4 lines of Datalog while the custom implementations in the
Giraph distribution require 50, 60, and 100 lines of Java code
respectively. As a declarative language Datalog also enjoys the benefit
of allowing the evaluator/compiler to choose the best physical query
plan automatically, i.e. without user intervention.

This paper presents the first work to investigate using Datalog,
including a useful class of aggregate functions, to author graph
analytics for execution on top of unmodified “think-like-a-vertex”
parallel graph processing systems. In contrast, existing systems
evaluate Datalog programs on custom distributed computing engines,
such as a cluster of databases (Myria [3]), custom processing engines

(Socialite [2]), or by extending general dataflow systems, such as
Spark (BigDatalog [4]) or Hyracks [5] to support recursive evaluation.
While we choose Apache Giraph as the vehicle for our investigation
because of its maturity (Facebook processes trillion-edge graphs with
it [6]), our techniques port straightforwardly to other representatives
of this class, such as Pregel [7], GPS [8], GraphLab [9], and
GraphX [10].

Our approach aligns the programming abstraction, where Datalog
rules operate until they generate no new facts, with the execution
model, where Giraph executes until no new messages exist in the
system. In addition we explore novel optimizations that exploit the
logical computation model and execution capabilities of modern
graph processing frameworks. Finally, by building on Apache Gi-
raph we inherit its scaling capabilities and its compatibility with
the Hadoop eco-system. This enables Datalography as a step in a
data pipeline whose input/output can interface with other Hadoop
components (Flume, Kafka, Hive, etc.).

Our results were enabled by the following technical contributions:
1. Datalography incorporates novel program rewriting techniques

that enable distributed Datalog evaluation on graph processing sys-
tems. The approach transforms each rule of the program into a set
of sub-rules the system evaluates locally on each vertex. In addition
Datalography applies semi-join and eager aggregation optimizations
when possible, effectively creating source-side combiners to reduce
communication overhead.

2. Datalography incorporates super vertices to amortize the work
of rule evaluation. Datalog query compilation includes a step that
performs graph pre-partitioning. This identifies sets of logical graph
vertices that can execute together as a single Giraph physical vertex.
Datalography’s rewriting (above) enables a collection of individual
vertex programs to operate as one super vertex.

3. Datalography leverages Datalog’s monotonicity guarantees (Sec-
tion IV) to provide coordination freeness, allowing asynchronous
execution on graph processing systems.

4. We evaluate these concepts on a prototype Datalog evaluation
engine built on Giraph Unchained [11]), which incorporates an
asynchronous execution mode. The evaluation explores the benefits
of our optimizations. We report results for three example queries
(on three real-world graphs) and find that Datalography outperforms
custom Giraph code for two of them, namely SSSP and WCC, from
1.2x to 9x.

The rest of the paper is organized as follows. Section II reviews
Datalog and the properties Datalography leverages. Section III de-
scribes how Datalography evaluates Datalog statements and compiles
them into logical graph programs. Next, Section IV discusses the
optimizations that Datalog with super vertices enables, including ea-
ger aggregation, semi-join, source-side combiners, and asynchronous
evaluation. We report the results of our Datalog evaluation and
execution system in Section V and end with related work.
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II. BACKGROUND

This section gives a brief overview of Datalog and graph processing
systems based on the Bulk-Synchronous Parallel computing paradigm
(using Giraph as a representative example).

A. Datalog

A Datalog program consists of a set of rules and a set of facts (or
tuples). Facts represent statements that are true, whereas rules allow
us to deduce new facts from other known or previously deduced facts.
A Datalog rule has the following syntax:

L0 ← L1, ..., Ln

where each Li is a literal of the form Pi(x1, . . . , xn), where Pi is
a predicate symbol, and x1, . . . , xn are terms. Terms can be variables,
constants or functions. Informally, rules are read as “If L1, . . . , Ln

are true, then L0 is true.” L0 is the rule’s LHS or head, and L1 . . . , Ln

are the rule’s RHS or body. Note that all the variables in the head
must appear in the body.

Each Li on the rule’s RHS is called a subgoal. A fact is a rule
with an empty body and is always true. A fact that has all its
terms constant is called a ground fact. In database terminology, each
predicate symbol corresponds to a relation name. A Datalog program
begins with an extensional database (EDB) containing ground facts.
Evaluation of a Datalog program creates an intensional database
(IDB) containing relations with inferred facts.

Datalog rules can be recursive, i.e., a rule can recursively depend
on itself or another rule that depends on it. We illustrate Datalog
with the program for Single Source Shortest Path or SSSP. The
following program mentions three relations: the EDBs Vertex,
Edge, and the IDB SSSP. Predicate Vertex(x) indicates that
x is a vertex identifier. Edge(x, y) states that a directed edge
exists from vertex x to vertex y. We identify the source vertex
with vertex id x = 1, and we set the distance to that vertex to
be 0. Note that the first rule can equivalently be written as SSSP(1, 0).

SSSP(x, 0)← Vertex(x), x = 1.
SSSP(x,min〈d+ 1〉)← Edge(y, x), SSSP(y, d).

In the above program the EDB relations contain the input or base
data while the IDB relation SSSP contains all computed pairs (x, d),
where x is a vertex id and d is the minimum distance discovered to
x. The non-aggregate arguments in the rule head are used as the
grouping variables for aggregation. That is, the system aggregates all
d values corresponding to the same x value.

B. Program evaluation

We adopt least fixpoint Datalog semantics and use a bottom-up
evaluation strategy. This means that for a given Datalog program
P , evaluation continues until a fixpoint is reached – no new facts
may be derived for IDB predicates. The evaluation starts with the
set of atoms in the EDB, and iteratively adds new atoms using the
immediate consequence operator TP , which is defined as follows.
Given a database instance, I , an atom A belongs to TP (I) iff A ∈ I
or there is some rule R in P such that the body of R has a match
m against the database and A is the image under m of R’s head.
Recursive evaluation takes place as shown in Algorithm 1.

Semi-naive evaluation (SN) is a well-known Datalog evaluation
approach [12], where instead of repeatedly evaluating the program
using the entire set of atoms found so far, evaluation proceeds by
using only newly discovered facts, referred to as the delta. First,
SN produces a new delta from TP (∆I) and removes any previously
generated facts. It then updates the set of all facts generated, I , and

Algorithm 1 Recursive Datalog Evaluation
I ← EDB(P )
repeat

Inew ← TP (I)
I ← Inew

until Inew = I

sets the next delta appropriately. This process, seen in Algorithm 2,
iterates until it generates no new facts.

Algorithm 2 Recursive Semi-naive Datalog Evaluation
∆I ← EDB(P )
I ← ∆I
repeat

∆Inew ← TP (∆I)− I
I ← I ∪∆Inew

∆I ← ∆Inew

until ∆I = φ

C. Datalog recursion with aggregates

Aggregation is fundamental to many graph algorithms – many
compute until an aggregate value, such as a min, max, sum, or
count, reaches a certain threshold. However, recursive programs
with aggregates raise the difficulty that they may not have a least
fixpoint solution, or the program evaluation may never terminate.
Thus Datalog programs with aggregates has been a topic of research
in various studies. Indeed, each of the prior works [1], [4], [3]
supports aggregates differently.

The ability to use aggregates in recursive rules is critical to
performant Datalog programs for graph analytics. Aggregates are
recursive if the head predicate appears in the body. Consider the
rewrite of our SSSP algorithm from Section II-A below where we
now use a non-recursive min aggregate. While Datalog can evaluate
aggregate functions that are non-recursive, this program may not
terminate (if the graph is cyclic) and evaluation may be slow since
all paths must be evaluated [1].

AllPaths(x, 0)← Vertex(x), x = 1.
AllPaths(x, d)← Edge(y, x),AllPaths(y, d1), d = d1 + 1.
SSSP(x,min〈d〉)← AllPaths(x, d).

Here Datalography stands on the shoulders of prior work. In
particular it supports the meet aggregate operations (idempotent,
commutative, and associative) presented in Socialite [1] (min,max),
as well as the non-meet operations such as sum and count aggregates
through explicit local stratification [13], which we illustrate with
PageRank in Section III. Note, Datalography can support the addi-
tional aggregates without the use of imperative code or memoization
of intermediate values (see comparison in Section VI).

D. Giraph

Datalography is the study of Datalog graph analytics on BSP-style
graph processing systems, such as Apache Giraph. We chose Giraph
as it is a well-supported, efficient, open-source implementation of
think-like-a-vertex graph processing [7]. Distributed graph processing
frameworks are especially suitable for parallelizing graph algorithms
such as PageRank or Shortest-Paths. Similarly, numerous works have
shown that these frameworks can also express complex machine
learning and data mining algorithms.
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In this model of distributed graph processing, data resides on edges
and vertices, and each vertex repeatedly executes the same program.
Thus each vertex stores the result of its evaluation locally. A vertex
program executes in three phases: i) receive messages from neighbor
vertices, ii) compute and possibly produce new values for the vertex
and outgoing edges, and iii) create messages for neighbor vertices.
A Giraph program terminates when a user-specified termination
condition occurs or there are no new messages to deliver.

Thus Giraph programs are imperative, and evaluation follows the
bulk-synchronous processing (BSP) model in which the computation
is broken into super-steps (iterations) interleaved with global synchro-
nization barriers. The system partitions the input graph (by vertex)
across all workers, each of whom processes their subset of vertices. A
master process orchestrates the super-steps, maintains global aggrega-
tions, and computes terminating conditions. A configurable number
of worker processes execute the vertex program and communicate
intermediate results, in the form of messages, with each other.

In addition to the standard Giraph distribution, we leverage Giraph
Unchained [11], which allows asynchronous execution of vertex
programs. This allows a vertex to read and process messages as soon
as they arrive without having to wait for the next super-step.

III. DISTRIBUTED DATALOG EVALUATION ON GRAPH

PROCESSING SYSTEMS

A. Data Distribution

We partition data across a set of super vertices, V. We distinguish
between graph data vertices, X, which we refer to as vertices,
and super vertices, an abstraction that contains data from multiple
vertices. Thus each super vertex contains a horizontal partition of the
EDB and IDB data relevant to its vertices. For a vertex id x ∈ X,
V (x) denotes the super vertex to which it belongs.

Our model partitions the data based on the presence of vertex
id terms in predicates. These predicates fall into two classes. One
class of predicates, vertex-class predicates, logically represent vertex
data by including a single vertex id term. We partition vertex-class
predicates by that vertex id. Specific examples include predicates such
as Vertex , Person , Movie , or PageRank predicates.

The second class of predicates, edge-class predicates, logically
represent edge data and contain source and destination vertex id
terms. Such edge-class predicates represent relationships, e.g., Edge ,
Follows , or Likes . Datalography stores such a predicate data as two
partitioned EDBs. For example, in the case of an Edge predicate,
the first is partitioned on the source vertex id resulting in an InEdge
EDB/predicate, and the second is partitioned on the destination vertex
id resulting in an OutEdge EDB/predicate.

Note that it is also necessary for each super vertex to be able to find
the super vertex that contains its vertices’ neighbors (both incoming
and outgoing). To do so, we keep a map Mxv : X→ V in each super
vertex v, which maps every neighbor vertex id y of a vertex with id
x in a super vertex v to the super vertex that contains y, V (y).

For IDB predicate partitioning, Datalography augments Datalog
rules with a location specifier – a special symbol preceding an
argument in the rule head that specifies how to partition the rule
result. For example, P (#x, y) ← Edge(x, z), Edge(z, y) denotes
that the system will partition the rule result by the values xi of
variable x, storing them at super vertex V (xi).

B. Architecture

Our distributed Datalog evaluation architecture resembles Giraph’s.
A master process maintains global aggregations and determines
termination, while a number of worker processes evaluate the pro-
grams rules and communicate intermediate results to each other.

Message Store!

Super-
vertex!

Master!Worker!

Rule 
Evaluation!

Message Store!

Worker!

Rule 
Evaluation!

Message Store!

Worker!

Rule 
Evaluation!

Global 
Aggregation!

and!
Termination!

Communication!

Fig. 1. Datalography Distributed Architecture

Notation Meaning
V Set of super vertices
X Set of vertex ids
vi Super vertex
x, xi, xil , xjl , xjk Variables representing vertex ids
zi Vertex id
Pi Vertex-class predicate
E Edge-class predicate
GD Data Graph
GR Query Graph
DR DAG of Query Graph

TABLE I
NOTATIONS USED IN SECTION III-C1

Each worker process uses multiple compute threads to process super
vertices in parallel. Our super-vertex abstraction maps to Giraph’s
vertex abstraction – a single Giraph vertex consists of multiple data
graph vertices (their EDB/IDB data). The information contained in
one Giraph vertex is no longer only about one data vertex, but a
group of vertices (a super vertex). This allows for batch processing,
amortizing the cost of Giraph vertex computation over multiple data
vertices at a time. A separate module handles communication with its
own thread pool (Netty threads). Each worker has its own messaging
store, which it uses to receive incoming messages from other workers.
Figure 1 shows this high-level architecture.

Our approach for distributed Datalog evaluation is based on rewrit-
ing the program to a set of rules that can each be evaluated locally
by each worker. Workers exchange information that is necessary to
evaluate non-local rules (i.e., rules which require information that is
not stored on the same worker). We describe the approach in detail
in the following two subsections.

C. Datalog Evaluation

First, we discuss how Datalography evaluates individual rules,
and then we discuss how the system evaluates entire programs. For
reference, Table I lists the notations used throughout this section.

1) Individual Rule Evaluation: The goal of rule evaluation is
the parallel, independent execution of a rule by each super vertex.
The technical challenge is that the data needed to evaluate a rule
R at a super vertex v may not be co-located at v. Rather than use
an inefficient brute-force broadcast of data across super vertices, our
solution interleaves parallel rule execution stages with communication
stages. Each execution stage has two goals. First, advance the compu-
tation of the rule while filter intermediate results to minimize the data
transmitted in the second stage. Second, communicate intermediate
data by identifing recipient super vertices relevant to subsequent
execution stages. This replaces the aforementioned broadcasting with
targeted sends..
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Fig. 2. Rule evaluation steps for rule R(#x2, a, b)← P1(x1, a), Edge(x1, x2), P2(x2, b).

A feature of our solution is that it expresses each execution phase
as a Datalog rule itself. More precisely, Datalography automatically
compiles the original rule R into a set of simpler rules that can
be evaluated in order. This allows each super vertex to evaluate the
first rule independently (without prior data communication). Then
the system can push data between super vertices that is necessary to
complete the evaluation of subsequent rules at each super vertex.

We introduce our approach using an example, and then describe
the general algorithm.

Example 1. Consider the evaluation scenario in Figure 2. The data
graph consists of 4 vertices, whose ids are z1 to z4. The EDB
consists of three predicates, P1, P2, and Edge. Both P1 and P2

are partitioned by the vertex id (i.e., zi), while Edge is partitioned
by the source vertex id resulting in OutEdge, and by the destination
vertex id resulting in InEdge (all InEdge atoms are with z1 since
it is the only vertex with incoming edges). Super vertex v1 contains
partitions of z1 and z4, while super vertex v2 contains partitions
of z2 and z3. This arrangement is shown in Figure 2(a). Notice
that rule R(#x2, a, b)← P1(x1, a), Edge(x1, x2), P2(x2, b) cannot
be evaluated locally at each super vertex, since the data it needs
is distributed across super vertices (e.g., the rule should derive,
among others, the fact R(“z1”, “blue”, “one”), which requires facts
P2(“z1”, “one”) from v1 and P1(“z2”, “blue”) from v2).

In our solution, the rule is automatically rewritten to:
(i) R1(#x1, a)← P1(x1, a) and
(ii) R(#x2, a, b)← R1(x1, a), InEdge(x2, x1), P2(x2, b),

where rule (i) will be evaluated first. As we can see, rule (i) can
be evaluated independently by each super vertex since the data it
needs is available locally. The results of evaluating this rule are
shown in Figure 2(b). Since the next rule to evaluate depends on
R1(x1, a) that is partitioned by x1, while the result R needs to
reside at V (x2), evaluation results of R1 (partitioned by x1) are
pushed along the outgoing edges, so that they can be consumed
at super vertices containing information about x2. The resulting
communication is shown in Figure 2(c). After this communication,
rule (ii) can be evaluated, since P2(x2, b) is already partitioned by
x2, InEdge(x2, x1) is already partitioned by x2, and finally, for
each x1, R1(x1, a) is available at V (x2) since it was communicated
from each x1 to the super vertex containing its outgoing neighbor
x2. The result of evaluating R is shown in Figure 2(d). �

To describe the algorithm, we introduce some notation first. A
rule body consists of a set of EDB or IDB vertex-class predicates
P1 to Pn, which are partitioned based on the location of xi1 to xin ,
respectively, and those predicates are related by the edge-class Edge
predicate (E for short) as follows:

R(#x, x)←P1(xi1 , xi1), . . . , Pn(xin , xin),

E(xj1 , xk1 , xjk1), . . . , E(xjm , xkm , xjkm)

where i1 . . . in, j1 . . . jm, k1 . . . km ∈ {1 . . . n}, Pl is partitioned
by xil , and xil are the remaining arguments for Pl. R is to be
partitioned by x, and x are the remaining arguments of R. We note
that x denotes one of xi1 . . . xin , but we use x to distinguish it as
the one determining the location of the results. We assume that the
P1 . . . Pn, and E predicates represent a data graph GD .

We observe that the rule body defines a query graph (or rule
graph), GR, whose nodes correspond to the partition variables of the
vertex-class predicates, and edges correspond to the Edge predicates
appearing in the rule:1 the nodes are {xil |1 ≤ il ≤ n}, and edges
are {(xjl , xkl)|1 ≤ jl, kl ≤ n}. For example, the rule from Figure
2, has a query graph with two nodes x1 and x2, with and edge from
x1 to x2.

The idea of the rewriting algorithm is to produce a sequence
of rules 〈R1, . . . , Rn〉, each corresponding to a node in the query
graph, where R1 can be evaluated independently without any data
communication, and for all subsequent rules Ri, where 1 < i ≤ n,
Ri depends only a subset of {Rj |j < i}. Thus all rules on which
Ri depends will have executed and sent their relevant results to the
appropriate super vertices prior to Ri’s execution – this enables Ri to
execute locally. Say we determine rule Ri is partitioned by xi. Then,
at evaluation time, V (xi) stores the results of rule Ri. Algorithm 3
shows the algorithm for rewriting a rule and works as follows:

1) The algorithm constructs the rule graph GR from the rule body
predicates (line 1).

2) It then removes the graph GR edge directions and converts
the resulting graph to a DAG (by re-assigning edge directions
based on BFS levels), DR, with the node corresponding to x
being the sink node (line 2). DR contains precisely the vertices
of GR and a cycle-free version of its edges.

3) The algorithm creates a topological order for the DAG (line 3),
and generates a rule for each node in that topological order
(lines 4-18). A rule Ri is partitioned by xi and can only
contain in its RHS the predicates Pl partitioned by xi, or Edge
predicates between xi and xj , where xj is a predecessor to xi
in GR, in addition to all Rj predicates corresponding to xj .

As we stated earlier, for every rule Ri that depends on Rj , Rj’s
results at V (xj) should be sent to V (xi). Note that the dependency
of xi on xj means that there is an edge (xj , xi) in DR; that means
that either (xi, xj) or (xj , xi) exists in GR:

1We use “nodes” to refer to the query graph vertices to avoid confusion
with the data graph vertices.
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Algorithm 3 Rule rewriting algorithm
1: GR ← Graph(R)
2: DR ← DAG(Undirected(GR), x)
3: [x1 . . . xn]← topsort(DR))
4: for 1 ≤ i ≤ n do
5: rhs← Pi(xi, . . .)
6: for xj ∈ predecessors(xi, DR) do
7: rhs← rhs ∪Rj(xj , . . .)
8: if (xi, xj) ∈ GR then
9: rhs← rhs ∪ InEdge(xj , xi)

10: else if (xj , xi) ∈ GR then
11: rhs← rhs ∪OutEdge(xj , xi)
12: end if
13: end for
14: Generate rule: Ri(#xi, vars(rhs))← rhs
15: end for
16: if R is aggregate rule then
17: Apply aggregate on Rn

18: end if

1) In case (xi, xj) ∈ GR, then E(xi, xj) is rewritten as
OutEdge(xi, xj) and results from V (xj) are sent to V (xi)
by using xj’s incoming edges.

2) On the other hand, if (xj , xi) ∈ GR, then E(xj , xi) is rewritten
as InEdge(xi, xj) and results from xj are sent to xi by using
xj’s outgoing edges.

3) In both cases, the map Mxv is used to lookup V (xi), so that
the destination super vertex can be determined.

In the rest of the paper, unless otherwise denoted, the location
specifier is the first argument of the head and thus omitted.

Example 2. PageRank ranks web pages according to their
popularity: the more incoming links a webpage has, the more
popular it is. At iteration 0, all vertices initialize their rank with
1. For every subsequent iteration, a vertex reads the rank of its
incoming neighbors (computed in the previous iteration) and updates
its current rank. The PageRank algorithm can be concisely expressed
by the following Datalog program (versus 100 lines of Java code
used in the Giraph distribution):

Outdegree(x, count〈y〉)← Edge(x, y).
PageRank(x, 0, 1).
PageRank(x, i+ 1, sum〈p/d〉)← Edge(y, x),

PageRank(y, i, p),Outdegree(y, d), i < 20.

Algorithm 3 replaces the final rule with the last two rules below
(which we named mnemonically for the sake of readability):

Outdegree(x, count〈y〉)← OutEdge(x, y).
PageRank(x, 0, 1).
PageRank Y(y, i, p, d)← PageRank(y, i, p),

Outdegree(y, d), i < 20.
PageRank(x, i+ 1, sum〈p/d〉)← InEdge(x, y),

PageRank Y(y, i, p, d).

The PageRank Y rule can be executed locally, for each y at its
host super vertex. It sends its results, partitioned by the values yi of
y, to the super vertices hosting the neighbors of the yi’s. This sets
up the final rule to execute locally at the next iteration. �

Each sub-rule generated by Algorithm 3 can be evaluated locally
at every super vertex. Evaluation proceeds in the standard way by
compiling rules to logical query plans based on relational algebra
operators [14] (predicate arguments bound to the same variable

OutDegree!

PageRank(x, 0, 1)!

PageRank_Y!

PageRank(x, i+1, sum(<p/d>)!

Fig. 3. PageRank Rule Dependency Graph (rules are identified by their head)

are translated to equi-joins, conditional predicates are translated to
selections (e.g., x 6= y or x < a), and LHS arguments are translated
to projections, aggregations when applicable, and materialization
operators). Standard algebraic optimizations are applied (e.g. pushing
selections/projections before joins). A simple cost-based optimizer
selects the best physical execution plan.

2) Program Evaluation: A program is evaluated by rewriting each
rule in the program using Algorithm 3. The result of the rule rewriting
of a program P is another rewritten program P ′ whose rules can be
evaluated in parallel at each super vertex, and whose partial results
can be communicated along the edges for further rule evaluation.

To schedule rule execution, we determine the data flow between
rules. A rule dependency graph is constructed out of the rewritten
program P ′, where nodes represent rules, and an edge is created
between two nodes (R1, R2) if rule R2 depends on R1 (i.e., head
predicate of R1 appears in R2 rule body). See Figure 3 for the
dependency graph of the rewritten PageRank from Example 2.

Recursion is reflected in the rule dependency graph as a strongly
connected component (i.e., there is a path from any node in the
component to all other nodes in the component). By collapsing each
strongly connected component into an individual node (and maintain-
ing edges across components), the resulting graph is guaranteed to be
a DAG. Program evaluation proceeds from the DAG source node(s),
evaluating a component when all its predecessors are evaluated. If a
component is a strongly connected component (vs. a singleton rule),
the component is evaluated via fixed point evaluation till it converges
(i.e. no new facts are derived). To determine whether a component
has converged, all super vertices inform the master whether they have
derived new facts. If at least one super vertex has derived new facts,
then fixed point evaluation continues. Otherwise, evaluation of the
respective component concludes and the engine proceeds to further
components in the DAG.

Example 3. The dependency graph for PageRank from Figure 3
yields the following rule evaluation discipline. Its strongly connected
components are C1 = {Outdegree}, C2 = {PageRank(x, 0, 1)},
C3 = {PageRank Y, PageRank(x, i + 1, sum < p/d >)} (we
refer to rules by their head, dropping the variables when there is no
ambiguity). The dependencies between them are C1 → C3, C2 →
C3, yielding a topological sort in which C1 and C2 are evaluated
first (as single rules, locally). Next, the two rules in C3 are evaluated
to a fixpoint.

To fit this evaluation technique within Giraph’s framework, the
program is rewritten at the worker level. A separate worker-level
module determines which rules to evaluate during the next super-
step using the DAG topological order, whether a recursive component
(i.e., strongly connected component) is being currently evaluated, and
whether the component has reached a fixed point. To minimize super-
step synchronization overhead it processes the maximum possible
number of rules during every super-step. Therefore, co-located rules
are automatically evaluated during the same super-step, while non-
co-located rules communicate their results to their dependencies by
exchanging data across the graph edges to be consumed in subsequent
super-steps.
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IV. OPTIMIZATIONS

This section discusses four optimizations developed for scalable
processing of distributed graph queries. While some optimizations
have been explored in the context of prior parallel data processing
systems, here we investigate their novel application in a super-vertex
aware Datalog evaluation engine.

A. Eager Aggregation

Eager aggregation was first addressed by [15] in the context of
optimization of sequential relational queries. The idea was to perform
aggregations early, before joins, to minimize the input to the join
operators (prior practice had been performing aggregation as the last
step). We adapt eager aggregation to our context, obtaining a sig-
nificant reduction in the volume of data transmitted between worker
nodes. Datalography does so by applying aggregation before data
transmission and then another aggregation is required to aggregate
the partially aggregated data from the senders.

Observe that Algorithm 3 relegates aggregation to the final rule,
Rn. We rewrite the Datalog program to perform aggregation even in
the intermediate rules Ri (where i < n). The aggregated results
sent by intermediate rules can be significantly smaller than their
unaggregated counterpart.

It is well-known that for eager aggregation to preserve the se-
mantics of the program, an aggregation function F needs to be
decomposable. F is decomposable if there exist aggregation functions
F1 and F2 such that F (Sa ] Sb) = F2(F1(Sa) ] F1(Sb)), where
Sa and Sa are two bags (multi-sets) and ] denotes bag union. It
can be seen that common aggregate functions such as sum, count,
min, and max are all decomposable. Therefore, given a rule R with
a decomposable aggregate, and which is rewritten by Algorithm 3
to rules R1 . . . Rn, we adapt techniques from [15] to push down the
aggregate from Rn to other rules Ri, where i < n.

Example 4. Recall from Example 2 the PageRank version obtained
after rewriting according to Algorithm 3. Notice that the PageRank Y
rule performs no aggregation, and recall that its execution sends
multiple tuples with the same value yi for y to the super vertices
hosting neighbors of yi. Say x0 is the neighbor of y1 and y2, then
super vertex V (x0) receives a bag of tuples S1 for y1, and a bag of
tuples S2 for y2, aggregating S1 ] S2.

In contrast, eager aggregation produces the program below.

Outdegree(x, count〈y〉)← OutEdge(x, y).
PageRank(x, 0, 1).
PageRank Y(y, i, sum〈p/d〉)← PageRank(y, i, p),

Outdegree(y, d), i < 20.
PageRank(x, i+ 1, sum〈p〉)← InEdge(y, x),

PageRank Y(y, i, p).

Notice that, before sending, the execution of the PageRank Y rule
at V (yi) aggregates Si into a single tuple each. Now V (x0) receives
only two tuples, which are summed up. The semantics of the program
is preserved since Σp∈S1]S2

p
d

= (Σp∈S1
p
d
) + (Σp∈S2

p
d
). �

B. Semi-join

In Section III-C1, we discussed how Datalography executes local
rules by sending intermediate evaluation results to the correct super-
vertex partitions based on the vertex id. Given a rule Ri that is a
predecessor of rule Ri+i and that is evaluated for a vertex v, the
original approach decides which neighbors w should receive results
of Ri’s evaluation. Datalography achieves this by joining the results
of Ri at V (v) with V (v)’s Edge relation (InEdge or OutEdge, as

dictated by Algorithm 3). Upon receipt at V (w), the sent tuples
undergo a second join, this time with the appropriate Edge relation
stored at V (w) (if V (v) sent data along the out-edges, Ri+1 joins
the received data with the InEdge relation, and vice versa). It is easy
to see that when restricted to v-relevant tuples, the join at the sender
already computes the same tuples as the w-relevant restriction of the
join at the receiver.

We avoid the redundant join using a technique reminiscent of
the classical semi-join reducer technique from relational distributed
database processing [16]. The optimization can once again be ex-
pressed by rewriting the original program. The rewrite moves the
edge predicate from the destination rule Ri+1 to the source rule Ri

(flipping In- and Out- directions). The values of the destination vertex
are added to the result of Ri so they can be directly retrieved by Ri+1

without having to perform a local join.

Example 5. The semi-join optimization applied to the PageRank
version from Example 2 yields

Outdegree(x, count〈y〉)← OutEdge(x, y).
PageRank(x, 0, 1).
PageRank Y(y, x, i, p, d)← OutEdge(y, x),

PageRank(y, i, p),
Outdegree(y, d), i < 20.

PageRank(x, i+ 1, sum〈p/d〉)← PageRank Y(y, x, i, p, d).

Notice that the join with InEdge from the last rule was transformed
into a join with OutEdge in the PageRank Y rule, which now also
outputs the x vertices. The last rule can now read the y, x pairs
directly from the results sent by the PageRank Y rule, without having
to compute them via join. �

C. Source-side Combiners

Eager aggregation and semi-join optimization are beneficial in
isolation from each other, but can significantly reduce communication
cost when enabled simultaneously. Section V shows the effect each
optimization has on runtime.

Their combined effect yields an optimization we call source-
side combiners. Source-side combiners ensure that the information
destined to a super vertex is partially aggregated at the sender side
before sent to the destination super vertex. This technique is named
after map-side combiners in MapReduce programs [17]. However,
MapReduce, directly exposes such combiners to the developer in
a non-declarative fashion. In contrast, Datalography automatically
discovers source-side combiners.

Example 6. Applying both eager aggregation and semi-join
optimization to the PageRank version of Example 2 yields

Outdegree(x, count〈y〉)← OutEdge(x, y).
PageRank(x, 0, 1).
PageRank Y(x, i, sum〈p/d〉)← OutEdge(y, x),

PageRank(y, i, p),
Outdegree(y, d), i < 20.

PageRank(x, i+ 1, sum〈p〉)← PageRank Y(x, i, p, d).

�

D. Asynchronous execution

Giraph is based on synchronous execution in which the master
coordinates evaluation through the successive execution of super-
steps. Between super-steps, a barrier blocks all computation of vertex
programs and allows only the master to compute. This approach
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simplifies synchronization of vertex execution and communication.
Vertices communicate with each other using messages – a message
sent during one super-step can be accessed only at the next super-
step. Thus although reading, computing, and writing of vertex data
happens in every super-step, a vertex can only read a value produced
in a previous super-step. This ensures that race conditions between
computing vertices do not occur.

Although synchronous execution simplifies the system’s design, it
also suffers from costly synchronization overheads. First, stragglers
can occur as slow running workers cause finished works to go idle
waiting for them to finish. This becomes especially prevalent for
graphs that follow a powerlaw distribution where few vertices have
a high degree of edges leading to unequal worker load. Second, it
is difficult to pipeline computation and communication when each
super-step requires a global synchronization barrier.

These shortcomings are common to BSP-style graph processing
systems and there have been various approaches to add asynchrony
to vertex processing. Here we take advantage of a particular approach,
the Barrierless Asynchronous Parallel (BAP) model, implemented
in Giraph Unchained [11]. This work extends Giraph to support
asynchronous execution by allowing messages to be read as soon as
they arrive and by reducing the number of global super-step barriers.
This means that where previously vertices were computing once
during a super-step, they now compute multiple times until no more
new data can be produced (all messages have been read).

The CALM-conjecture [18] states that monotonic programs allow
for asynchronous execution since they are invariant to message
ordering and retry and hence are eventually consistent. We exploit
this fact by using asynchronous evaluation of our recursive monotonic
Datalog programs.

V. EXPERIMENTS

While the conciseness and maintainability benefits of expressing
graph algorithms in Datalog are indisputable, a natural question is to
quantify the performance penalty (if any) of these benefits.

Graph processing systems such as Giraph are highly tuned for the
efficient evaluation of graph algorithms. Giraph is a mature system
used by companies, such as Facebook, in real-world scenarios. It
has undergone performance optimizations that, among other things,
optimized the memory footprint of the graph representation and dis-
tributed communication. For a detailed description of optimizations
refer to [6].

We compare the performance of implementing graph algorithms
in Datalog and executing them in Datalography, versus implementing
them in customized Java code executed directly in Giraph. We choose
algorithm implementations shipped with the Giraph example package.
The comparison shows that running Datalog implementations of
graph algorithms on Datalography can be more efficient than run-
ning their imperative implementations directly in Giraph. Moreover,
it shows that Datalog evaluation engines benefit when exploiting
optimizations enabled by the declarative nature of Datalog and its
monotonicity (i.e., super vertices, eager-aggregation, asynchronous
execution).

A. Experimental Setup

All experiments were run on a cluster of 8 nodes, each with 32GBB
of RAM, 4 vCPUs and 1Gb/s NICs. The nodes are running Ubuntu
14.04, with jdk-1.0.7. One of the nodes was designated as the Hadoop
master and did not participate in computations.. We installed Hadoop
2.5 and Giraph Unchained based on Giraph 1.1. The changes made by
Giraph Unchained do not apply to the synchronous execution mode,
hence the code is similar to that of Giraph 1.1.

We used real-world datasets2, stored as text files in HDFS, namely
hollywood-2009 (HW-9), hollywood-2011 (HW-11) and arabic (AR).
Their characteristics can be seen in Table II. HW-9 and HW-11 are
social graphs with large average degree and small diameter. AR on the
other hand has a large diameter with small degree since it represents
web sites that could contain pages written in Arabic.

TABLE II
DATASET CHARACTERISTICS

Dataset V E Avg Degree Avg Diameter
HW-9 1.1M 113.9M 100 3.87
HW-11 2.2M 229M 105 3.92

AR 22.7M 640M 28.14 16.58

For the assignment of vertices to super vertices we used the
ParMetis [19] graph partitioning library. Section III made the case for
super vertices as they enable a more sophisticated partitioning of the
vertices: every super vertex contains vertices of the initial input graph
that are “close” to each other to minimize communication between
different super vertices.

We consider three different algorithms, SSSP, WCC and PageRank.
In the experiments below we compare the running time when execut-
ing their customized Java implementation on Giraph versus executing
the Datalog implementation on Datalography with synchronous exe-
cution and on Datalography with asynchronous execution.

Single Source Shortest Paths computes the distance between a
single source and all other vertices in its connected component.
The Datalog query that evaluates the same algorithm was shown in
Section II-A.

We compared against the implementation provided by Giraph in
its examples package. The source from which the algorithm starts
is the vertex with ID 1 and initializes its distance with 0. A vertex
receives the distance from all its neighbors and picks the minimum.
If the minimum is smaller than the current distance, it propagates it
to its outgoing neighbors. Note that we assume all edges have unit
weights. In SSSP, in the first superstep all vertices are inactive except
the source. A vertex gets woken up when it receives a message. The
compute invocations and hence network usage starts out small, peaks
and then reduces again. The algorithm runs for a maximum number
of supersteps equal to the diameter of the graph.

Weakly Connected Components finds components in a graph, that
is sub-graphs in which there is a path from every vertex to every
other one, ignoring edge direction. We used the implementation of
HCC algorithm provided by Giraph’s example package in which the
component for all vertices is initialized to the vertex ID. At every
superstep, a vertex sends it’s component ID to its outgoing neighbors.
The receiving vertex compares the component ID’s it has received
to it’s current one and keeps the smallest. If the component ID of a
vertex changed due it receiving a smaller one, the vertex forwards
the new one to its neighbors.

Unlike SSSP, in WCC all vertices are active initially. The compute
invocations drop as the computation proceeds and the supersteps are
bounded by the diameter of the graph.

The Datalog query that evaluates the WCC algorithm is:

WCC(x, x)← Vertex(x).
WCC(x,min〈l〉))← Edge(y, x),Wcc(y, l).

The first rule initializes the component of a vertex to its id. The
second rule recursively traverses the graph and assigns to each vertex
the component that is the minimum of its incoming neighbors. The

2http://www.dis.uniroma1.it/challenge9/download.shtml
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Fig. 4. Running time comparison of Giraph, Datalography Sync, and Datalography Async

evaluation stops when the component of all vertices don’t change
anymore.

PageRank is described in Section III-C1, where we show its
Datalog implementation. We compare it against the customized
implementation provided in the Giraph example package.

B. Comparison to Giraph

Super vertices in Datalography correspond to a vertex in Giraph.
The vertex data type in Datalography is a database that contains a
set of tables, namely vertices, edges, predicates and messages. The
vertices and edges tables are instantiated when the input graph is
loaded. The predicates table corresponds to predicates in the Datalog
query and gets populated in every superstep of the evaluation. The
messages table contains the information about the messages that
are sent at the end of every superstep such as the destination ID
and the value of the message. The vertices and edges are constant
during evaluation and the messages table get created anew at every
superstep. However, the predicates tables keep increasing for every
iteration as new vertices get woken up and compute their values.
Memory utilization is arguably an issue in Datalography and has not
been optimized as well as Giraph’s. The tables store information
in human-readable format whereas Giraph employs ByteArrays.
Moreover, Giraph avoids the creation of new objects for messages, a
benefit Datalography does not take advantage of. Despite the fact
that our implementation does not (yet) exploit these optimization
opportunities, Datalography outperforms Giraph for all algorithms
and datasets (except near break-even performance with pagerank).

For all datasets and algorithms, we configured Datalography to use
1000 super vertices. This offered the near best performance across
all combinations of dataset and algorithm (see Section V-C). This
decision does not affect the performance of Giraph as it is agnostic
to the number of super vertices.

SSSP: Datalography outperforms Giraph for all datasets (Fig-
ure 4a). The largest gains in performance are observed with AR
that has the smallest degree. Datalography outperforms Giraph by
a factor of 1.9x with synchronous mode and a factor of 9x when
the asynchronous mode of execution is used. With HW-9, HW-11
Datalography is 1.2x faster in synchronous mode and 3x and 5.8x
in asynchronous mode respectively. SSSP needs 15 supersteps for
HW-9, 19 supersteps for HW-11 and 39 for AR.

WCC: Again, Datalography outperforms Giraph on all datasets
(Figure 4b). Performance follows the same trend as with SSSP
where larger gains are observed with smaller degrees of a graph.
Datalography is faster by a factor of 2.5x in synchronous mode and
up to 4x faster in asynchronous mode for AR.

PageRank: PageRank is different from the other algorithms in
that the amount of data being processed during every iteration does
not shrink as the algorithm nears termination or converges, since
it computes new PageRank values for all nodes at every iteration.
Moreover, since recursive programs with sum aggregate are not
monotonic in general, the PageRank predicate uses an iteration
variable i to compute the PagerRank value in stages. This renders
asynchronous execution unsuitable since the iteration variable already
creates a logical synchronization barrier. Despite these difficulties,
Datalography performs on par with Giraph for HW-11, outperforms
it by a factor of 1.4x for HW-9 and looses by a factor of 0.9x for
AR.

C. Scaling super vertices

In these experiments (summarized in Figure 6), we scale the
number of super vertices to show the effect they have on runtime
for both synchronous and asynchronous mode. The measurements
show that a number of super vertices between 800 and 1600 gives
the best performance. This makes sense as too few super vertices do
not take advantage of parallelism whereas too many super vertices
hinder the computation and communication optimizations otherwise
offered.

D. Effect of optimizations on runtime

We compare the running time of SSSP, WCC and PageRank
when the evaluation is not using super vertices (EA only) or not
using eager-aggregation (SV only) to measure the effect of each
optimizations. Figure 5 summarizes the results. When not using super
vertices, the input graphs have the same vertices as Giraph, outlined
in Table II.

On dataset AR, no run terminated after 20mins of execution for all
cases except for SSSP and EA-only. This highlights the importance
and impact the optimizations have on the running time and scalability
of Datalography. Neither of the optimizations suffices in isolation, but
their synergistic combination (corresponding to source-side combin-
ers) is the key to good performance. This holds for the datasets HW-9
and HW-11 as well where combining the optimizations is critical.

VI. RELATED WORK

Datalog evaluation frameworks. Existing distributed Datalog frame-
works tend to use bespoke engines, and only one of which appears
to run over think-like-a-vertex graph processing platforms [20]. That
system focused on generic datalog programs, not graph analytics –
it had no support for recursive aggregates, rule rewriting and local
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Fig. 5. Effect of optimizations on runtime
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Fig. 6. How the number of super vertices affects runtime

rule evaluation, or the many optimizations Datalography uses to effi-
ciently process such analytics. Interestingly, other works explored the
opposite direction, transforming existing think-like-a-vertex programs
into datalog analytics that then execute as more traditional relational
dataflows on systems like Hyracks [5]. Below we discuss the datalog
frameworks that can support graph analytics but run on either bespoke
or modified data processing engines.

Socialite [1] and Myria [3] are specialized engines catered to
the evaluation of Datalog queries. In Socialite, the input graph is
sharded among workers based on a partition key provided by the
user. The workers evaluate rules asynchronously and communicate
via messages until no new facts can be deduced. Myria utilizes a
distributed relational database engine that consists of one master
and multiple workers, and hence, query plans comprise relational
algebra operators that are partitioned across workers. It supports
both synchronous and asynchronous execution. Both approaches
support in a clean way a subset of recursive aggregates that are
associative, commutative and idempotent (e.g., min, max). Socialite
supports non-meet aggregate operations such as sum by embedding
a Datalog query inside an imperative loop, effectively running n
Datalog programs. Myria supports them for a subset of syntactically-
restricted programs by stratifying the Datalog query using the time
construct. In contrast, Datalography allows for recursive sum and
count aggregates for queries that are explicitly locally stratified [13]
without the use of imperative code.

BigDatalog [4] is built on top of Spark [21], a general platform for
large-scale analytics. Spark cannot support recursion out of the box
and BigDatalog had to implement optimizations on the Spark runtime
such as a specialized RDD implementation and a scheduler aware of
iterations. Datalography in contrast, is built on top of Giraph, a large-
scale graph processing system where iterative computation is inher-
ently supported. BigDatalog implements the approach of DeALS [22]
for recursive aggregates by combining monotonic recursive versions,
i.e., mmin , mmax , mcount , msum , with a final non-recursive

aggregate. The evaluation memoizes intermediate aggregated values
hence, a final rule that applies a non-recursive aggregate is needed
to return the correct result. Datalography does not suffer from this
inefficiency as the aggregated values computed by every iteration
override the previous values. Furthermore, Datalography can support
mcount and msum-style aggregates through a combination of max
and stratified sum aggregates.
Datalog languages. Recently, Datalog has been the language of
choice for approaches that offer programmers a declarative and
concise abstraction over the impeding mismatch involved in building
large, commercial scale products. Yedalog [23] and Bloom [24] use
Datalog to express data analysis and communication in a single
platform allowing programmers to focus on the high-level logic
instead of details of distribution. Both support aggregation for queries
that contain monotonic aggregate functions with a partially ordered
domain as defined by Ross and Sagiv [25]. BOOM analytics [26]
implemented the Hadoop MapReduce framework and HDFS storage
system using Overlog whereas LogicBlox [27] is a commercial
database system based on LogiQL.

VII. CONCLUSIONS

We introduce Datalography , the first complete Datalog system
built on top of a think-like-a-vertex parallel graph processing plat-
form, Apache Giraph, which is representative of a class of platforms
based on the same paradigm (e.g. Pregel, GPS, GraphLog, GraphX).

Our approach exploits the alignment of the Datalog and think-like-
a-vertex paradigms to show that no modifications of the platform are
required. Therefore, the ideas and techniques presented here apply to
all class members.

A remarkable feature of our solution is that it facilitates porting
the actual code across Giraph-class platforms. This is due to the
fact that the complexity resides in capturing the evaluation strategy
and optimizations via Datalog program rewriting. The rewriting is
think-like-a-vertex aware but is performed statically outside the vertex
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program. The rewriter code can therefore be reused without change.
The only code that requires porting is the vertex program which is
in charge of local rule evaluation and is relatively simple.

Depending on the application, certain developers would trade some
performance for the conciseness and the abstraction from details
afforded by Datalog (recall that the SSSP, WCC and PageRank
analytics are expressed in up to 3 Datalog lines but require 60, 50,
resp. 100 Java lines in the customized applications included in the
Giraph distribution). The fact that our optimizations actually improve
performance over custom imperative code comes as an added benefit.
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