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ABSTRACT
Many networking applications require fast state lookups in
a concurrent state machine, which tracks the state of a large
number of flows simultaneously. We consider the question of
how to compactly represent such concurrent state machines.
To achieve compactness, we consider data structures for Ap-
proximate Concurrent State Machines (ACSMs) that can
return false positives, false negatives, or a “don’t know” re-
sponse. We describe three techniques based on Bloom filters
and hashing, and evaluate them using both theoretical anal-
ysis and simulation. Our analysis leads us to an extremely
efficient hashing-based scheme with several parameters that
can be chosen to trade off space, computation, and the im-
pact of errors. Our hashing approach also yields a simple
alternative structure with the same functionality as a count-
ing Bloom filter that uses much less space.

We show how ACSMs can be used for video congestion
control. Using an ACSM, a router can implement sophis-
ticated Active Queue Management (AQM) techniques for
video traffic (without the need for standards changes to
mark packets or change video formats), with a factor of
four reduction in memory compared to full-state schemes
and with very little error. We also show that ACSMs show
promise for real-time detection of P2P traffic.

Categories and Subject Descriptors: C.2.6 Internet-
working : Routers

General Terms: Algorithms, Measurement, Design.

Keywords: Bloom filters, state machines, network flows.
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In this paper, we introduce the idea of an Approximate
Concurrent State Machine (ACSM), which aims to track
the simultaneous state of a large number of agents within a
state machine. Concurrent state machines arise naturally in
many networking applications, especially in routers, where
one wishes to track the behavior of many simultaneous flows.

Our motivation for considering approximate versions of
concurrent state machines arises in two ways. First, we
observe that in the last few years, routers and networking
devices have increasingly begun to keep state about TCP
connections. One powerful motivation for this was the ad-
vent of packaged firewalls and Intrusion Detection devices
that keep state for each TCP connection in order to detect
security violations. This was followed by application level
load balancers, and then application level QoS devices that
attempt to look at application headers in order to provide
more discriminating QoS to applications. While the security
and application level QoS applications are well entrenched
in the market, there have been more recent proposals to do
video congestion control [9] and for identifying Peer-to-Peer
(P2P) traffic [10], both of which can also be loosely placed
in the Application QoS category.

While Application Level QoS can theoretically be pro-
vided by marking packets appropriately, such marking re-
quires standards changes. Further, much more sophisticated
QoS state machines can be implemented by keeping state for
each application flow. Thus, in practice, many networking
devices keep state for each TCP connection and the trend
shows no sign of abating. If the state kept for each connec-
tion is small (say less than 20 bits) compared to the TCP
5-tuple (roughly 100 bits), then it is natural to speculate
whether one can reduce the overall state required by elimi-
nating or reducing the space required for the flow identifier.

Reducing state is crucial to high-speed routers because
it allows state machines to be implemented on-chip with-
out resorting to slow off-chip memories. For example, for
a router keeping track of 1 million connections (a number
found in many studies such as [23]), using 100 bits per con-
nection requires 100 Mbits of memory, which is impractical
using on-chip memory (or any form of SRAM). However, if
the state were dialed down by a factor of 5 to 20 Mbits, this
becomes at least technologically feasible.

Reducing memory by removing or reducing the identifier
size has an obvious analogy with Bloom filters [2]. Thus, our
second motivation for considering ACSMs arises from the re-



markable success of Bloom filters in networking. From 1970,
when Burton Bloom first described a compact probabilistic
data structure that he used to represent words in a dictio-
nary [2], until 1995, there was little interest in using Bloom
filters for networking. However, judging from the number of
papers that make direct or indirect use them [4], interest in
such applications has surged in the last 10 years.

A Bloom filter is essentially a compact representation of
a set. Standard exact representations of sets such as hash
tables and binary trees require at least L bits per element to
be stored, where L is the size of element, and often require
additional space for pointers. By contrast, a Bloom filter
is an inexact representation of a set that allows for “false
positives” when queried (in other words, it can sometimes
say that an element is in the set when it is not). In return,
it allows very compact storage: roughly 10 bits per element
for a 1% false positive probability, independent of the size
of the elements in the set or the size of the set itself.

Given that memory appears plentiful today, it may seem
surprising that Bloom filters have become so popular. How-
ever, Bloom filters allow economical solutions to various
kinds of scarcity, including:

• Bandwidth: There are several situations where net-
work bandwidth is still expensive. For example, dis-
tributed caching is useful when bandwidth is limited,
but in that case sending lists of all the cached items in
messages can also be expensive. The Summary Cache
paper [8] uses Bloom filters to compactly represent
URLs stored at a cache in inter-cache messages.

• High Speed Memory: While ordinarily DRAM mem-
ory is cheap, fast SRAM memory and especially on-
chip SRAM continues to be comparatively scarce. For
example, using on-chip Bloom filters can greatly speedup
a näıve string matching scheme, requiring access to
slower off-chip memory only rarely [7].

• Memory for Very Large Sets: There are some sets
whose sizes are astronomical, so that they cannot be
stored even when considering the cheap price of DRAM
today. For example, Snoeren et al attempt to solve the
problem of packet traceback after an attack by stor-
ing a complete log of all packets received in the last
hour at every router. The only way to make this even
barely technologically feasible is to represent the logs
by a Bloom filter [21].

While Bloom filters provide a technique for set member-
ship lookups, the vast majority of lookups in networking
applications, whether in routers or endnodes, are actually
state lookups. While route lookups and TCP state lookups
cannot tolerate the loss of fidelity caused by false positives,
we have already argued that there are several emerging uses,
many in the loose area of Application Level QoS, that can
benefit from state reduction and can tolerate the loss in fi-
delity. Further, guided by the analogy with Bloom filters,
it is plausible that there will be other applications (besides
the ones suggested in this paper) that will be found by other
researchers.

Thus we seek a compact structure like a Bloom filter, but
for the setting of state lookups. In this setting, Bloom filters
themselves have many limitations (besides false positives),
including:

• No associated value: A Bloom filter determines
whether an element is in a set; it does not return state
associated with an element. Chazelle et al. have gen-
eralized Bloom filters to functions that can return a
(small) set of values [5], but this techniques does not
allow state changes (see Section 2).

• Deletion is expensive: A Bloom filter allows easy
insertion but not deletion. Deletions in a Bloom fil-
ter are handled using a counting Bloom filter, which
keeps a counter instead of a single bit at each hash
location [8, 15]. Counters are incremented on an in-
sertion and decremented on a deletion. Unfortunately,
using counters increases the size of the filter by a non-
trivial factor; if too few bits are used in the counters
overflows and false negatives can arise.

• No notion of time: A key property of network state
machines (e.g., the TCP state machine) is that they
allow the state to be timed-out. This is often essen-
tial as the only way to deal with failure in networks
and distributed systems is to infer failure by the lack
of message arrival within a specified timeout period.
Bloom filters have no notion of time or timeouts, and
a näıve association of every filter element or cell with
a timer would greatly increase the space required.

In this paper, we present new techniques to design Ap-
proximate Concurrent State Machines that address each of
the limitations described above. We start by considering
very simple techniques based on Bloom filters, as we believe
this would be the natural starting point for people consid-
ering this problem. Perhaps surprisingly, our comparison of
several techniques suggest that in most cases, an approach
based on fingerprints and d-left hashing [3, 24] performs best
and offers the most flexibility. Our techniques still have
false positives, with a small probability; under some cir-
cumstances, they may also yield false negatives, or return
the wrong state. We further introduce another type of error
condition, corresponding to a “don’t know” response, which
is generally less damaging than other types of errors. Thus
our ACSMs are suitable only for applications that can tol-
erate a small probability of error. Despite this weakness,
we suggest that ACSMs can enable more stateful (but still
lightweight) processing at routers.

One key feature of our structures is that we turn a dis-
advantage of this setting into an advantage. Handling dele-
tions is often expensive, because of the need for counters to
do deletion properly. But in state-lookup situations, there is
generally a natural time-out, where the corresponding flow
should be deleted. We can utilize the time-out mechanism
for flows that time out to also delete flows that terminate
successfully at a later time, removing the need for counters,
and saving space. We also utilize the fact that many net-
working applications can tolerate some lack of precision in
the timer value, especially if the timer is used to reclaim
inactive state. Providing precise timers (e.g., for retrans-
mission) will require extensions to our data structure.

To demonstrate the power of ACSMs, we study a specific,
novel example application: discriminate dropping for video
congestion control. Using ACSMs, a router can efficiently
keep track of the current frame status of MPEG video pack-
ets, allowing for more discriminating drop policies during
times of congestion. We describe experiments to show the



effectiveness of such control compared to the näıve dropping
schemes that are the only recourse of existing routers, and
show that the implementation costs are low. We also briefly
describe an experiment to suggest the promise of ACSMs
for real-time detection of P2P traffic [10]. More generally,
we introduce ACSMs as a useful tool for other applications
that can tolerate a small probability of error in return for a
compact representation.

While the two example applications we study can roughly
be described as techniques to provide Application Level QoS
(where some errors can be tolerated), an important appli-
cation we do not study in this paper is for analysis of net-
work traffic. Network monitors are often used to answer
questions about network traffic; using compact ACSMs may
allow faster response to complicated queries using state ma-
chines with only a small loss in accuracy. Further, even
when doing queries using disk logs of network traffic (e.g.,
NetFlow records), ACSMs may help in 2-pass algorithms
that first sift out candidate flow records in the first pass (in-
cluding false positives) using ACSMs that fit in memory, and
then weed out the small number of false positives in a second
pass. We believe that ACSMs can play an important role in
measurement infrastructure in software and hardware.

We also note that a variation of our fingerprint/hashing
scheme provides an alternative approach for creating a count-
ing Bloom filter [8, 15] that uses much less space (a factor of
2 or more) than the standard construction. Counting Bloom
filters have many potential uses, but tend to be expensive
with regard to space; our alternative may therefore also be
useful for many applications.

To summarize, our contributions are:

• The introduction of the ACSM problem.

• The introduction (and comparison) of several solutions
to the ACSM problem starting with a simple solution
that utilizes Bloom filters, followed by a solution that
extends Bloom-filter like techniques, and ending with a
solution that uses a combination of hashing and finger-
print compression, and is very different in spirit from
the techniques underlying Bloom filters.

• A novel construction for counting Bloom filters.

• Techniques for taking advantage of time-outs for space
savings.

• Experimental evaluation of ACSMs for multiple prob-
lems, including an application for congestion control
on MPEG streams.

• The potential use of ACSMs for speeding up measure-
ment algorithms working on large data sets.

2. RELATED WORK
We are aware of previous papers that extend Bloom filter

techniques to realize particular state machines; for example,
there are papers that consider structures for approximately
storing multisets, keeping an approximate counter for each
element. In terms of general state machines, the most rele-
vant previous work is the Bloomier filter [5]. While a Bloom
filter is designed to represent a set, a Bloomier filter is de-
signed to represent a function on a set. Specifically, we have
a set of items S, and associated with each item x ∈ S is a
value v(x) that we assume is in the range [1, V ]. For each

item x /∈ S, we take v(x) = null. (Here null should be
distinct from the number 0, which we may use for other
purposes.)

A Bloomier filter always returns v(x) for x ∈ S; when
x /∈ S, null should be returned with high probability. Just
as a Bloom filter can have false positives, a Bloomier filter
can return a non-null value for an element not in the set.
Previous work on Bloomier filters has focused on the setting
where the set S is static. When both S and the correspond-
ing function values are static, there are linear space solu-
tions that seem viable, although they have not been tested
in practice. There are lower bounds that show that when S
is static and function values are dynamic, non-linear space
is required [17].

Another closely related work is [13], which takes a first
step towards state machines by allowing classes (which can
be thought of as the state of an element). While [13] also
describes ideas for efficient deletion, the paper does not com-
bine deletion and classes as would be required to support
state machines. Further, the technique works by coding
across individual Bloom filters; in order to reduce false neg-
atives, the resulting codes tend to increase the number of
parallel lookups required (some of the codes described in [13]
require 1000-fold parallelism) which may be hard to achieve
in practice. The idea of returning a Don’t Know condition
also appears in this paper.

Other alternative constructions with improved function-
ality over Bloom filters and Bloomier filters have recently
been suggested [17]; however, while the theory of these al-
ternatives has been studied, at this point we are not aware of
any practical implementations or uses. These constructions
are much more complicated than the simple but effective
hashing methods underlying Bloom filters. We consider this
simplicity a virtue for practical use, and aim to keep our
structures similarly simple when possible.

3. THE STATE MACHINE SETTING
In order to provide as concrete an analysis as possible, we

specify the setting for our analysis and experiments. We are
given a single state machine, and a collection of flows. We
work in a streaming model, where our data stream consists
of a sequence of state updates for the collection of flows. A
flow has an associated flow-id to identify the flow. A flow
becomes extant when initiated, which we model as beginning
at some initial state, and ceases to be extant when it is
terminated, which we model as reaching some terminal state.
Each extant flow is associated with a current state. The
data stream provides transitions, corresponding to (flow-id,
string) pairs; that is, there is a function from state-string
pairs to states corresponding to the transitions of the state
machine. For example, a transition for a flow could take the
form “Go to state 7,”, or “If in state 5, go to state 3,” or
“Add 1 to the current state.” We desire a data structure
that will track the state for each flow efficiently, reacting to
each transition in the stream.

Initially, we will consider systems that are well-behaved, in
the following sense: every flow is properly initiated by an ini-
tiation transition, every transition requested for every flow
is valid, and every flow is (eventually) properly terminated
by a termination transition. In many real-world situations,
systems are not entirely well-behaved. When we consider
ill-behaved systems, we must consider that an adversary or
errors within the system may lead to faulty behaviors, in-



cluding specifically: transitions may be introduced into the
stream for non-extant flows; a flow transition might not be
valid (in which case we assume the flow should remain in its
current state); and a flow might not terminate properly. For
example, in a network measurement application, when the
analysis starts it may have to deal with flows that were al-
ready active before the measurement started. We note that
well-behaved systems are much easier to analyze formally.

In this setting, there are four natural operations that we
desire of our data structure:

• InsertEntry( flow, state)

• ModifyEntry( flow, newstate )

• Lookup( flow ) outputs ( state )

• DeleteEntry( flow )

When faced with a possible state transition, one can perform
a lookup to find the current state for a flow, determine the
subsequent state according to the transition, and modify
the state accordingly. (Alternatively, the current state of
the flow could be given as part of the input to the Lookup
operation; we discuss this further below.)

There are various types of errors that can occur. Suppose
a lookup is done on a non-extant flow, i.e. a flow that has not
been properly initialized, and the result is that it appears
to have a valid state. We call this a false positive. Note
that this should be distinguished from a false positive on a
Bloom filter (that may be a part of an ACSM); this is a false
positive on a flow, and we will strive to keep the terminology
clear. Suppose that no state is given for an extant flow. We
call this a false negative. If an erroneous state is given for
an extant flow, we call this a false return state. Finally, we
introduce a new type of error that we think is interesting
and useful in its own right; in particular, it allows us to
avoid the lower bounds determined by work on Bloomier
filters. We allow that for an extant or non-extant flow the
data structure returns a“don’t know” (hereon, abbreviated
as DK) state. Returning DK is generally far less damaging
for an application than a false negative or a false return
state. For example, it may be that the concurrent state
machine is used as a fast path for packet classification, but
in the case of a DK response a slower path classification
routine can be used. Obviously, we want all types of errors to
occur with very small probability, including DK errors. The
best tradeoff among the different types of errors is highly
application dependent, suggesting that data structures that
allow such tradeoffs are more valuable.

As a concrete example, consider using an ACSM for iden-
tifying Peer-to-Peer (P2P) Traffic as we do in Section 5.2.2
in order to rate-limit such traffic. A false-positive implies
that we will (wrongly) rate-limit the traffic that is not P2P.
While this is clearly bad, our approach uses existing heuris-
tics [11] that already have false positives. Similarly, false
negatives imply that we miss some P2P traffic, but then so
does the existing approach. In this application, if no action
is taken on a DK, a DK can at most increase the false nega-
tive probability. The bottom line is ACSMs may be justified
if the space for the application can be reduced considerably
at the cost of a very small increase in the false negative and
positive rate. This is especially so if the reduction in space
allows the application to be done in faster memory.

0 0 1 0 2 3 0 1 1 0 0 0

0 0 0 0 1 3 1 0 2 0 1 0

(X,3) (X,5)

Flow: X  State: 3 to 5

Before

After

Figure 1: A state change with a DBF ACSM (as-
suming the old and new states are given). The
counters for the old flow-state pair are decremented,
the counters for the new flow-state pair are incre-
mented.

3.1 A Direct Bloom Filter Approach
There is a simple approach directly using a Bloom filter to

obtain a concurrent state machine, which we call the direct
Bloom filter (DBF) ACSM. The current set to be stored con-
sists of (flow-id, current state) pairs. We assume the state
is represented as a value in the range [1, V ]. Because we
will want to handle deletions, we describe the approach us-
ing counting Bloom filters; alternatively, deletions may also
be accomplished using timing-based mechanisms, as we de-
scribe in Section 3.2 below. This approach, while seemingly
obvious and natural, is quite limited and recommended only
in very special cases.

Let us first consider the situation when the system is well-
behaved. Insertion is straightforward. Lookup operations
are easily done if one is also given a state as input; that is,
one can check if a flow is in a specific state easily by checking
for the appropriate (flow-id,state) pair. However, if the state
is not part of the lookup input, then one has to check all
possible states. In this case, the time to check for a state
is proportional to the number of states; moreover, because
of false positives in the Bloom filter, it is possible that a
flow appears to be in multiple states, in which case a DK
must be returned. (This situation would also be problematic
when having to delete a flow; either the state must be given,
or if the flow appears to be in multiple states, a deletion
cannot be accomplished without risk of error, so timing-
based methods must be used.) This approach is therefore
most suitable when either there is a very small number of
states, or the transitions themselves specify the start state
and end state for the transition. Many state machines have
the property that the current state is naturally encoded as
part of the transition. For example, when state transitions
are unique, so that the input that causes the state to change
from A to B is unique to both of the states A and B, then
this information informs the lookup. Deletions of flows are
also straightforward using a counting Bloom filter when the
state is also given. Modifying an entry corresponds to a
lookup, deletion, and insertion of a new (flow-id,state) pair.
An example of modifying an entry is given in Figure 1.

Analysis of the DBF ACSM is straightforward, assuming
that states are given as part of the input when performing a
deletion. If there are n extant flows , with m counters and
k hash functions used in the filter, the probability of a false



positive f is just that for a standard Bloom filter [4, 16]:

f ≈
“
1 − (1 − 1/m)kn

”k

≈ (1 − ekn/m)k.

It is well known that for a fixed value of m and n, the optimal
choice for k to minimize f is (m/n) ln 2, giving f ≈ (0.6)m/n.
For a lookup on an extant flow with no state information as
part of the input, the probability of returning a DK with s
states is the probability of not having a false positive for the
flow on the s − 1 other states, or (when f << 1/(s − 1))

1 − (1 − f)s−1 ≈ f(s − 1) ≈ s(0.6)m/n.

We now consider problems that may arise in a system that
is not well-behaved. A false positive for a non-extant flow
can occur, if the underlying Bloom filter gives a false posi-
tive. Notice that a false positive can have ongoing effect in
the following case: if a false positive causes an invalid state
transition to occur, it will change the filter. The changes
may later cause future false negatives, false positives, false
return states, or DK results; such dynamic interactions are
naturally hard to analyze systematically. A flow-level false
negative can also occur for an extant flow if an invalid state
transition is attempted, and a false positive from the Bloom
filter makes it appear that the flow is in the wrong state.
(This cannot happen if all possible states are tested, as then
a DK should be returned, but if the transition specifies the
initial state, this may not be done to save time, as previ-
ously explained.) Non-terminating flows eventually would
cause the filter itself to saturate with non-zero entries, un-
less timing-based mechanisms are used.

3.2 Timing-Based Deletion
Before describing improved structures, it seems best to de-

scribe our approach to timing-based deletion in some detail
in the context of DBF ACSMs. They will work in entirely
similar ways for our other proposed structures.

We have seen that non-terminating or otherwise ill-behaving
flows require a mechanism for cleaning out of the data struc-
ture after a certain amount of time. Similarly, in cases where
deletions might not normally be possible (such as if the state
is not given for a deletion request, and a flow appears to be
in multiple states according to the filter), a timing-based
deletion mechanism will ensure that an uncompleted dele-
tion eventually happens.

A straightforward method uses a single flag bit per cell
and a single global counter, and breaks time into phases,
where a new phase begins for example after a certain number
of operations. The counter tracks the number of operations
until a new phase begins. At the beginning of a phase, all
flag bits should be set to 0. During a phase, every cell that is
touched has its flag bit set to 1. The appropriate definition
of touched may depend on the context; in our settings, it is
best to say that a cell is touched if it is used in a lookup
or insert operation, or if the cell value is modified, but not
if the cell is deleted. At the end of a phase, all unflagged
cells are reset to the appropriate value for a cell that has no
flows hashed to it; generally this is 0. Also, all flagged cells
retain their value, and all flags are reset to 0. In this way,
any cell not touched during a phase is reset, so that any flow
that has not taken part in an operation will eventually be
removed from the ACSM.

When using this timing-based approach, counters may no
longer be necessary, greatly reducing the space required. For

2 1 0 0 2 3 2 1

1 0 0 0 1 1 0 1

2 0 0 0 2 3 0 1

0 0 0 0 0 0 0 0

Timing Bits

Cells

Timing Bits

Cells

Global Reset

Before

After

Figure 2: Example of timer-based deletion. One bit
is used for each cell; when the global timer goes off,
untouched cells (in grey) are reset to 0.

example, we described the DBF (direct Bloom filter) ACSM
as using counters to allow deletions, but once we introduce
this timing mechanism, there is no reason to use counters at
all. The space might be better used by simply using a stan-
dard Bloom filter (with more bits). Alternatively, with the
DBF ACSM, you might use a combination of counters and
the timing scheme. A small counter would be useful when
flows change state often within a timing phase; otherwise,
the filter will be highly polluted. The timing-based deletion
remove non-terminating flows. An example of a timer reset
is given in Figure 2.

The aging process is hard to analyze without some neces-
sarily inaccurate model of deletions; in this paper, we focus
on studying the use of timers via experimental evaluation.
We note, however, that the number of phases required be-
fore a cell resets itself to empty is essentially geometrically
distributed. That is, if a flow is deleted, the probability
that some new flow hits that cell in the next phase is easily
determined given the number of new flows in that phase;
assuming that the number of new flows is roughly the same
from round to round, and that existing well-behaved flows
tend to terminate within a round, the number of phases be-
fore a cell is untouched (and hence reset) is geometrically
distributed. It follows that a well-behaved, sufficiently large
filter will reach a fairly consistent steady-state over time.

3.3 A Stateful Bloom Filter Approach
The DBF ACSM is rather näıve; one might suspect that

a similar structure making more careful use of the states
would perform better. We now describe such an alterna-
tive structure, which we call a stateful Bloom filter (SBF)
ACSM. Again the underlying structure is like a Bloom filter,
but the Bloom filter cells are neither bits nor counters but
instead a value corresponding to the state. This is similar
in spirit to an idea used in recent hash table constructions
[12], although the application is quite different.

Each of the m cells in our filter can store a value (in
[1, V ]∪{null}) and a counter. Null with a 0 count represents
no flows are currently hashed to the cell; we refer to this as
0 henceforth. Null with a count of 2 or more represents that
two or more flows have collided at that cell and corresponds
to a DK. Each flow is hashed to k cells (like a standard
Bloom filter).

The main innovation of the SBF ACSM is that whenever
we have a collision at a location in our filter among two
or more flows with different state values, we encode “don’t
know” in the cell. When doing a lookup on a flow-id in the
filter, as long as at least 1 value is not DK, a state value
can be returned. (This threshold of 1 could conceivably be
changed to trade off various errors; we have not found this
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Flow: X  State: 3 to 5

Before
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Figure 3: A state change with a SBF ACSM (no
state needs to be given). The hash locations give
the state or possibly a Don’t Know (represented as
a ’?’). A cell obtains a ’?’ if on an insertion a state
already is stored in the cell.

especially effective, and we do not consider it further here.)
We can define rules for the various operations. Below,

where we say hash the flow, we mean the operation takes
effect at each cell the flow hashes to.

• Insertion. Hash the flow. If the cell counter is 0, write
the new value and set the count to 1. If the cell value
is DK, increment the count. If the cell value equals
the flow value, increment the count. If the cell value
does not equal the flow value, increment the count but
change the cell to DK.

• Modify. Hash the flow. If the cell value is DK, leave
it. If the current count is 1, change the cell value. If
current count is exceeds 1, change the cell value to DK.

• Deletion. Hash the flow. If the count is 1, reset cell to
0. If the count it at least 1, decrement count, leaving
the value or DK as is.

• Lookup. Check all cells associated with a flow. If all
cell values are DK, return DK. If all cell values have
value i or DK (and at least one cell has value i), return
i. If there is more than one value in the cells, the item
is not in the set.

If the system is well-behaved, these rules guarantee that
we never return an incorrect value for a flow, although we
may return a “don’t know”. This structure could therefore
be used as an alternative to Bloomier filter structures in
a dynamic setting. Notice that once there is a collision in
a cell, so that a DK value arises, one must wait for the
cell count to go to 0 before the cell is reset from DK to
0. This requires that the system is well-behaved; otherwise,
deletions must be handled via a timing-based mechanisms.

As with the DBF ACSM, we can provide an analysis for
the SBF ACSM under the assumption the system is well-
behaved. For convenience here we consider the case of in-
sertions only; to handle deletions, one must have a model
of deletions so as to account for the DK values as described
above. Suppose we have m cells, n flows, and k hash func-
tions. Further let ni be the number of flows with state value
i. The probability x ∈ S with value i yields a don’t know is
equivalent to the probability that each of its cells are hashed
to by some element with a value that is not i. This is then
easily computed using the standard Bloom filter analysis as“

1 − (1 − 1/m)k(n−ni)
”k

≈
“
1 − e−k(n−ni)

”k

.

The probability that x /∈ S yields a false positive with value
DK is

“
1−(1−1/m)kn

”k

−
 X

i

(1−1/m)k(n−ni)
“
1−(1−1/m)kni

”!k

,

as this is just the probability each cell for x is hashed to by
some flow, subtracting off the probability each cell is hashed
to only by flows with only one value. The probability that
x /∈ S yields a false positive with value i can be approxi-
mated by assuming that x hashes to k distinct cells, finding
the probability that each of the k cells gives either an i or
a DK, and subtracting off the probability x /∈ S yields a
false positive with value DK. (The expression is long but
not complex.)

As before, when using timing, we do not need to keep
counters, as every DK state is equivalent regardless of the
count; we can simply wait for a timer event to reset a cell.
In this case, we detect when two flows share a cell only on
an insertion; on an insertion, any non-zero cell becomes a
DK. Again, in this setting, an invalid state transition can
incorrectly change cell values, leading to future errors. An
example of a state change under a SBF ACSM (without
counters) is given in Figure 3.

When the system is not well-behaved, there are further
issues to deal with. As mentioned, if a flow is not properly
terminated, then the filter will become polluted, causing in-
creased DK return values. This is handled using timing-
based mechanisms. Also, it is possible for spurious packets
to disrupt the filter, by causing a state transition when one
should not occur, although this can only happen if there is
a false positive for a specific state value. The effects of this
problem are less severe than for the direct Bloom filter ap-
proach; the most likely outcome is a false negative (rather
than a false return state) as the cells for a flow may then not
have matching states. Spurious packets can also introduce
DK values similarly.

3.4 An Approach Using d-left Hashing
Although the SBF ACSM has reasonable performance, we

have found that for most settings an approach using d-left
hashing in combination with fingerprints gives better perfor-
mance. We call this a fingerprint-compressed filter (FCF)
ACSM. A great advantage of the FCF ACSM is that there
are a few key parameters that can be fine-tuned for various
performance tradeoffs. The application of d-left hashing in
combination with fingerprints is interesting in its own right;
for example, in Section 4 we also show how this technique
can be used to obtain a data structure with the same func-
tionality as a counting Bloom filter, using much less space.

The basic idea is very simple: store a fingerprint of the
flow-id along with the flow’s current state in a hash table.
If the set were static, and there was suitably efficient per-
fect hash function for the set of flows, this would suffice [3,
17]. (Recall a perfect hash function maps a fixed set to a
range without collisions.) As we are in a dynamic setting,
perfect hash functions are generally not efficient for the pur-
poses we consider. We demonstrate that instead using d-left
hashing (in combination with timing mechanisms) provides
an efficient alternative. While the similarities between per-
fect hash functions and d-left hashing were noted previously
in [3], this application appears entirely novel.

For good usage of space and quick, fixed lookup times, no
pointers should be used. Instead, we adopt a hash table with



a fixed size, and a fixed number of flows that can be stored
in each hash bucket. We call this fixed number of flows the
height of the bucket. Each bucket will therefore be assigned
a fixed amount of space, corresponding to the number of
flows that can be held. If fewer flows than the maximum
are stored in a bucket, we assume that the remaining space
is filled by empty flows, which are signaled in a specific way,
say with an entry of all zeroes.

In order to efficiently use the space available in the hash
table under these conditions, as well as make the probabil-
ity of a bucket overflow appropriately small, we can apply
d-left hashing, as explained in [3]. We provide a summary
here. In the d-left scheme, the hash table is broken up into
d subtables, ordered for convenience from left to right; gen-
erally these subtables are of equal size (although technically
this is not necessary). When a flow is placed in the hash
table, it has d possible locations, one in each subtable, with
the location in each subtable given by independent uniform
hashes of the item. (Many practical hash functions approx-
imate this behavior reasonably in practice.) The d possible
buckets are examined, and the item is placed in the bucket
holding the fewest items; in case of ties, ties are broken to
the left. The number of items in a bucket is also called its
load. This is a particularly efficient variation of using multi-
ple choices in hashing, giving extremely balanced loads, and
in particular very small maximum loads.

Notice the number of different parameters and can choose
in setting up an ACSM in this way: the number of hash
functions d; the number of buckets b of each subblock of the
hash table; the height h of each bucket; the size f of the
fingerprint in bits. Assuming x additional bits for each flow
(to represent the state and the timer bit) gives a total space
of dbh(f + x) bits for the hash table.

The settings of d, b and h must be such so that the prob-
ability of an overflow is very small. (We note that also a
small TCAM could be added to handle hash table over-
flows if their probability is sufficiently small. While a small
TCAM would be recommended in practice, appropriate de-
sign should make overflows extremely rare, as we describe,
and we ignore this in the subsequent analysis.) The uti-
lization u of the table is the fraction of occupied cells; if
we have n flows and dbh cells then u = n/(dbh). A typical
configuration, given as an example in [3], considers the case
where d = 3, h = 6, and b = n/12. This gives a utilization
of u = 2/3. In this case, the asymptotic fraction of buck-
ets that overflow (in the case of insertions only) is approx-
imately 5.6 · 10−31 [3]; even with insertions and deletions
of items, overflow events are remarkably rare. This sug-
gests that overflow, while it needs to be considered, can be
handled straightforwardly with this structure. Also, higher
utilizations and hence less overall space is possible by using
larger values of d, f , and h (and correspondingly smaller
values of b).

Even in the case where flows are well-behaved, flows can
yield false positives or DK values. A false positive occurs
if a lookup is performed on a non-extant flow and a finger-
print matches. As each fingerprint matches with probability
2−f , a simple union bound gives an upper bound of dh2−f .
Similarly, a DK value could arise if the fingerprint for a flow
appeared in two buckets that the flow hashed to. Such an
occurrence would also, of course, make it impossible to per-
form a deletion in a valid manner (as we would not know
which entry to delete – this is why the problem is easier to

11111111110000000   4

00011110011101101   1

11110111001001011   2

11110101001000111   3

11100010010111110   1

01110010001011111   3

10101110010101011   2

Flow: X    Fingerprint: 11110101001000111    State: 3 to 5

01110010010101111   6

01110100100010111   1

10001110011111100   3

X
Fingerprint State

Figure 4: A state change with an FCF ACSM. First,
the three buckets associated with flow X are found.
When the appropriate fingerprint is found, the state
can be changed. Alternatively, if the flow is deleted
and re-inserted, it could be re-placed into the left-
most of the least loaded buckets.

handle with a static set and a perfect hash function). If a
DK is found on a lookup, and a state change is required,
it may be appropriate to change the state of both items to
a special DK value; this depends on the application. DK
values can also be handled using a TCAM, to store flow-ids
that yield a DK in the data structure explicitly.

Finally, it is worth noting that on a state change, there are
two possible ways of accomplishing the change. First, one
could simply change the state of the appropriate fingerprint
as found in the table. Second, one could delete the current
state and re-insert the new state; this may cause a change
in the location of the fingerprint, if there is an alternative
bucket with a smaller load. The first approach requires less
work, and the second approach will do a slightly better job
keeping the load evenly distributed. See Figure 4 for an
example.

As with our other schemes, issues become more compli-
cated if the system is ill-behaved, as non-extant flows can
change the state for extant flows. To cope with this, the fin-
gerprint should be chosen to keep false positives sufficiently
rare. Also, timing-based deletions must be used to remove
the fingerprint of non-terminating flows.

4. AN ALTERNATIVE COUNTING BLOOM
FILTER

Using the same approach as for our FCF ACSM, we can
construct a variation of a counting Bloom filter that we dub
the d-left counting Bloom filter, or d-left CBF. The d-left
CBF uses less space than a standard counting Bloom fil-
ter, with the same functionality of tracking a dynamically
changing set of items under insertions and deletions. We of-
fer a brief sketch here; the d-left CBF is more fully described
in an additional paper [6]. The analysis of the d-left CBF
informs why this approach is also effective in the design of
ACSMs.

Again, the idea is to store a fingerprint of each item in a
d-left hash table, with the intuition that d-left hashing pro-
vides a sufficiently good approximation to perfect hashing.
For an insertion, we insert the fingerprint in the least loaded
subtable (breaking ties to the left); for a lookup, we look for
the fingerprint; and for a deletion, we remove the finger-



print. We still have the potentially problematic issue, how-
ever, that if a fingerprint associated with an items appears in
multiple places, we cannot perform a deletion effectively, as
we are not sure which copy of the fingerprint to delete. We
avoid this problem by introducing a trick that ensures that
we have never have multiple fingerprints associated with an
item in the hash table.

For convenience we assume each subtable has size a power
of 2, say b = 2z, and we are using f bit fingerprints. First,
each item is hashed using a (pseudo-)random hash function
into f + z bits; for an item x, call this bit string S(x). We
then use d (pseudo-)random permutations h1, h2, . . . , hd on
the string S(x) of f + z bits; the first f bits of hi(S(x)) give
the fingerprint that will be used for x in the ith subtable,
and the last z bits of hi(S(x)) give the index of hi(S(x)) in
the ith subtable. Note that the fingerprint associated with
an item x can vary according to the subtable. Each cell
in the table will consist of both a fingerprint and a small
counter (generally 2 bits will suffice). We use the counter as
follows: if, when inserting an item, we see its fingerprint al-
ready exists in a subtable, we simply increment the counter
for that fingerprint, rather than insert another fingerprint
in a different subtable. On deletion a counter can be decre-
mented.

By using these permutations, we avoid the problem of
ever having two fingerprints associated with an item appear
in two different tables. This is because if hi(S(x)) appears
in the ith subtable we will never have hj(S(x)) appear in
the jth subtable; since hi(S(x)) is in the ith subtable, if
some other element y attempts to put hj(S(x)) in the jth
subtable, we must have that S(x) = S(y) (since we are using
a permutation). Hence hi(S(y)) = hi(S(x)), and instead of
inserting anything into the table for item y, we will sim-
ply increment the counter associated with the fingerprint
hi(S(x)). Because the probability of matching fingerprints
are small, a small counter (2 bits) is sufficient with very
high probability. Moreover, d-left hashing offers very high
utilizations of table cells, giving very good space usage.

As an example, for n items, using d = 3 choices, h =
6 cells per bucket, b = n/12 buckets per subtable, f =
11 bit fingerprints, and 2 bits per counter gives an overall
cost of (11 + 2) · 3/2 = 19.5 bits per item using a d-hash
CBF. (We have used that the utilization is 2/3.) The false
positive probability is approximately n2−f+z = 12(2−f ) ≈
0.59%. In contrast, a standard counting Bloom filter using 4
bits per counter (recommended to avoid overflow with high
probability) and 10 counters per item uses 40 bits per item
and obtains a false positive probability of about 0.82%.

The only real downside to the d-left CBF is that the hash-
ing cannot all be done entirely in parallel; the hash function
must be applied before the permutations. Also, there is per-
haps slightly more work to match the fingerprint among the
items in the buckets. However, the permutations can be
computationally simple, the lookups remain very fast, and
the space savings is certainly substantial.

Further analysis and examples can be found in [6].

5. EXPERIMENTAL EVALUATION
We divide the experimental section into two parts:
Comparing ACSM implementations: While the the-

oretical analysis given earlier provides considerable insight
into the relative merits of our three ACSM implementations,
it also has drawbacks. The theoretical models are necessarily

simplified, because a complete study would need models of
timers, deletions, and other effects. While simplified models
(e.g., random deletion) are tenable, it seems better to use
simulation to study real behavior. We provide a simulation
comparison on a simple state machine in Section 5.1.

Evaluating real applications: While our simulations
in Section 5.1 provide insight into whether ACSMs are im-
plementable in real routers, it does not shed enough light
on whether they are useful. In this context, the simulations
have two drawbacks. First, the simulations in Section 5.1
use a contrived state machine, chosen to be sufficiently large
but still simple. It is more useful to see what the figures of
merit (false positive and negative probabilities, memory) are
for more realistic state machines, and how much leverage one
obtains by using ACSMs instead of full state machines for
these applications, for a given loss of fidelity.

Second, the metrics of goodness for an ACSM (e.g., false
positive rate) do not necessarily translate into application
level metrics (which is what users ultimately care about) in
straightforward ways. For example, in the case of the video
congestion application described in Section 5.2, the relation
between erroneous dropping of frames and video quality can-
not easily be captured analytically. Thus, we provide a very
brief study of application level performance for two appli-
cations (video congestion control and P2P identification) in
Section 5.2.

5.1 Simulation
We give an example comparing performance of the various

ACSMs on a simple state machine.
Experimental setup: We performed simulations using

the three different algorithms to monitor ≈ 60, 000 flows
with a state machine of 10 states. A simple sequential state
machine was used for the experiment with synthetically gen-
erated packets for the flows. The state machine used was the
simplest possible:

1 → 2 → 3 → 4.... → 10.

Certain packets were encoded with state transition events.
Packet Generator: The packets for the different flows

were generated using the following parameters

1. There are n ≈ 60, 000 active flows in the system.

2. Each flow is made up of m ≈ 100 ± 40 packets.

3. Some packets contain triggers, which correspond to
state transitions. For instance a certain packet could
trigger the “transition from state 3 to 4” event.

4. The packet generator sequentially generates packets,
randomly selecting one of the n active flows from which
to transmit. When a flow terminates, i.e., has ex-
hausted all its packets, a new flow is created with
packets containing state transition events depending
on the type of the flow as explained next.

The flows are divided into three types:

1. Interesting Flows :- (30%) These flow have the correct
sequence of triggers embedded in them. These triggers
should lead to complete execution of the state machine
from start to finish, unless there is some sort of error.
The goal of the experiment is to identify these flows.



2. Noise Flows :- (30%) These flows have random triggers
embedded in them. The triggers are guaranteed to
not execute the state machine to completion; the final
trigger from state 9 to 10 is never used.

3. Random Flows:- (Remaining) These flows have no trig-
ger embedded in them. These flows are used to create
temporal diversity in the traffic.

The packet generator was tested with all three ACSM
schemes, and was allowed to run for the life of approximately
1 Million flows. The performance of the ACSM in terms of
false positives/false negatives was recorded. Note that the
definitions of failure probabilities are slightly different from
the definitions in Section 3; here we define failure from the
point of view of detecting interesting flows. The experiment
records as a false positive cases when the ACSM finds a not-
interesting (i.e., a random or noise flow) that has executed
the state machine to completion. The experiment records
as a false negative cases when the ACSM finds (at the end
of the experiment) an Interesting flow whose state machine
does not run to completion. If the ACSM ever returns a
don’t know state for a flow, the experiment records it as a
don’t know for that flow.

Algorithm Parameters: We describe the parameters
we varied for each of the three ACSM implementations.

The timer task resets periodically; the period is set of
about 10 times the average flow life time ( ≈ 100 packets),
multiplied by the number of active flows, for a period of 6
million packets.
Direct Bloom Filter: Each cell entry contains 2 bit for a
counter plus 1 bit for a timer. The implementation used only
provides for false positives and false negatives; that is, the
desired state transition is given, so a don’t know need never
be returned. For a given memory size, the number of cells
and the number of hash functions are varied to determine
the optimal values for false positives and false negatives.
Stateful Bloom Filter: Each cell entry uses 4 bits for state
plus 1 bit for a timer. This is sufficient for 10 states as
well as a don’t know and empty state. We use no counter;
instead we use timers to delete entries. For a given memory
size, the numbers of cells and hash functions are varied to
obtain the optimal values for false positive, false negative,
and don’t know probabilities.
Fingerprint Compressed Filter: Again for a given memory
size, the table size, the number of hash functions, cells per
bucket, and fingerprint size are all varied to obtain the op-
timal values for false positives, false negatives, and don’t
know probabilities.

Simulation Results: The simulation results are sum-
marized in Table 1. The table shows that the FCF scheme
performed the best among the the three ACSM implemen-
tations, and the DBF performed the worst. Even with as
small as 0.5 Mb of memory, the FCF had total error prob-
ability of under 10%, where as with about 2 Mb the total
error probability was under 0.01%. By contrast, with 2Mb,
the SBF had a don’t know probability of 1.64% with much
smaller values for the other error probabilities. While we
did several other experiments that we do not describe for
lack of space, we found the FCF to be uniformly superior.

5.2 The Impact of ACSMs on Application Level
Performance

Earlier in the introduction, we suggested that routers and
switches are likely to evolve to be more application aware.
Many existing routers and switches have intelligence to mon-
itor traffic flows for security violations and to steer traffic
based on cues in packet content. This trend is likely to
continue. When the corresponding applications can toler-
ate some loss of fidelity caused by false positives and false
negatives (in return for better performance), ACSMs can be
useful. This is particularly true in Application Level QoS
(for example, the kind of service provided by devices such
as Packeteer and P-Cube) where the network provides QoS
by doing a limited amount of application level parsing to
understand the relation between packets and applications,
and the relative importance of each packet.

We illustrate this thesis by briefly describing and evalu-
ating two applications: video congestion control and P2P
identification. We emphasize that neither of these applica-
tions is new: there is much work that is in the literature in
these two areas, but existing work uses full state machines
which can be hard to implement in routers. We also em-
phasize that our evaluation is only meant to provide initial
insight into application level benefits that accrue from us-
ing ACSMs. Much deeper and broader experimental study
(which we leave to later work) is needed to fully explore the
use of ACSMs in application aware networking.

5.2.1 Video Congestion Control
Despite failed past predictions about video over the In-

ternet, the playing of video clips and video conferencing has
increased substantially in recent years. If the history of voice
is any guide, Internet video may soon be commonly used for
video on demand, video conferencing, and even broadcast
TV. If so, the problem of video congestion in the Internet
will become significant.

McCanne’s thesis [1, 14] suggested encoding video using
various enhancement layers that can be discarded during
times of congestion. However, this requires changes in stan-
dards and implementations. Meanwhile, video continues to
flourish using the popular MPEG formats for video stream-
ing. MPEG encodes video using 3 types of frames: I frames
provide complete scene information, P frames show differen-
tial information with respect to the previous reference I or P
frame, and B frames show differential information between
the prior and following reference frames (the previous I or
P before the B, and the next I or P after the B).

Intuitively, dropping an I frame or P frame corrupts the
reference plane, making the following frames until the next
I frames useless. Dropping B frames is less harmful because
the following frames are not dependent on the B frame. B
frames only contain temporal information and so their loss
only causes motion artifacts which, up to a point, is diffi-
cult to notice. On the other hand random frame loss can
cause artifacts randomly in both the temporal and spatial
dimensions which are more observable at lower loss rates.

The fact that selective dropping of B frames can help dur-
ing periods of congestion is well known (e.g., [9]) but its
implementation in today’s routers is problematic. Assum-
ing each video stream is run over UDP, and there are several
hundred thousand UDP flows concurrently through a router,
to do any effective video congestion policy requires keeping
state about frame boundaries for each active flow. This is
because each of the I, B, and P frames are identified by
a unique string at the start of the frame, frames can span



Scheme Memory False False Don’t Other Parameters
Size (bits) Positive negative Know

num hash
Direct cells functions
Bloom 786432 9% 19% - 256K 3
Filter 1572864 1.20% 4.70% - 512K 4

3145728 0.03% 0.34% - 1M 5
num hash

Stateful cells functions
Bloom 524288 0.27% 5.96% 42.64% 128K 3
Filter 1048576 0.04% 1.12% 14.45% 256K 4

2097152 0.00% 0.03% 1.64% 512K 5
table hash cells per fingerprint

Fingerprint size functions bucket size (bits)
Compressed 516096 0.187% 4.278% 3.205% 6K 3 6 10

Filter 1081344 0.001% 0.011% 0.010% 8K 4 6 10
2162688 0.000% 0.005% 0.003% 16K 4 6 18

Table 1: Simulation Results: Comparing the various ACSMs on a simple state machine.

packets, and the end of a previous frame is only signaled by
the string indicating the start of the next frame.

Thus to do some form of discriminate dropping of video
frames one has to maintain a small amount of state (mini-
mally the current frame type) for all concurrent video streams.
Some authors have suggested marking packets[9] to indicate
priority levels in which case B frame packets can be marked
as low priority. However, such marking requires standard
changes (as is the case for layered encoding proposals).

Priority marking also cannot implement the full range
of state machines one could envision for video congestion
control. For example, one (somewhat dated) drop policy
in ATM switches is “tail-dropping” which essentially con-
verts the loss of a cell in an ATM packet to the loss of the
packet [18]. A natural generalization to video is to drop all
packets till the next I-frame after the loss of a significant
packet within an I-frame. It does not appear to be possi-
ble to implement such a policy (which we implement using
ACSMs and evaluate below) using priority marking.

To investigate the application of ACSMs to discriminate
dropping of video packets within MPEG frames, we followed
the approach of earlier papers in video congestion [9] and
used a popular reference MPEG encoded movie “susi 040.mpg”
(available from the Tektronix FTP site [22]) used by the
MPEG standards committee. The file consists of 8.5% of I-
Frames, 25% of P-Frames, and 66.5% of B-Frames. In terms
of bytes, 29% of bytes were from I-Frames, 35% were from
P-Frames, and 34% were from B-Frames.

In our experiments, we consider various drop methods;
when comparing final results, we compare according to the
final loss rate measured in bytes. We experimented with var-
ious dropping strategies. The first was random loss, which
randomly drops frames. The second was B-frame dropping,
which selectively drops B-frames randomly (which would re-
quire standards changes to do via marking as in [9])). The
third policy drops packets randomly, and does pure I-frame
tail dropping: once an I frame packet is dropped, all pack-
ets (and intermediate frames) are dropped till the start of
the next I-frame. The fourth policy starts with B-frame
dropping up to some maximum drop probability (we found
that dropping more than 20% of B-frames resulted in poor

quality video) followed by I-frame tail dropping.
Again, to compare the performance of the three schemes

uniformly we translated the frame loss probability in the
latter two cases into a byte loss probability. The first two
strategies are evaluated in [9]. To the best of our knowledge,
we have not seen the third or fourth strategies before. In
general, we believe ACSMs can enable a much richer class
of video drop policies than perhaps were thought possible.

For each strategy, we looked for two thresholds: the first
was the loss threshold at which the video was almost com-
pletely unaffected by loss; the second was the threshold at
which the video is severely affected and is unusable. We has-
ten to point that these two thresholds are perceptual, and
what is more important is the broad message that discrimi-
nate video dropping can gain user satisfaction in periods of
limited bandwidth than the specific numbers reported here.

More precisely, for the B-frame loss experiment we took
the video file and parsed it and dropped B-frames according
to some B-frame loss probability. We then played it using
the Windows Media player. We gradually increased the loss
probability until we first saw errors (Threshold 1) and until
the quality became unacceptable (Threshold 2). We then
report Threshold 1 and 2 and the loss probability, after the
frame loss probability to a byte loss probability by adding
the length of all the dropped frames and dividing by the
total number of bytes sent in the original video.

Our results were as follows:

• Random Drop: Artifacts are easily seen even at a
very low drop rate (i.e. 2% ). Beyond 15% drop
rate the picture quality is severely degraded. Thus
Threshold 1 is 2% and Threshold 2 is 15%.

• B-frame dropping: Dropping B frames did not have
any effect on the picture quality but it did have effects
on the temporal plane (at very high losses, the picture
seems to skip from scene to scene). In general, up 6%
drop rate can be achieved without much loss in quality.
The quality degrades severely at around 12%.

• I-frame tail-dropping: This performs worse than B-
frame dropping in that artifacts are seen at 3%. How-



ever, the loss rate has to reach 25% before the picture
quality gets severely degraded.

• Combination B-frame and I-frame dropping: We
use B-frame dropping up to a loss probability of 6%,
and then do I-frame tail dropping of other frames (I or
P frames) for higher loss rates. This scheme performs
exactly like the pure B-frame drop policy in that ar-
tifacts become noticeable at 6% but the picture gets
severely degraded only at a loss rate of 30%.

In summary, the combined scheme has the best thresholds
(6%, 30%). While our experiments only demonstrated the
effect of loss on a single video stream, the use of a uniform
drop probability (as in RED) will result in fairness across all
video streams passing through a route. For the combined
scheme, the implementation keeps a counter to track the
total current B-frame byte loss probability, and instantiates
the random loss of other frame packets when this counter
exceeds a threshold.

As an example of the relationship between these perfor-
mance numbers as ACSMs, we used an FCF ACSM with
a fingerprint of 14 bits, 3 bits for state, and 1 bit for a
timer to classify frame types and drop status per stream
using I-frame tail dropping. To ensure no bucket overlow
occurred we used a utilization of 2/3 (for the maximum num-
ber of simultaneous flows). Experimentally, the probability
of incorrectly dropping a packet (from either a false positive
or Don’t Know) is 0.37% and the probability of not drop-
ping a video packet that should have been dropped (from a
false negative) was 0.38%. These small probabilities of error
should not significantly affect the video congestion policy
but the net state per stream is reduced to (14 + 3 + 1) *
1.5 = 27 bits compared to 96 + 3 + 1= 100 bits for the com-
plete state scheme. This translates into nearly a factor of
4 reduction in memory without much impact on the video
policy. Even larger savings can be obtained by increasing
the false positive probability, which may be acceptable in
this application.

Our results for improved quality with B-frame dropping
compares with earlier results (e.g., [9]). However, [9] uses a
quantitative metric called PSNR and expresses the gain as
2 to 3 db gain in PSNR using B-frame dropping, while we
use perceptual loss thresholds. There are no results in [9]
for I-frame tail dropping.

Our results are in no way conclusive. For example, the
video we used had no audio, and the perceptual method
we used could vary from user to user. However, the results
do suggest the potential promise of using ACSMs for video
congestion to provide a rich space of video drop policies that
are implementable in routers and switches, and that do not
require standards changes as in the layered encoding [1] or
packet marking proposals [9].

5.2.2 Real-time Identification of P2P Traffic
Recent studies [10] have shown that Peer-to-Peer traffic

(P2P) continues to grow to alarming percentages, such as
30% of all traffic at peering points. Most organizations and
even ISPs would like to rate control such traffic in favor of
other possibly more mission-critical, traffic. Unfortunately,
as part of the battle with such legal entities as the RIAA,
P2P traffic constantly evolves to conceal itself. P2P traffic
routinely tunnels in on well known ports such as Port 80, and
many routinely operate on any port number. Thus simple

discrimination of P2P packets based on port numbers is no
longer very useful. A recent proposal [19] suggests looking
for content signatures within packets (e.g., “GNUTELLA
CONNECT”) to identify P2P packets. Unfortunately, mo-
tivated by legal sticks and financial carrots, P2P protocols
have shown a growing trend to obfuscate their payloads us-
ing encryption.

As a more compelling approach, recent work in [10] shows
that there are certain traffic flow patterns, detectable by
simple state machines, that have a high degree of accuracy
in identifying P2P flows. For example, [10] shows that a
(DestIP, SourceIP) pair that has a concurrent UDP connec-
tion (often used for control queries and replies) and TCP
connection (used for file transfer) has a high probability of
being P2P traffic. The work also uses patterns of (IP, port)
pairs for another test.

We believe that such traffic characterization based on traf-
fic flow analysis (for P2P or other uses such as security) can
benefit from the use of ACSMs. The paper [10] uses ex-
tensive (and time-consuming) offline trace analysis. This
is useful for traffic characterization after the fact, and can
be used with tools such as NetFlow to provide fairly slow
analysis of P2P traffic. However, ACSMs can be used for
online, real-time characterization using the same techniques
and can thus be used for real-time control (using say rate
limiting). The lack of fidelity of ACSMs due to false posi-
tives and negatives is not a large impediment, because the
very heuristics used to identify P2P traffic also have some
probability of error that is often significantly larger than the
errors caused by using ACSMs.

To quickly understand how P2P identification can benefit
from ACSMs we simulated the simplest state machine test in
[10] (TCP-UDP pairs). Since we could not obtain traces of
the traffic used in [10], we created a synthetic log containing
64K active flows (a flow is timed out after 64 seconds of
inactivity). The flows (based on the data in [10]) have an
average of 15 packets per flow. We use a parameter we call
the P2P percentage that controls what fraction of the TCP
flows have a concurrent UDP flow. Between the start and
end of these selected flows, we randomly send a UDP packet.
The experiment compares, for different values of the P2P
percentage parameter, the number of flows misclassified as
P2P using an ACSM compared to that done by a full state
machine. (We are assuming that the full state machine is
perfectly correct, but in practice it is not [10].)

We present results using an FCF ACSM with 211 cells, 4
hash functions, a fingerprint Size of 14 Bits, and 9 entries
per cell. Thus the total memory used was approximately 1
Mbit (more precisely, 211 ∗ 4 ∗ 9 ∗ (14 + 2) = 1179648 bits).
The results were as follows:

• 15 % P2P Traffic: 0% False positive, 0.29% False
Negative, and 0.17% DK

• 25 % P2P traffic: 0% False positive, 0.31% False
Negative, 0.156% DK

• 40 % P2P traffic: 0% False positive, 0.34% False
Negative, 0.149% DK

Even if we add all these probabilities together (as the
probability of misclassification), the probabilities compare
very well with the misclassification probabilities reported in
[10] for the heuristics themselves (for example, false positive



rates of 6%). On the other hand, the slight loss in fidelity
is compensated by a very large factor reduction in memory
(from 96 bits per flow in the naive scheme to 18 bits per
flow using ACSMs). Better still, this can be done with a
few Mbits of memory which is implementable by using on-
chip SRAM even at 20 Gbps and higher speeds.

There are several limitations to our study, however. First,
we did not use the actual traces and several interesting dy-
namics of real traffic (timeouts, Zipf flow sizes etc.) are not
captured by our synthetic model. Rather than improve our
synthetic model, we plan to work on the real traces once we
obtain them. Second, we did not implement the full state
machine in [10]. Third, our model of concurrent TCP and
UDP connections only included a UDP connection starting
within a TCP connection, not vice versa. While these exten-
sions are necessary in a deeper, trace-drive study, the initial
results strongly suggest the potential promise of ACSMs for
real-time P2P identification and control.

In closing, we note that P2P identification, like security,
is likely to be an arms race. If these heuristics get widely
used, it is likely that P2P authors will change their pro-
grams to invalidate these detection methods. However, if a
router allows programmable ACSMs, the router can be re-
programmed to employ new detection state machines, much
in the way virus definitions are updated when new threats
are discovered.

6. CONCLUSION
In this paper, we have introduced Approximate Concur-

rent State Machines. While similar in spirit to Bloom filters,
our best scheme is based on a combination of hashing and
fingerprints, using d-left hashing to obtain a near-perfect
hash function in a dynamic setting. Somewhat surprisingly,
when we specialize to the case of membership checking in
a dynamic set, we find that our data structure takes much
less space than a comparable counting Bloom filter.

ACSMs are particularly relevant to an increasing trend in
networking devices to be more application aware. This is
often done by keeping a state machine for each TCP flow.
Because of the great memory needs (1 million concurrent
connections, for example, is the standard for all IDS devices
in the market), these implementations often resort to low
speed DRAM and hence are often implemented at speeds
of a few Gbps or less. By reducing the memory needs by
a factor of 5 or more, ACSMs allow the potential for on-
chip SRAM and hence higher speed implementations of such
application-aware network devices. Finally, the loss in fi-
delity caused by small probabilities of error are often tol-
erable for Application Level QoS mechanisms for which an
error only means stepping up (or down) the QoS level for
the occasional connection.

We have sketched the potential uses of ACSMs for application-
aware forwarding using two specific examples: Active Queue
Management schemes for video flows, and real-time detec-
tion and control of P2P traffic. We also believe programmable
ACSMs can be a powerful tool for traffic analysis. Our in-
vestigation of applications is preliminary, and more sophis-
ticated and detailed experiments are needed to confirm the
promise of ACSMs for applications. This paper, instead, fo-
cuses on the introduction of the problem, the introduction of
3 specific data structures to solve the problem, and the an-
alytical and simulation comparison of the 3 schemes. Given
that Bloom filters and related variants have found many ap-

plications, we believe that ACSMs will also find many new
applications in the future.
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