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ABSTRACT

Data provenance is a powerful tool for debugging large-scale
analytics on batch processing systems. This paper presents
Ariadne, a system for capturing and querying provenance
from Vertex-Centric graph processing systems. While the size
of provenance from map-reduce-style workflows is often a
fraction of the input data size, graph algorithms iterate over
the input graph many times, producing provenance much
larger than the input graph. And though current provenance
tracing procedures support explicit debugging scenarios, like
crash-culprit determination, developers are increasingly in-
terested in the behavior of analytics when a crash or excep-
tion does not occur.

To address this challenge,Ariadne offers developers a con-
cise declarative query language to capture and query graph
analytics provenance. Exploiting the formal semantics of
this datalog-based language, we identify useful query classes
that can run while an analytic computes. Experiments with
various analytics and real-world datasets show the overhead
of online querying is 1.3x over the baseline vs. 8x for the
traditional approach. These experiments also illustrate how
Ariadne’s query language supports execution monitoring
and performance optimization for graph analytics.
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1 INTRODUCTION

Big Graph (analogous to Big Data) processing engines like
Giraph [8], GraphX [10], GraphLab [16] and Pregel [17] are
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popular for analyzing data generated from systems in bi-
ology, finance, and social networks. They offer high-level
programming abstractions that make it easy to author scal-
able graph analytics. The analytics evaluate on an input
graph for a given number of iterations or until a fixed point.
Big Graph analytics range from well-known graph computa-
tions like shortest paths and connected components to ML
algorithms like clustering and recommenders. These engines
are Vertex-Centric (VC) as they follow the vertex-centric pro-
gramming model where a single program repeatedly runs
on each vertex.

Developers spend much of their time analyzing the behav-
ior of their analytics. For instance, they look for aberrant
algorithm behavior during code development or when using
new data sets. This involves “crash culprit determination” –
finding input data elements that caused code to fail. However,
there are other equally important non-crash related activi-
ties. These include improving result quality and efficiency
of computation, asserting behavior invariants, and checking
for data formats and ranges.

Provenance can enable such exploration through tools that
allow developers to analyze and query the way data changes
during computation. Prior work on provenance for data-
parallel workflows illustrates the power of pinpointing data
inputs responsible for a system crash or exception [12, 13,
15, 21]. However, these approaches do not meet the needs of
Big Graph analytics: none address provenance for Big Graph
systems nor provide the ability to analyze behavior beyond
crash-culprit determination.

Though Vertex-Centric graph programs are relatively sim-
ple to devise, they present challenges to effectively capturing
and querying provenance. VC engines repeatedly execute
the same code on each graph vertex for tens to hundreds
of iterations. Our experiments show that the provenance of
Big Graph analytics can be 10x larger than the input graph
whereas the provenance of Spark [30] analytics amounts
to 30% − 50% of the input [13]. Moreover, a tracing query
can yield results that include a majority of the input graph.
Many graph analytics diffuse information as they run, send-
ing and receiving messages from nearby vertices, e.g., PageR-
ank sends weight to neighbors, shortest path tracks path
length. Thus provenance traces grow quickly; the answer to
a backwards trace could be the entire input graph.
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This paper presents Ariadne, a system to declaratively
customize provenance capturing and querying for Big Graph
analytics on VC engines. Ariadne defines a provenance
query language (PQL) that developers use to i.) customize
provenance capture to reduce time and space overheads, and
ii.) query the provenance in more meaningful ways than
tracing. This work demonstrates PQL provenance queries
that can assert invariants in the behavior of the analytic,
audit input data, and even suggest approximate optimizations
that trade accuracy for speed.
Crucial to the usability of PQL are the theoretical under-

pinnings that enable two novel provenance query evaluation
methods. We identify PQL query subclasses that allow both
scalable layered evaluation and online evaluation. While lay-
ered evaluation scales traditional offline querying, online
evaluation obviates the need for a separate capturing step,
short-circuiting the traditional capture-first, query-offline
approach. Online query evaluation occurs alongside the un-
modified analytic; at the end of computation both the analytic
result and the provenance query result exist.

To summarize, Ariadne’s contributions include:

• A formal provenance model for VC graph computa-
tions and a simple, efficient physical representation of
the resulting provenance graph.
• A declarative, concise Datalog-based language for cus-
tomized capturing and querying of provenance.
• Two novel and scalable provenance query evaluation
methods: layered and online evaluation.
• A system architecture that translates provenance query
evaluation to ordinary vertex programs without modi-
fying the graph processing engine itself.
• An evaluation on a Giraph-based [8] prototype com-
pares the traditional approach of capture-first, query-
offline to the layered and online methods. Ariadne’s
online queries exhibit an average overhead of 1.3x
across various analytics and real-world graphs.

Ariadne’s design choices are both user-friendly and admit
implementations across other VC systems without concep-
tual hurdles. For instance, Ariadne performs provenance
capture and querying transparently to the graph analytic,
i.e. requiring no code changes by the analytic’s developer. In
addition, while many front-end languages (e.g., Java, C++,
Scala, Datalog) are in use today to program VC graph analyt-
ics, Ariadne’s provenance graph representation is indepen-
dent of the native language specifying the graph analytic.
It only assumes that this computation conforms to the VC
paradigm.

2 BACKGROUND AND SYSTEM

OVERVIEW

This section describes the Vertex-Centric (VC) graph pro-
gramming model implemented by the majority of Big Graph
processing systems. Ariadne manages provenance for Big
Graph analytics implemented according to this model and
executing on VC systems. Moreover, Ariadne itself follows
the VC model and executes on the same system the graph
analytics run so that both computation and provenance anal-
ysis happen in the same framework. Next, we describe an
example that highlights how to analyze graph analytics with
the goal of improving their performance.

2.1 Vertex-centric graph processing

Big Graph processing frameworks implement the low-level
modules of parallel and distributed evaluation of graph ana-
lytics. They offer an API for developers to implement such
analytics and an execution environment to run them. Popular
graph processing systems, inspired by Pregel [17], pair the
Bulk Synchronous Parallel (BSP) computation model with
the VC programming model. Ariadne explores this model
because of its wide adoption – one system, Giraph [8], is used
in research and industry, and scales to trillion of edges [5].
BSP proceeds in a series of supersteps i.e., iterations each

followed by a global barrier. In the VC programming model,
the developer specifies a single vertex program describing
the computation a vertex performs in one superstep. All ver-
tices compute, in parallel, the same vertex program which
consists of three stages. First, a vertex reads data sent from
its neighboring vertices. Second, the computing vertex pro-
cesses the received information and updates its state. Finally,
it sends its new state to its neighbors. See Appendix A for
an example vertex program for single-source shortest paths.
Most VC systems use a messaging API where vertices

communicate via message exchange that happens between
supersteps to ensure correctness. This means that messages
sent during a superstep are visible to their destination ver-
tices only at the next superstep. At the beginning of each
superstep, the system only runs vertices that received mes-
sages. Thus the graph analytic terminates when no vertex
receives a message. VC systems are typically main-memory
engines that load the entire graph in memory (potentially
distributed across the machines in a cluster).

2.2 Motivating scenario

Prior work uses provenance in debugging scenarios to iden-
tify the causes of crashes. However, this covers only a small
part of the tasks developers perform after developing a graph
analytic. Specifically, they are interested in tuning tasks that
improve the quality and/or efficiency of computation. Below
we show an example of tuning enabled by Ariadne.



A common idea for iterative, fixpoint algorithms is to trade
accuracy for speed by approximating the final result [19, 26].
One way to create an approximate version of a graph analytic
is to only message neighbors on large updates. This increases
the likelihood that some vertices receive no messages and
stop computing. The idea is not new, implementations of
PageRank in the libraries of VC systems are formulated this
way. However, developers need to manually identify whether
such an idea is applicable to other algorithms and manually
identify the threshold denoting a large update or use expen-
sive external tools [26].
On the other hand, using Ariadne, a developer (Alice)

can identify cases where this approximate optimization is
possible and the potential gain to expect. Moreover, she can
use the same query for different algorithms. We will call this
the approximate optimization query or apt. We parameterize
the apt query by a vertex value comparison function such
as the difference or euclidean distance, and a convergence
criterion, for instance a threshold ϵ = 0.001. The query
computes various metrics, such as how many vertices will
not execute in a superstep with the given threshold. We show
the query in Section 4.2 (Query 1).
The traditional approach for querying provenance first

captures all provenance and then queries it offline. Ariadne
supports and improves this scenario as Alice can now cus-
tomize what information to capture, significantly reducing
capture overheads. For example, the apt query refers only
to the vertex values and not the message values, hence Ari-
adne does not need to capture those. Figure 1a shows Alice
capturing provenance by issuing a declarative query along-
side her unchanged graph analytic. Ariadne compiles this
query into a provenance query vertex program and appends
it to the analytic. Thus at every superstep a vertex evaluates
both the graph analytic and the capturing query. At the end
of computation, both the graph analytic’s result as well as
the custom provenance information (represented as a graph
as explained in Section 3) exist. Then, Figure 1b shows how
Alice uses Ariadne to analyze the captured provenance in
the offline mode via the apt query. This time the VC system
only evaluates Ariadne’s query vertex program.
Besides improving traditional offline analysis, Ariadne

enables a novel online provenance analysismethod that short-
circuits capturing and offline querying. Again, Ariadne ap-
pends the query vertex program to the analytic, as shown in
Figure 2, only this time a vertex evaluates the graph analytic
as well as the provenance query on the transient provenance
graph. Note, the original graph analytic is unchanged from
the perspective of the developer. Then, at the end of com-
putation, both the graph analytic result and the provenance
query result exist.
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Online provenance querying offers a shortcut to prove-
nance management allowing Alice to validate various hy-
potheses quickly. Alice can evaluate multiple versions of
the apt query to identify the threshold that gives the best
performance versus accuracy tradeoff.

In the rest of the paper, we discuss the formal provenance
model and query language semantics that enable scalable and
efficient provenance querying. In the experiments section,
we apply the apt query on PageRank, SSSP, WCC and ALS.

3 PROVENANCE GRAPH

Provenance of Big Graph analytics is multiple times larger
than the input graph, comprising a Big Data problem in it-
self. Ariadne enables users to specify declaratively what
information should be included in the provenance, thus cus-
tomizing capturing. As we will see in Section 6, this offers
great performance benefits.
We represent provenance as a graph that describes the

analytic’s computation from the perspective of vertices: It
describes their values at every superstep, the messages they
send and receive, and the values of their edges. A node in
the provenance graph represents the execution of a vertex
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at a specific superstep. Note, in the remainder of this paper
we will use node to refer to the vertices of the provenance
graph to distinguish from the vertices of the input graph.
Every provenance node is annotated with the value of the
vertex at that superstep. There are two kinds of edges in the
provenance graph: The first, the send/receive message edges,
connect nodes that represent neighboring vertices in the
input graph and shows the message exchange between them.
The second, the evolution edges, connect nodes that represent
the same vertex but at consecutive supersteps providing
information about when a vertex was active and how its
value evolves. An upper bound on the size of the provenance
graph when all information is captured, is n × Gin where
Gin is the input graph and n is the number of supersteps an
analytic ran.

For example, consider the small input graph in the top of
Figure 3 with vertex x , its incoming neighbory and outgoing
neighbor z. Assume Alice computes Single Source Shortest
Paths (SSSP) and wishes to capture in the provenance when a
vertex computed and when it sent messages to its neighbors
because it updated its distance. Assume that at superstep
i − 1, y updates its distance and sends a message to x . Then,
x at superstep i receives the message,updates its distance
and sends a message to z. At superstep i , y sends again a
message to x but this time x doesn’t update its distance (at
superstep i + 1) and doesn’t send a message to z. The bottom
of Figure 3 shows the provenance graph.

Observe that the provenance graph at superstep i contains
a node for every input vertex that computed at that superstep.
Moreover, it contains message edges for every edge in the
input graph that was used to send/receive messages. Hence,
the nodes and edges of the provenance graph that correspond
to superstep i are a subset of the input graph. Based on this
observation, we propose a compact representation of the
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Figure 4: Compact provenance graph

provenance graph that consists of the input vertices and
edges (or subset thereof) annotated with relations (tables)
that contain the captured provenance information. Whereas
in the unfolded provenance graph, we have multiple nodes
representing the same vertex at different supersteps, in the
compact format, we have one node with table annotations.
These provenance tables are:
• vertex-value(x ,d, i): Value d of vertex v at superstep i .
• edge-value(x ,y,d, i): Value d of edge between vertices
x and y at superstep i .
• send-message(x ,y,m, i): Messagem sent from vertex
x to its outgoing neighbor y at superstep i .
• receive-message(x ,y,m, i): Messagem received by ver-
tex x from its incoming neighbor y at superstep i .

Figure 4 shows the compact representation of the prove-
nance graph in Figure 3. The send-message edges of the
graph become tuples in the send-message relation of ver-
tices x and y, and the receive-message edges become tuples
in relation receive-message of vertex x . The evolution of
y and x is captured by the tuples in relation vertex-values
that holds the value of each vertex for every superstep it was
active in.
Both unfolded and compact provenance graphs contain

the same information but the compact representation facili-
tates lower communication and memory overheads. If the
provenance graph contains n nodes for n instantiations of a
vertex, the compact format contains one node with n tuples.
Accessing the different values of a vertex across all super-
steps requires n supersteps whereas with the compact format
it requires 1. Moreover, it is much cheaper to represent n
data items (like numbers or strings) in memory rather than
vertex objects. Note that this is a specific property of prove-
nance graphs, not applicable to general graphs, exploiting
the insight that nodes connected through evolution edges
represent the same vertex at different instances in the com-
putation and hence can be compacted.

4 PROVENANCE QUERY LANGUAGE

Ariadne provides a declarative front-end for users to cap-
ture and query the provenance graph. For this, Ariadne



incorporates a compiler that maps query evaluation to ver-
tex programs. In this section, we present our Provenance
Query Language (PQL), based on Datalog, and describe the
necessary extensions to add distribution and ensure query
evaluation conforms to the VC paradigm.

4.1 Standard Datalog

Recent work [20, 25, 28] has shown that Datalog can be
used to express very succinctly graph and ML algorithms
and compute them faster than their imperative counterparts.
Datalog is a perfect fit for PQL as it is high-level, amenable to
distributed and parallel evaluation and naturally expresses
recursion.

A Datalog rule has the following syntax:

P0 ← P1, ..., Pn

where each Pi is a predicate of the form Pi (v1 . . . ,vn).
Since Datalog is a relational language, predicates denote rela-
tions (tables). Predicate P0 is the head of the rule (also called
IDB) and specifies the table holding the results of rule evalu-
ation. The conjunction of predicates P1 . . . Pn forms the body
of the rule and specify input tables accessed during evalu-
ation. Initially, the database contains a set of ground tables
(EDBs) like the set of vertices and edges of a graph. These
ground tables appear in the body of rules. Rule evaluation
uses these tables to infer new user-defined tables (with the
schema of IDB predicates) that are added to the database. A
Datalog rule is read as: “if there exist tuples in the database
for which P1 . . . Pn are true, then P0 is true as well”. Recur-
sion is expressed by appearance of the head predicate in the
body of its defining rule.

A Datalog query is a collection of Datalog rules. The evalu-
ation of each rule proceeds bottom-up, starting from ground
tables and inferring new tuples for rules using Semi-Naive
evaluation [4]. Moreover it is iterative, and continues until a
fixed-point is reached where no new tuples can be inferred.

4.2 PQL syntax

PQL queries have access to the EDB predicates shown in
Table 1, populated by provenance capturing. The relational
tables that correspond to the EDB predicates are partitioned
across the nodes of the provenance graph. We extend every
PQL predicate with a first term that is the location specifier,
introduced in [20], to denote the location of a partition, i.e.
the node where a set of tuples resides. Thus, every predicate
in Table 1 has as first term x .

Every predicate Pi for i ∈ [1..n] in the body of a PQL rule
can be either:
• one of the built-in primitive predicates from Table 1
(possibly negated),

Provenance

predicate

Description

superstep(x ,i) Vertex x was active at superstep i
value(x ,d ,i) Vertex x had value d at superstep i
evolution(x ,i ,j) Vertex x was active at supersteps i ,

j and i is the predecessor of j
send-message
(x ,y,m,i)

Vertex x sent messagem to vertex y
at superstep i

receive-message
(x ,y,m,i)

Vertex x received message y from
vertex u at superstep i

Table 1: Provenance EDB predicates

• a positive relational predicate of the form Pi (x ,v)with
Pi a relation name, x a location variable and v a vector
of attribute variables, or
• a negated relational predicate of the form ¬Pi (x ,v)
(using above notation),
• a comparison predicate of the form t1θt1 where t1, t2
are terms (variables, constants, arithmetic expressions
or function calls over them) and θ ∈ {=,,, >, ≥, <, ≤}
is an arithmetic comparison operator, or
• a boolean function call f (v) with f a function name
(built-in or user-defined).

The head predicate, P0, may be a positive predicate or of
the form P0(x ,v,AGGR(t)) with x a location specifier, vari-
ables x ,v the grouping terms, AGGR the aggregation func-
tion (built-in or user-defined) and t the aggregating variable.

We follow the semantics of [29] and support in recursion
stratified negation, and monotonic aggregates (min, max,
sum, count) with respect to set-containment on the domain
of positive numbers, as well as monotonic arithmetic (+,*,...)
and boolean functions.

Using the above syntax, Alice would express the apt query
using PQL as Query 1 where the first rule creates table
change at a node x if the value d1 of a vertex x at super-
step i and its value d2 at the preceding superstep j differ
less than a threshold ϵ . The next rule, neighbor-change, is
true if vertex x received at least one message from a neigh-
bor whose value changed more than the threshold (large
update). Rule no-execute determines if at superstep i vertex
x would not execute given the current threshold. This is true
if x did not receive any messages or if it received messages
from neighbors with small updates in their values. Finally,
rule safe checks whether it is safe for x to not execute at
superstep i which is true if the difference in its value, had it
executed, is smaller than the threshold. Rule unsafe contains
the vertices for which it is not safe to skip their execution
because they experience large updates.

We see that the vocabulary of PQL is parsimonious, com-
prising high-level primitives that describe a vertex-centric



change(x , i) ← value(x ,d1, i), value(x ,d2, j),
evolution(x , j, i), udf-diff(d1,d2, ϵ).

neighbor-change(x , i) ← receive-msg(x ,y,m, i),
¬ change(y, j), j = i − 1.

no-execute(x , i) ← ¬ neighbor-change(x , i), superstep(x , i).
safe(x , i) ← no-execute(x , i), change(x , i).
unsafe(x , i) ← no-execute(x , i),¬ change(x , i).

Query 1: Approximate optimization query.

execution (e.g., the vertex value, the messages sent at a super-
step, etc), while abstracting away the low-level details of the
original graph analytic code in order to make PQL queries
independent of the native language of the graph analytic.
Therefore one could argue that PQL is more user-friendly
than the native language of the graph analytic (the typical
option in prior work). To enhance user-friendliness, follow-
up work can address templates for PQL rules, or a GUI query
builder with automatic translation to Datalog, inspired by the
(tree-)pattern queries developed for XML and semistructured
graphs.

4.3 Distributed semantics

Here, we focus on how we extend standard Datalog seman-
tics to account for distribution and to conform to the VC par-
adigm. We observe that there is a correspondence between
how Datalog queries are evaluated until no new tuples can
be inferred and how VC graph analytics evaluate until no
more messages exist in the system.

Initially, the distributed database contains only the EDBs
of Table 1, partitioned over the graph nodes such that tuples
are located at node x if and only if their location specifier
is set to x . Rule evaluation uses these EDBs to infer new
user-defined tables (the IDBs) that are added to the database,
also partitioned across nodes.
Rule evaluation proceeds in evaluation steps. Every step

consists in evaluating all rules simultaneously over the cur-
rent distributed database snapshot. A satisfying valuation
ν of a rule is a satisfying valuation of every predicate Pi
for i ∈ [1..n] in its body. ν maps Pi ’s variables to constants
in the database that make Pi true. The tuples that result
from a valuation of Pi are stored in a relational table named
Ri . In our distributed setting, Ri is partitioned across graph
nodes and its contents at a node ν (x) consists of the set of
tuples located at ν (x) (whose location specifier is the val-
uation of x), denoted as [[Ri ]](ν (x)). Every evaluation step
computes first all satisfying valuations for the rule body at
each node ν (x) (simultaneously) and then, modifies the con-
tents of [[Ri ]](ν (x)) in parallel. The query result is obtained
by iterating evaluation steps until a fix-point is reached.

Rules may refer to remote predicates in their body, denoted
by a different location specifier than that of the head. For such
rules to be evaluated, communication must occur between
the nodes in the body of a rule and its head. Consider rule r
with head P0(x ,v0) and a relational predicate Pi (y,vi ) in its
body, and let ν be a satisfying valuation for r . If ν (x) , ν (y)
then, table Ri is remote and every node ν (y) needs to send
its partition [[Ri ]](ν (y)) in a message to node ν (x).
The VC paradigm allows communication between nodes

that are directed neighbors.We say that a rule isVC-compatible
if, whenever the location variable y of a body predicate is
different from the location variable y of the head, y,x co-
occur in a send/receive-message predicate that applies only
to neighbors.
More formally, for a rule to be VC-compatible it must

follow the VC normal form 4.1:

Definition 4.1.

r (x , v̄) ⊢Px (x , χ̄ ), (1)
receive −messaдe(y,x , i,m), (2)
Py (y,ψ̄ ), (3)
send −messaдe(x , z, i,m), (4)
Pz (z, ζ̄ ), (5)

such that v̄ ∈ y ∪ z ∪ χ̄ ∪ ψ̄ ∪ ζ̄ .

According to which a rule evaluated at a provenance node
x has access to its local predicates Px (line 1), the neighbors
it received messages from (line 2) and their predicates Py
(line 3), and the neighbors it sent messages to (line 4) and
their predicates Pz (line 5).
We say that a query is VC-compatible if all its rules are

VC-compatible. For VC-compatible queries, the evaluation
step corresponds to a superstep in the VC paradigm, with
communication occuring between supersteps.

5 PQL EVALUATION

Ariadne uses PQL to declaratively customize capturing and
querying of the provenance graph. Our experiments show
that complete provenance graph capture is resource inten-
sive, incurring 3-5x runtime overheads while the size of the
provenance graph scales with superstep count (Section 6.1).
Thus, loading the provenance graph for offline querying
may not be possible on the same compute cluster used to
run the analytic (as VC systems often materialize the graph
in memory). This section presents two novel and efficient
PQL evaluation methods that allow Ariadne to generate
and query provenance from analytics without increases in
compute resources.
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5.1 Layered evaluation

We identify a class of PQL queries that don’t require materi-
alizing the entire provenance graph but rather can evaluate
on layers of it. First, let us define the layers of a provenance
graph:

Definition 5.1 (Layers). Let GPR be a provenance graph.
Let n be the diameter of GPR when captured for an analytic
that computed for n supersteps. For 0 ≤ i ≤ n we inductively
define the following family of layers:
• L0 is the set of leaves of GPR ,
• Li is the set of leaves of GPR \ L0 ∪ . . . ∪ Li−1

GPR can be decomposed into n + 1 such layers.

Consider the highlighted provenance node xi in the prove-
nance graph in Figure 5. The graph comprises 3 layers, one
for each superstep the analytic computed. The provenance
graph shows that at superstep i vertex x received a message
fromy (y sent the message at superstep i −1 according to the
Vertex-Centric model). During the same superstep, x sent a
message to vertex z, which received the message at superstep
i + 1. Note, that the send/receive-message edges cross layer
boundaries.

Layered PQL query evaluation allows Ariadne to succes-
sively materialize individual layers of Gpr . This is because
only a single layer’s nodes execute at each superstep. For
this to be possible, the order in which query evaluation visits
the layers of the provenance graph must be the same as the
direction in which nodes exchange messages with remote
tables.
Below we show how one can syntactically infer when

layered evaluation is possible and what the evaluation order
should be. In general a PQL query must allow an evaluation
ordering on the layers of the provenance graph such that:
i) when the nodes in a layer evaluate a query, they have
received all remote messages from their neighbors and ii)
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yi)1&

xi&

zi+1&

receive)msg&

send)msg&
direc3on&to&send&&
remote&table&T

direc3on&to&send&
remote&table&S

Figure 6: Rule R1 requires both prior (i − 1) and succes-

sive layers (i + 1) to be present during evaluation.

those neighbors evaluated in a previous layer according to
this ordering.

We first illustrate with a counter-example rule that cannot
be evaluated in a layered fashion due to the presence of both
send and receive-message predicates. Assume rule:

R1(x , . . .) ← T (y), receive-message(x ,y, i,m),
S(z), send-message(x , z, i,m)

The rule has location specifier x meaning it is evaluated by
a provenance node x . The receive-message predicate defines
the neighborsy fromwhich x received messages at superstep
i . Similarly, the send-message predicate refers to neighbors
z to which x sent messages at superstep i . In addition, the
rule uses two remote tables, T and S, located at neighbors
y and z respectively. During query evaluation, neighbors y
and z must send their tables to node x . Figure 6 illustrates
node xi receiving these remote tables from a prior (Li−1) and
successive (Li+1) layer during evaluation. Hence we cannot
impose an ordering on the layers of the provenance graph
that satisfies both conditions i and ii above.

On the other hand, consider rule
R2(x) ← T (y), receive-message(x ,y, i,m)

that refers only to neighbors y from which x , the evaluat-
ing node, received messages at superstep i . During query
evaluation, node yi−1 in layer Li−1 sends table T to xi . It is
easy to see that for queries like R2 whose rules use only
receive-message edges, messages are sent to successive lay-
ers of the provenance graph. Moreover, once the nodes in a
layer have computed, they will never receive messages again
thus will never compute again. Hence, query evaluation can
proceed in an ascending order from layer 0 to layer n.

Similarly rule
R3(x) ← S(z), send-message(x , z, i,m)

refers only to neighbors z that x sent a message to at super-
step i . During query evaluation, node zi+1 in layer Li+1 sends



table S to xi . Like before, messages are sent unidirectional,
this time to preceeding layers. We can now employ layered
evaluation by visiting the layers of the provenance graph in
descending order, starting from layer n to layer 0.

Thus, we define the directed PQL queries as follows:

Definition 5.2 (Directed). A PQL query Q is directed if for
all rules inQ the variables of remote predicates in their bodies
appear in either send-message predicates or receive-message
predicates but not both.

We call queries whose rules use only receive-message
edges forward PQL queries whereas we call queries whose
rules use only send-message edges backward queries. Lay-
ered evaluation is guarded by n, where n is the number of
supersteps the graph analytic ran.

Lemma 5.3. Evaluation of directed PQL queries requires at
most n supersteps.

Proof. Directed PQL queries impose a view on the prove-
nance graph that is a DAG. The diameter of the DAG is n
and its traversal requires at most n steps. □

Directed PQL queries are amenable to offline layered eval-
uation where the provenance graph layers are materialized
sequentially, reusing the working memory, instead of ma-
terializing the entire graph at once. This enables scalable
and efficient evaluation which significantly outperforms the
entire-graph materialization approach, as demonstrated in
our experiments.

5.2 Online evaluation

Forward PQL queries provide an additional opportunity to
improve evaluation efficiency. In particular, one can evaluate
this query class simultaneously with the graph analytic. This
online provenance querying provides a shortcut to the tradi-
tional capture-first, query-offline approach, reduces runtime
overheads from 2 − 8x to 1.3x (Section 6.2), and leaves the
original vertex program code unchanged.

To see why this is possible, recall that forward query eval-
uation visits the provenance graph layers in ascending order
– that order is identical to the chronological order of ana-
lytic computation. Capitalizing on this, Ariadne evaluates
forward queries online alongside the graph analytic so that
at the end of computation the results of both the analytic
and PQL queries exist. To this end, Ariadne appends the
PQL query to the original graph analytic such that at every
superstep, a vertex evaluates both its vertex program and the
PQL query. Moreover, Ariadne appends the query tables to
the messages the vertices exchange.
For online PQL evaluation to be correct, we must ensure

that query evaluation does not interfere with analytic com-
putation and vice versa. Let us denote as OnlineA,Q (G) the

lockstep evaluation of analytic A on input graphG and PQL
query Q on the transient provenance information of A. The
result of OnlineA,Q (G) contains both the result of A (modi-
fied vertex and edge values ofG), as well as Q ’s results (new
tables annotating the vertices ofG). Correctness is ensured
if the results of evaluating A by itself on G is the same as
evaluatingA in lockstep withQ and if the result of evaluating
Q on the captured provenance of A is the same as evaluating
Q using OnlineA,Q (G).

We define πx to be the function that partitions the result of
OnlineA,Q (G) into data (vertex and edge values) read/written
by A or Q . Then,

Theorem 5.4. Let A be a graph analytic, Q a forward PQL
query, G the input graph and GPR the provenance graph of A.
Then, A(G) = πA(OnlineA,Q (G)) and
Q(GPR ) = πQ (OnlineA,Q (G)).

Proof. It suffices to show that i) data modified by A are
disjoint from the data modified by Q and ii) a vertex evalu-
ating Q sends messages only when the vertex computing A
sends messages and to the same neighbors.
i)A reads/writes vertex/edge data and messages.Q reads this
data (by means of provenance) and appends tables resulting
from query evaluation to the data and messages of a vertex.
These tables are never accessed byA as it is agnostic of query
evaluation.
ii) The definition of forward queries specifies that remote
predicates in the body of a rule must be guarded by receive-
message predicates. Hence, message exchange during query
evaluation can only happen between vertices that exchanged
messages during analytic computation. □

6 EXPERIMENTAL EVALUATION

Our experiments show that Ariadne 1) reduces space and
time overheads of provenance capturing 2) improves prove-
nance querying performance with layered and online evalu-
ation and 3) supports forward and backward lineage queries
as well as novel provenance analysis queries not seen in prior
work.

We experiment with 4 graph analytics, PageRank, SSSP,
WCC and ALS. For each analytic, we evaluate 2 capturing
queries (Queries 2, 3), 3 forward queries (different for each
analytic) and 2 backward queries (Queries 10, 12). The for-
ward queries use 3 different evaluation modes: online where
no capturing is performed, offline using layered evaluation
on the previously captured provenance graph, and offline
that materializes the entire provenance graph. We ran each
query 5 times and reported the trimmed mean, removing the
shortest and longest runs.
We summarize the outcomes across all datasets and an-

alytics (details are below). Capturing the full provenance
takes 2.7x −5.6x the baseline (the original analytic’s runtime



T ), whereas customized capturing takes less than 2x T . On-
line querying takes 1.3x T , versus 3.5x T for offline layered
evaluation. Moreover, backward tracing using offline layered
evaluation on the full provenance graph takes 2.4x − 3.5x
T , while offline layered evaluation on a custom provenance
graph takes 0.5x T .

The experiments were carried out on a cluster containing 7
Intel(R) Xeon(R) CPU E3-1270 v3 @ 3.50GHz machines, with
4 cores (2 hyper-threads per core), 32GB of RAM and 800GB
of HDD. The operating system is Ubuntu 14.04, with jdk-
1.0.7. We installed Hadoop 2.5 and Giraph 1.2. The datasets
and results were all stored in HDFS with a replication factor
of 2.

Algorithms and Datasets: We evaluate provenance cap-
turing and querying on three well-known graph analytics
popular in research and practice [23].

We used real-world datasets1, namely indochina-2004 (IN-
04), uk-2002 (UK-02), arabic (AR-05) and uk-2005 (UK-05).
Their characteristics can be seen in Table 2. Note, we assigned
random positive weights in the range of 0 − 1 to the edges
of the input graph for SSSP.

Table 2: Dataset characteristics

Dataset V E Avg Degree Avg Diameter
IN-04 7.4M 194M 26.17 28.12
UK-02 18.5M 298M 16.01 21.59
AR-05 22.7M 640M 28.14 22.39
UK-05 39.5M 936M 23.73 23.19
ML-20 16.5K 20M 121 1

Moreover, we experimented on theAlternating Least Squares
(ALS) recommender algorithm using the MovieLens 20M2

dataset with varying sizes of features (5-15). The user-movie
ratings are represented as a bipartite graph, where an edge
between user i and movie j carries a weightw indicating that
user i gave the ratingw to movie j. At every iteration, only
one side of the bipartite graph computes, either the users or
the movies since the algorithm optimizes the error function
by fixing one set of variables and solving for the other. ALS
converges when the error reaches an acceptable threshold.
The ML-20 graph has 20M edges, 138493 users and 26744
movies. In the figures, for brevity, we use the notation ML-
205, ML-2010 and ML-2015 for the variants of dataset ML-20
according to the number of features.

6.1 Provenance capturing

Prior work captures the entire provenance graph and stores it
for offline querying. We simulate this scenario with Query 2

1http://www.dis.uniroma1.it/challenge9/download.shtml
2http://grouplens.org/datasets/movielens/20m/

by way of capturing the values of a vertex at every superstep
and the messages they send and receive. Table 3 shows the
space overhead of the full provenance graph. For PageRank
and SSSP the captured provenance is consistently 10x larger
than the input graph whereas for WCC it is 5x .

value(x ,v, i) ← vertex-value(x ,v), superstep(x , i).
send-message(x ,y,m, i) ← send(x ,y,m), superstep(x , i).
receive-message(x ,y,m, i) ← receive(x ,y,m),

superstep(x , i).

Query 2: Capture full provenance graph

Table 3: Size comparison of input graph and full prove-

nance graph

Dataset Input PageRank SSSP WCC

IN-04 4.1GB 45.1GB 42.7GB 22.6GB
UK-02 6.5GB 71GB 63.3GB 48.1GB
AR-05 13.8GB 148.1GB 118.6GB 76.4GB
UK-05 20.5GB 218.1GB 221.4GB 158.3GB

On the other hand, Ariadne allows a user to customize
provenance capturing to her needs, reducing space and time
overheads. Consider Query 3 that captures information about
the set of vertices influenced by an input vertex. This in-
formation suffices to answer forward tracing provenance
queries. We ran Query 3 for vertices that would reveal an
upper bound for the overhead: for PageRank and WCC we
chose the highest degree vertex whereas for SSSP we chose
the source. Table 4 shows the size of the custom provenance
graph which is always less than 40% of the input graph and
contains more than 80% of the input vertices.

fwd-lineage(x ,v, i) ← value(x ,v, i), superstep(x , i),
x == α , i == 0.

fwd-lineage(x ,v, i) ← receive-message(x ,y,m, i),
fwd-lineage(y, j,w), value(x ,v, i).

Query 3: Capture custom provenance graph

Table 4: Size comparison of input graph and custom

provenance graph

Dataset Input PageRank SSSP WCC

IN-04 4.1GB 2.6GB 2.1GB 1.8GB
UK-02 6.5GB 3.5GB 2.9GB 2.5GB
AR-05 13.8GB 8GB 6.3GB 5.5GB
UK-05 20.5GB 13.9GB 14.3GB 8.4GB



Figure 7: Runtime comparison of provenance captur-

ing queries 2 (Full) and 3 (Custom).

Figure 7 shows the runtime overhead for capturing the full
versus custom provenance graph. We see that Query 2 takes
2.7x − 3.4x PageRank and 3x − 5.6x SSSP or WCC. Query 3
takes less than 2x . When the provenance graph exceeds the
size of available RAM, Ariadne offloads it asynchronously
to HDFS. The rate of capturing and the rate of offloading play
an important role in the scalability of the system. For ALS,
for example, Ariadne could not capture the full provenance
graph as the size of provenance for the smallest dataset (ML-
205), for one superstep, exceeded 80GB. While this was due
to a lack of memory allocation backpressure in our prototype,
further research could improve support for such sizes and
provenance generation rates.

6.2 Forward provenance querying

We evaluate the performance of three PQL query evaluation
modes and compare them against the baseline of a graph
analytic running on Giraph without any provenance cap-
turing or querying (Giraph). We report the performance of
online provenance querying (Online) that happens simulta-
neously with the analytic, layered offline querying (Layered)
and straightforward offline querying (Naive) on the captured
provenance graph. The running times reported for offline
querying do not include the capturing overheads. Note how
Naive was not able to scale beyond the two smallest datasets
in any of our experiments.

6.2.1 Execution monitoring. Developing Big Graph analyt-
ics is an iterative process where developers constantly refine
their code and data to improve the quality of outcomes. Ari-
adne enables developers to monitor the execution of their
analytics (e.g. as new data arrives or parameters change) and

quality of their data (e.g. sanity check or anonymization).
Developers benefit from online evaluation where these PQL
queries can be always “on", in the sense that they are part of
every run of an analytic. For that, it is imperative for them
to incur minimal overhead.
PageRank Query 4 checks that when the sum of the re-
ceived messages of a vertex is greater than 0, then the in-
degree of that vertex is greater than 0. In Giraph, messages
can be sent to vertices by using their vertex ID. If the vertex
ID is not that of an actual neighbor, a vertex without any
incoming neighbors may receive a message erroneously. In
Figure 8 top row Query 4 takes 1.14x PageRank using Online
while it takes 3x PageRank with Layered and 4x PageRank
with Naive.

in-degree(x ,COUNT(y)) ← edge(y,x).
check-failed(x ,y, i) ← in-degree(x ,d),

receive-message(x ,y,m, i),d == 0.

Query 4: PageRank

SSSP andWCC Query 5 checks that when a vertex updates
its value, it is because it received messages and because its
new value is smaller than the previous one. SSSP and WCC
work under the assumption of positive weights and positive
vertex IDs respectively. If the input is corrupted, such as
if there is an edge with negative weight, or the algorithm
assigns the wrong label, the query will highlight it. Figure 8
middle row shows the runtime for SSSP on the left: Query 5
takes 1.13x SSSP using Online, 3.5x SSSP using Layered and
4.6x SSSP usingNaive. The running time overheads forWCC
on the right are similar.

check-failed(x , i) ← value(x ,d1, i), value(x ,d2, j),
evolution(x , i, j), receive-message(x ,y,m, i),d1 ≤ d2.

Query 5: SSSP and WCC

For SSSP and WCC, a vertex updates its distance or label
only when it receives a message from an incoming neighbor
with a smaller distance or label. Query 6 ensures that if a
vertex received no messages, then its value doesn’t change.
Figure 8 last row on the left shows the query incurs 1.3x
SSSP using Online, 3.6x SSSP using Layered and 4.7x SSSP
using Naive. For WCC, on the right, the query takes 1.2x
WCC using Online, 3.7x WCC using Layered and 4.3x WCC
using Naive.
Notice, how we used the same queries for both analytics.

PQL provides a common front-end to developers to query
different analytics, saving them from duplicate manual ef-
forts.
ALS Query 7 checks that the local error for every vertex is
between the range of 0 − 5 which is the range of the ratings



Figure 8: Runtime of execution monitoring

queries 4, 5 and 6.

neighbor-change(x , i) ← receive-message(x ,y,m, i).
problem(x , i) ← value(x ,d1, i), value(x ,d2, j),

evolution(x , j, i),¬ neighbor-change(x , i),d1 , d2.

Query 6: SSSP and WCC

in the input file. The error is computed by subtracting the
actual rating from the predicted one during every superstep
of the computation. The query identifies, when a vertex
fails the check, if it is because the input file contains a rating
outside of the expected range (0−5), or because the prediction
computed at a superstep is outside the range. Figure 9 left
shows the query adds 5% overhead using Online.

input-failed(x ,y, i) ← prov-error(x ,y, i, e),
edge-value(x ,y,w, i), e < 0, e > 5,w < 0,w > 5.

algo-failed(x ,y, i) ← prov-error(x ,y, i, e),
prov-prediction(x ,y, i,p), e < 0, e > 5,p < 0,p > 5.

Query 7: ALS

Figure 9: Running time for ALS queries.

Query 8 identifies users or items whose average error in
rating prediction increases in consecutive supersteps. It first
computes the local average error per vertex and superstep
by summing the errors across all its neighbors and dividing
by the out-degree. It then compares the average error for
two consecutive supersteps and checks that the error has
not increased more than a threshold. For a threshold of 0.5,
the query returns 30% of the vertices indicating that their
error has increased. Finding such vertices is useful as it can
indicate that these vertices converge to a wrong solution
and should be handled differently by the algorithm. Figure 9
right shows the query takes 1.2x ALS using Online.

degree(x ,COUNT (y)) ← receive-message(x ,y,m, i).
sum-error(x , i, SUM(e)) ← prov-error(x ,y, i, e).
avg-error(x , i, s/d) ← sum-error(x , i, s), degree(x ,d).
problem(x , e1, e2, i) ← avg-error(x , i, e1), avg-error(x , j, e2),

evolution(x , j, i), e1 > e2 + ϵ

Query 8: ALS

6.2.2 Performance tuning. We now turn to our motivating
scenario where developers use provenance to tune the per-
formance of their graph analytics. We measure the overhead
of our motivating Query 1, copied here for ease of readabil-
ity. Moreover, we show that insights gained from using the
query on one dataset, are transferable to unseen datasets.
We use the same query for all our analytics by param-

eterizing it with different thresholds (ϵ) and vertex value
comparison functions (udf-diff). For instance for PageRank,
SSSP and WCC the query subtracts the previous and new
vertex value whereas for ALS it compares their euclidean
distance. At the end of computation, the query returns the
vertices whose execution can be safely skipped given the
threshold. The larger the fraction of safe versus unsafe ver-
tices, the smaller the error of approximation.

We measure the error of approximation in the same man-
ner as [26] by using the Lp norm of a vector v defined as:
Lp (v) = (

∑n
i=1vi

p )
1
p . Let r0 be the vector of results of the



original analytic and r1 the vector of results for the optimized
analytic. Then the normalized error is: Lp (r0−r1)/Lp (r0). We
choose the correct error definition based on the characteris-
tics of the data and algorithms.

change(x , i) ← value(x ,d1, i), value(x ,d2, j),
evolution(x , j, i), udf-diff(d1,d2, ϵ).

neighbor-change(x , i) ← receive-msg(x ,y,m, i),
¬ change(y, j), j = i − 1.

no-execute(x , i) ← ¬ neighbor-change(x , i), superstep(x , i).
safe(x , i) ← no-execute(x , i), change(x , i).
unsafe(x , i) ← no-execute(x , i),¬ change(x , i).

Apt query (motivating example)

Figure 11 reports the runtime of the optimization query for
all datasets. However, we analyzed the results only for UK-02
and based on the findings on this dataset, we applied the
optimization with the same threshold to the other datasets
to see if it is applicable on unseen graphs.
For PageRank ϵ = 0.01, the query finds that 60% of the

vertices can safely skip their execution for 10 out of 20 super-
steps and that there are no unsafe vertices. The optimization
is already part of some PageRank implementations, here we
use the results as a proof of concept. The error when comput-
ing the optimized PageRank is shown in Table 5 and ranges
between 10−3 to 10−5. The table also shows the median of
the ranks for the initial analytic and the optimized analytic
as a means of comparison with the error. The speedup of
the optimized version in Figure 10 left is 1.4x . The runtime
in Figure 11 top left takes 1.3x PageRank using Online, 3.2x
PageRank using Layered and 3.8x PageRank using Naive.

For SSSP and ϵ = 0.1 the query finds that 87% of the input
vertices can safely skip their execution for more than 2 super-
steps and 11% of them can do so for more than 10 consecutive
supersteps. Moreover, there are no unsafe vertices. The query
takes 1.5x SSSP using Online, 3.5x SSSP using Layered and
5x SSSP using Naive (Figure 11 top right). Again the results
lead a developer to incorporate the optimization to SSSP. Ta-
ble 6 shows the error across all datasets is 10−2 when using
the same threshold. The speedup in Figure 10 right is 1.8x
the baseline.
With WCC we used a threshold of 1 since the amount of

difference between component IDs doesn’t matter, but rather
the fact that vertices are assigned to different components.
Although the query finds vertices that would not execute be-
cause their neighbors changed less than threshold, they can
never do so safely. In other words, all vertices that belong in
table no-execute are also part of table unsafe whereas table
safe is empty. This result already proves a developer should
not pursue the optimization. Sure enough, when running
the "optimized" version, the normalized relative error is 0.9

Table 5: PageRank: Relative error (L2) for ϵ = 0.01 and

median values of original (A) and optimized (B) ana-

lytics.

Dataset Error Median A Median B

IN-04 10−3 0.18 0.16
UK-02 10−3 0.2 0.17
AR-05 10−4 0.18 0.15
UK-05 10−5 0.2 0.17

Table 6: SSSP: Relative error (L1) for ϵ = 0.1 andmedian

values of original (A) and optimized (B) analytics.

Dataset Error Median A Median B

IN-04 10−2 5 5.2
UK-02 10−2 4.4 4.5
AR-05 10−2 5.6 5.8
UK-05 10−2 3.7 3.8

Figure 10: Runtime improvement between original

and optimized analytic

across all datasets. Figure 11 bottom left shows the query
takes 1.6x WCC using Online, 3.6x WCC using Layered and
5x WCC using Naive.

Finally, for ALS the query returns too few vertices for both
safe and unsafe tables suggesting the requirement of a more
fine-tuned convergence criterion. As future work, we plan
to do a user study with developers using Ariadne to write
algorithm-aware tuning queries. Nevertheless, the overhead
for ALS in Figure 11 bottom right is always lower than 10%.

6.3 Backward provenance querying

A common provenance operation is backward tracing to
identify the input data items that lead to an item in the out-
put. Since provenance querying follows the opposite order
of computation, backward queries are evaluated offline and
necessitate capturing of the provenance graph. Below we
compare two approaches and report the runtime as an over-
head of the original analytic: i) Capture the entire provenance



Figure 11: Runtime of motivating example Query 1

graph using Query 2 and perform backward querying using
Query 10 that entails 2.6x − 3.4x overhead and ii) Capture a
custom provenance graph using Query 11 and query it using
Query 12 that incurs 0.5x overhead. In both cases, offline
querying is performed in a layered fashion. Notice, the re-
sult of the backward queries is the lineage of a vertex in the
output.

back-trace(x , i) ← superstep(x , i), i = σ ,x = α .
back-trace(x , i) ← send-message(x ,y,m, i), back-trace(y, j),

j = i + 1.
back-lineage(x ,d) ← back-trace(x , i), value(x , i,d), i = 0.

Query 10: Backward lineage on full provenance graph

The first part of rule back-trace in Query 10 specifies the
starting vertex α and superstep σ . The second part traces the
provenance graph using the send-message edges. The rule is
recursive and transitively visits all vertices in the subgraph
rooted at the starting vertex. Finally, rule back-lineage con-
tains the vertices active at superstep 0 that are reached by
the transitive closure.
Notice that the query does not access the values of the

messages that were sent but only the information of whether
a message was sent. Moreover, for analytics where vertices
send messages to all their outgoing neighbors (instead of a
dynamic subset) it is not necessary to use the send-message
edges of the provenance graph since the same information
is encoded in the edges of the input graph. Ariadne allows
developers to take advantage of this information to customize
the captured provenance graph. We already discussed in
Section 6.1 the performance benefits Ariadne provides to

Figure 12: Runtime of layered backward querying us-

ing Query 10 (Full) and Query 12 (Custom)

capturing. Here, we focus on the performance benefits it
entails to offline querying.
Query 11 captures a custom provenance graph that does

not contain the message values nor the send-message edges.
Rule prov-value captures the value of a vertex at every su-
perstep. Rule prov-send captures the superstep at which
a vertex sends messages and rule prov-edges captures the
outgoing edges of a vertex. Then, updating the backward
lineage query is easy. One simply needs to replace relation
send-message with relations prov-send and prov-edges to
obtain Query 12. The result of the query contains the exact
same information as Query 10 but is 2x − 3x faster.

prov-value(x , i,v) ← value(x ,d, i), superstep(x , i).
prov-send(x , i) ← send-message(x ,y,m, i).
prov-edges(x ,y) ← edges(x ,y).

Query 11: Custom provenance for backward query

back-trace(x , i) ← prov-value(x , i,v), i = σ ,x = α .
back-trace(x , i) ← prov-edges(x ,y), prov-send(x , i),

back-trace(y, j), j = i + 1.
back-lineage(x ,d) ← back-trace(x , i), prov-value(x , i,d),

i = 0.

Query 12: Backward lineage on custom provenance

Below, we compare the runtime of layered offline evalua-
tion using the full provenance graph (Full) against using the
custom provenance graph (Custom). The times don’t include
capturing. Moreover, we include the analytic’s time (Giraph)



for reference. We started the trace from a vertex that com-
puted in the last superstep of the analytic and traversed the
provenance graph to superstep 0.

Full is 2.6x PageRank while Custom takes only 0.5x PageR-
ank. For SSSP, Full takes 3.4x over the baseline while Custom
takes 0.5x . For WCC the overheads are similar. This high-
lights the strength of customized capturing showing can
one can take advantage of the characteristics of her ana-
lytic and provenance queries to reduce the size of captured
provenance and cut down significantly the querying time.

7 RELATEDWORK

Although provenance querying has been studied in the con-
text of databases [9, 14], scientific workflows [2, 7] and large-
scale distributed engines [6, 13], there is no work addressing
provenance in a setting where the data model of the compu-
tation and the data model of the provenance are both graphs.
Moreover, with the exception of [9], no previous work ad-
dresses online provenance querying while the computation
that produces the provenance unfolds.

Focusing on approaches on large-scale distributed engines,
their limitations can be summarized in: i) Provenance is
captured imperatively, behind the scenes. This does not allow
developers to customize what information is included in the
captured provenance. ii) Provenance can be used only offline.
iii) Only imperative tracing of provenance is offered.
Graft [24], is the only other tool addressing debugging

in VC systems. Users can imperatively specify a small set
of vertices (less than 10) to visualize and analyze using a
step-wise debugger locally. Although, visualization is help-
ful in understanding graph algorithms, users need help in
identifying on which vertices to narrow down. Moreover,
debugging the computation logic locally gives no guarantee
as to whether the fixes will translate into a fix at scale.

Provenance on batch-processing systemwas first addressed
by Newt [15] and Ramp [21] that capture provenance for
MapReduce workflows on Hadoop [3] and offer offline trac-
ing using external tools. Titian [13] instruments Spark with
provenance capturing and is the only other large-scale sys-
tem that allows provenance tracing using the same language
the analytics are expressed. Titian manages to incur an over-
head of 1.4x over the base runtime, much smaller to ours, due
to three reasons: i) The provenance size of batch processing
analytics is smaller than the size of the input (30% − 50%)
as compared to 10x size for graph analytics ii) the work-
flows they experimented on have two stages compared to the
20 − 200 supersteps of our graph analytics iii) Spark offers a
built-in intermediary storage mechanism and Titian offloads
to disk only when provenance does not fit in memory taking
advantage of native Spark tools. As future work, we plan to
look into out-of-core graph processing systems [22, 27, 31]

to improve Ariadne’s performance when capturing the full
provenance graph.

[1] tracks How-Provenance [11] for Pig Latin operators.
How-provenance is more expressive than lineage as it con-
veys not only what input items contributed to the computa-
tion of an output but also how. Like us, they model prove-
nance as a graph that however, must be built through an
offline process. A separate module allows querying of the
provenance graph in the limited form of graph transforma-
tions such as zoom-in/out and deletion propagation (tracing).

[6] addresses backward provenance tracing on a differen-
tial dataflow system [18] for iterative analytics. A common
problem with backward tracing is that the input data items
returned are too many to be useful. The authors propose in-
teresting ideas to prune the tracing size such as considering
the time data items were produced and exploiting character-
istics of algorithms like WCC that follow a top-k logic where
only top-k input items are necessary to explain outputs. Us-
ingAriadne, developers can apply provenance pruning both
to capturing (capture only the top-k data items) and to query-
ing by customizing their queries.

8 CONCLUSION

This paper presents Ariadne, a declarative language and
query evaluation system for capturing and querying prove-
nance on Big Graph analytics. We show that provenance
can be used in more scenarios than traditional debugging
given the right tools. Ariadne offers a high-level query lan-
guage that developers can use to mine provenance, enabling
analysis beyond crash-culprit determination. PQL supports
invariant checks on data and computation to ensure correct
execution, detecting outliers in algorithm behavior or in the
data, and analyzing the runtime behavior of approximate
analytics. And by offering online evaluation, Ariadne en-
ables developers to cheaply add always-on checks to graph
analytics. This work is a step towards viewing provenance
as a run-time asset, not just a retrospective tool, for accurate
and efficient Big Graph analytics.
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A VERTEX-CENTRIC PROGRAMMING

MODEL

Ariadne is independent of the language of the graph analytic
as long as it conforms to the Vertex-Centric (VC) program-
mingmodel. In fact, many front-end languages can be used to
program VC graph analytics, ranging from imperative (Java,
C++, Scala) to declarative (Datalog). The Ariadne design
admits the implementation to be ported to other VC systems
without conceptual hurdles as neither the graph analytic nor
the VC system are changed.

Below, we describe the general structure of a VC analytic
and provide the pseudo-code corresponding to an imperatively-
specified vertex program that implements Single-Source
Shortest Path according to the VC programming model. The
Giraph distribution [8] includes this (and many other algo-
rithms) programmed in Java.

Algorithm 1 Pseudocode of VC graph analytics
1: function Vertex Program(v)
2: Read messages from incoming neighbors of v .
3: Update vertex v’s value.
4: Send messages to outgoing neighbors of v .
5: end function

In the VC model, computation proceeds in supersteps and
all vertices compute in parallel the same vertex program.
A vertex computes only if it has received messages, and
computation stops when no more messages exist in the sys-
tem. A general vertex program, see Algorithm 1, comprises
three basic steps: First, a vertex reads all the messages it re-
ceived from it incoming neighbors. Then, it updates its value
performing computation based on its current state and the
message it received. Third, it sends messages to its outgoing
neighbors.

http://hadoop.apache.org
https://giraph.apache.org/


Algorithm 2 illustrates the implementation of SSSP. In su-
perstep 0 every vertex initializes its value (distance to source)
withMAX.DOUBLE. Every subsequent superstep involves
the following steps: If the current executing vertex is the
source, the distance to itself is 0, else it is MAX.DOUBLE.
Lines 10-11 select the minimum value between the current
distance and the one received from neighbors by iterating
over the messages received. If the new distance is smaller
than the current distance, Line 14 updates the value of the
current vertex. Then, lines 15-17 send messages to the out-
going neighbors with the new distance plus the respective
edge weight.

Algorithm 2 SSSP implementation
1: function SSSP(vertex,messages)
2: if superstep == 0 then
3: vertex.value = MAX.DOUBLE
4: end if

5: if isSource(vertex) then
6: minDist = 0
7: else

8: minDist = MAX.DOUBLE
9: end if

10: for m : messages do
11: minDist = Math.min(minDist, m)
12: end for

13: if minDist < vertex.value() then
14: vertex.value = minDist
15: for e: vertex.out-edges do
16: distance = minDist + e.weight
17: sendMessage(e.target, distance)
18: end for

19: end if

20: end function
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