
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

Public Review for
NetShare and Stochastic NetShare:

Predictable Bandwidth 
Allocation for Data Centers
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Tenants in datacenters desire performance isolation from each other. Such isolation for the network
has been difficult to achieve without sacrificing utilization. This paper presents a set of techniques
that together could achieve such isolation without requiring hardware changes in switches. The sys-
tem is evaluated on a testbed of Fulcrum switches.

The techniques employed are as follows. On each switch, on each outbound link, a separate DRR
queue is configured for each class of service. Tenants are clustered into these classes, and the weight
of each class is the sum of the weights of the tenants. These weights are assigned by an operator
when a tenant is provisioned. The traffic for each tenant is labeled so that it lands in the right queue.
To handle UDP, each host needs a rate throttling shim. A centralized bandwidth allocator measures
the rates of flows and then decides on new rates that are enforced using token bucket rate limiters
at hosts or ingress switch ports.

There is a lot to absorb in this paper and the reviewers craved more details. One reviewer was con-
cerned about how the system scales down to a small number of tenants because of a potential for
bandwidth stealing, or how it scales to fast churn in tenants. Another was more concerned about the
speed with which switch configurations could be updated. All the reviewers liked the paper. It is
timely and the topic is important. The implementation on Fulcrum switches impressed them.

A general question worth pondering is what type of isolation the datacenter operator wants to offer,
and what type tenants desire, and are those two in conflict? I suspect that one wants to offer propor-
tional sharing of bandwidth, while the other wants minimum guaranteed bandwidths.
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ABSTRACT
Application performance in cloud data centers often depends cru-
cially on network bandwidth, not just the aggregate data transmitted
as in typical SLAs. We describe a mechanism for data center net-
works called NetShare that requires no hardware changes to routers
but allows bandwidth to be allocated predictably across services
based on weights. The weights are either specified by a manager,
or automatically assigned at each switch port based on a virtual
machine heuristic for isolation. Bandwidth unused by a service is
shared proportionately by other services, providing weighted hier-
archical max-min fair sharing. On a testbed of Fulcrum switches,
we demonstrate that NetShare provides bandwidth isolation in var-
ious settings, including multipath networks.

Categories and Subject Descriptors
C.2 [Computer-Communication Networks]: Network Architec-
ture and Design

Keywords
data center networks, bandwidth virtualization

1. INTRODUCTION
Cloud services and enterprise networks are hosted by data cen-

ters that concurrently support many distinct services — e.g., search
and email for cloud services, or accounting and engineering for an
enterprise data center. The services use a shared data center be-
cause physical equipment is expensive, costing over 100 M a year
to maintain [4] and because statistical multiplexing using Virtual
Machines (VMs) is effective. However, the economics also require
two other characteristics of the network, both of which are imper-
fectly provided today. First, to be profitable, the networks must
have high utilization. Second, many services have stringent per-
formance service-level agreement (SLA) that must be met to keep
customers satisfied; thus the network should also ideally provide
bandwidth guarantee to each service. Any new mechanism to pro-
vide these should not require hardware changes to existing switches
so that providers do not have to retrofit their networks.

Service-level agreements today specify network requirement in
terms of dollar cost per Gigabyte transferred and not in terms of net-
work bandwidth. But the performance of application frameworks
such as MapReduce depends greatly on network performance. With
current SLAs, a user may pay for 10 hours for a number of VMs
only to find that the VMs are mostly idle waiting for slow network
transfers. The user job may complete in one hour with a faster net-
work and the user may be willing to pay more for the higher band-
width. In addition, as cloud computing and shared data centers gain

momentum, there is a growing demand to provide performance iso-
lation between different services and tenants. While isolation can
be achieved by strict rate limits, this leads to inefficient use of the
expensive data center network because traffic is often bursty.

We propose a new mechanism for data center networks called
NetShare that provides predictable bandwidth allocation, bandwidth
isolation, and high utilization — and can be implemented with-
out any changes to existing switches. NetShare does so using hi-
erarchical weighted max-min fair sharing in which the bisection
bandwidth of the network is first allocated to services according to
weights and the bandwidth of each service is then allocated equally
among its TCP connections. Hierarchical max-min fair sharing
generalizes hierarchical fair sharing of links [7] to networks. We
also generalize stochastic fair queuing [12] to stochastic weighted
max-min fair queuing.

If Internet QoS did not succeed, why hope for data center QoS?
First, Internet QoS issues are often solved by overprovisioning, but
overprovisioning core links in data centers from say 10 Gbps to
40 Gbps is very expensive. Current core links are indeed oversub-
scribed [4]. Second, users have begun to notice latency degradation
when VM traffic from different services 1 interfere [8]. Third, a rea-
son for the failure of QoS was that there was no simple policy for
setting QoS parameters. NetShare uses a simple set of per-service
weights which can be set automatically based on VM placement,
or set manually by a manager based on the revenue or cost of each
service analogous to VMware’s ESX server shares [8].

NetShare can also be viewed as a way to virtualize (i.e., statis-
tically multiplex) a data center network among multiple services.
Together with virtualized CPUs and disks, it allows managers to
create “virtual data centers” with performance isolation. While one
can argue whether our model of network virtualization is right, Net-
Share is perhaps the simplest starting point.

2. NETSHARE ALGORITHMS
The generalization of fair sharing to multiple resources such as a

network is called Pareto Optimality (in economics) or max-min fair
sharing (in networking). However, max-min fair sharing at the TCP
level is not the appropriate model for sharing data center services.
First, services that open up multiple connections get an unfair share
of bandwidth. Second, the network administrator cannot allocate
more bandwidth to certain services based on their importance.

In this paper, we propose generalizing the above connection-
level fairness concept to services. In particular, the NetShare frame-
work presents an abstraction for service-level weighted hierarchi-
cal max-min fairness as follows. First, the weights for different
services are specified. The network demand for a particular VM

1We use the terms application and service interchangeably.
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Figure 1: Simple fair queuing at switches at the ser-
vice level together with TCP achieves hierarchical
max-min fair sharing of services.

is a function of the application and can be set in the SLA policy,
just as application developers specify CPU cores and memory re-
quirement in each VM for the service. Next, there is a mechanism
that allocates network bandwidth in weighted max-min fair fashion
among these services. The bandwidth assigned to each service is
then divided recursively (again in max-min fair fashion) among the
individual flows for that service.

By adopting weighted max-min fair sharing, NetShare allocates
bandwidth based on relative weights, and does not strictly guaran-
tee minimum bandwidth to a service. Minimum bandwidth policies
can be added to the NetShare controller (Section 2.4), but the con-
troller would report no feasible solution after the rate computation
if all policies could not be met with the existing VM assignment
and traffic matrix. Hence we note that NetShare can be augmented
with a VM placement and admission control strategy to guarantee
a minimum bandwidth. The admission control agent should reject
a request for VM instances when the requirement could not be met.

We present three mechanisms to implement NetShare. The first
mechanism (Section 2.1) relies on TCP and fair queuing, only re-
quires configuration changes, and responds to changes in a few
round trip delays. We show how this can scale to a larger number
of applications using the idea of Stochastic NetShare (Section 2.2).
The second mechanism (Section 2.3) augments the first mechanism
to handle UDP. Finally, the third mechanism (Section 2.4) uses cen-
tralized allocation to provide more general bandwidth allocations.

2.1 Group Allocation Leveraging TCP
Our starting point is a classic result by Hahne [9].
Proposition 1 [9]: Flow control with large sliding window at

sources plus fair queuing achieves max-min fair allocation.
Proposition 1 is applicable to every sliding window based flow

control (hence TCP in particular). A corollary of Proposition 1 is
that TCP congestion control together with fair queueing achieves
max-min allocation.

In NetShare, we wish to allocate bandwidth in hierarchical max-
min fashion first at the service level and only then at the TCP con-
nection level. As shown in Figure 1, let’s consider three services
A1, A2, and A3 with weights A1 : A2 : A3 = 4 : 1 : 1 and
suppose A2 has two TCP flows (from H1 and H2) while A1 and
A3 have one TCP flow each. Fair queuing at TCP connection level
does not achieve hierarchical max-min fair sharing: on link C1 to
E2, the TCP connection from A1 is allocated 4/6th of the band-
width and thus gets only 6.6 Gbps instead of 8 Gbps.

However, if we do fair queuing at the service level, both connec-
tions belonging to service A2 are treated identically at core router
C1 (i.e., mapped to the same queue). Assuming the fair mechanism
gives both the TCP connections from H1 and H2 equal bandwidth,
both limit themselves to 1 Gbps, which then allows TCP at H3 to
grow to 9 Gbps. Thus we state the following proposition.

Proposition 2: Window flow control plus fair queuing at the ser-
vice level achieves hierarchical max-min allocation.

The argument sketch is as follows. We adopt the standard water-
filling algorithm [3] with some modifications to accommodate the
hierarchical allocation. It starts by finding the weighted bottleneck.
NetShare will emulate this by DRR [16] at the bottleneck link to
give each application its weighted share. Next, we assume that the
TCP flows of each application share the bottleneck link equally.
While this is not strictly true if the TCP flows have very differ-
ent RTTs, we assume this is true in data centers. Hence, each of
these TCP flows cannot increase any further. Just as in the stan-
dard water-filling algorithm, we remove these TCP flows and their
bandwidths, and recurse to find the new bottlenecks.

Concretely, for every switch and outbound link, we configure a
separate fair queuing queue for each service class with the respec-
tive weight. In our hardware testbed, we used DRR [16] to config-
ure fair queuing and ToS bits to distinguish services. Note that this
is not the same as reservation. If a service is inactive or is routed
on a different path it will not consume bandwidth on this link.

2.2 Stochastic NetShare
Since the switches may support limited DRR queues, NetShare

scales to a large number of application classes by stochastic weighted
max-min fair sharing, which is a generalization of McKenney’s
Stochastic Fair Queuing [12]. Concretely, applications are ran-
domly hashed to specific DRR queues at each switch port. Each
DRR group is assigned weight equal to the sum of weights of the
individual applications that are hashed on to the DRR queue. The
DRR grouping of applications in each switch can be different and
can also be different at each switch port. Also, the grouping of
applications onto DRR queues is changed periodically to avoid in-
termittent hashing imbalance. Note that most current switches do
not support direct hashing to queues based on packet headers, but
instead only allow mapping from header fields to queues via ACLs.
We simulate hashing by having a central allocator provide labels to
services; these labels can be randomized and changed periodically.

Since queue sharing allows a small weight service to steal more
bandwidth, we propose a mixture of random and weight-based allo-
cation as follows. First, we group services based on weight classes
(say all services of weight 1, all of weight 2, all of weight 4, etc.).
Then we map each weight class into a set of queues and randomly
assign services to a specific queue within each set. In practice,
given the small number of existing queues, we suggest grouping
large weight services and low weight services into two classes, and
randomly assigning within each set of queues. Clearly, this intro-
duces errors due to weight aggregation and these errors can cas-
cade. Nevertheless, it provides a solution to the difficult problem
of combining scalability together with tunability.

2.3 Rate Throttling for UDP
In this section, we augment the TCP-based group allocation in

Section 2.1 to handle aggressive UDP flows and misbehaving appli-
cations. Each host is instrumented with a rate throttling shim layer
just below UDP. As illustrated in Figure 2, suppose H1 sends traf-
fic at 10 Gbps to another host H4. The shim layer at H4 measures
received traffic of 1 Gbps from H1. This is sent back to the corre-
sponding rate throttling layer at H1 which rate-limits the traffic at
close to 1 Gbps. Furthermore, to allow legitimate rate growth (e.g.,
H1 could grow to 2 Gbps if H2 disappears), we set the throttled
rate to somewhat more than the measured rate to allow ramp-up.

The throttling mechanism is described in Algorithm 1. The re-
ceiver measures received throughput in some period T (e.g., 50
msec in our experiments) and sends a control (e.g., ICMP) message
to the sender with the current measured rate C every T msec. The
sender then executes Algorithm 1 to set the throttled rate R. The
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Figure 2: Simple fair queuing at switches at the service
level together with rate measurement and rate throt-
tling implements hierarchical max-min fair even with
UDP.

Algorithm 1 Compute NetShare Rates at Rate Throttler
Performance tuning knobs:
d: threshold of rate difference
rI : factor for increasing flows
rD : factor for decreasing flows
rO : factor for overshooting flows

Measurement parameters:
L: last measured rate
C: current measured rate at receiver
f : flag indicating that the flow increased on last iteration.
R: current rate limit

if (|(L− C)/L| ≥ d) then {is rate change substantial?}
if C − L > 0 then {increasing, allow overshoot by rI}

R← C · (1 + rI)
f ← true

end if
if C − L < 0 then {decreasing, allow overshoot by rD}

R← C · (1 + rD)
end if

else
if f = true then {limit overshoot by rO}

R← C · (1 + rO)
f ← false

end if
end if
if R < Th then {do not lower below threshold}

R← Th
end if
L← C

values rI and rD are performance tuning knobs, indicating how
much network bandwidth can be wasted. If rI or rD are large, then
any newly freed up bandwidth can be acquired fast by the UDP
traffic class. Note that very large difference between rI and rD
would also cause instability and would make it harder for the rate
to stabilize. In our experiments, we achieved good performance
with rI = 20% and rD = 10%. The flag f detects if the sender
did increase in the last iteration so that the rate is set to rO (typi-
cally rO < rI , say rO = 10%) higher than the measured rate C.
This limits the amount of overshoot committed previously by the
higher rI . Also, we do not let the rate to fall below a threshold to
avoid long ramp-up of small flows.

2.4 Centralized Bandwidth Allocator
In this section, we describe a centralized bandwidth allocator

to allow advanced bandwidth allocation policies beyond max-min
fairness. For instance, a more general policy can allow some con-
nections between important servers to be allocated higher band-
width. Another example is a policy on reallocation of excess band-
width [6]. There are four steps.

1. Rate Measurement: The rate of each flow (TCP or UDP) for

each service is measured at either the switches (using ACLs) or at
the hosts (using a shim layer) in intervals of T seconds and used to
predict a demand for the next interval.

2. Rate Reporting: The predicted rates are sent to a central-
ized bandwidth allocator (implemented on a server in the network)
that is also supplied with the service weights and the topology via
routing updates.

3. Centralized Calculation: The centralized allocator calcu-
lates rates for each flow and each service and sends back rate up-
dates to the switches or hosts.

4. Rate Enforcement: Token bucket rate-limiters are used at
the hosts or ingress switch ports to limit the rates to the calculated
rates. Note that we rate-limit at the service level by the rate com-
putation in Step 3. As in rate-throttling, each flow (especially TCP
flows) must be allocated say 10% higher than its optimal central-
ized allocation to allow it to grow.

We have designed and implemented such a centralized allocator.
The predictor in Step 1 is a standard least squares predictor using
the last five measurements of traffic demand. The algorithm in Step
3 is a variant of the standard water-filling algorithm [3] which starts
by finding the weighted bottleneck. We implemented the central-
ized algorithm on several large simulated 2-tier data center topolo-
gies. To approximate the solution to a large number of flows, we
aggregated flows of the same weight and edge-to-edge path during
the computation. On a simulated topology with 16 cores and 128
edge switches, the algorithm took less than 100 msec on a standard
Intel Core2Duo 3GHz desktop.

Since the centralized bandwidth allocator includes a feedback
loop, we also developed a formal feedback control framework for
a rigorous proof of stability and convergence [6].

2.5 Discussion
NetShare can be integrated to a centralized management frame-

work (such as Openflow / SDN controller) to update switch config-
urations (e.g., assigning weights during VM allocation and migra-
tion). Furthermore, the switch configuration process can be amor-
tized into the launch and migration of VMs. Newly launched ser-
vices are detected when VMs are allocated to them. The VM ad-
mission controller would also update the network controller, which
then reconfigures switch weights accordingly. This does not limit
NetShare scalability since the time to configure some switches in
the network (in parallel) is less than the time to allocate and bring
up a new VM. To identify an application or service class, we can
use a combination of Type-of-Service (ToS) bits, IP options, etc.,
which are tagged on outgoing packets by the hypervisor and ACL
rules in the network.

Modern switches typically support rate-limiting at finer granular-
ity than port rate-limiting (QoS class, VLAN, ACL matching etc).
Otherwise, rate-limiting can be offloaded to the VMM layer on the
host and hence scales well to a large number of flows. Note that the
number services hosted by servers locating at an edge switch can
be much less than the total number of services in the whole data
center. Therefore, with Stochastic NetShare we expect to scale to
enterprise-level data centers with tens to hundreds of services. For
a much larger scale with thousands of services, an approach such
as Approximate Fair Dropping (AFD) [13] can reduce the approx-
imation error of stochastic queue sharing in Stochastic NetShare.
Future routers are expected to be equipped with a few thousand
AFD queues for 16 DRR queues [13]. Note that AFD scales better
because it uses a counter for each class as opposed to a queue.

Table 1 shows the tradeoffs between the three NetShare algo-
rithms: group allocation, rate throttling, and centralized allocation.
The group allocation mechanism has high responsiveness but relies
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Table 1: Comparison of different NetShare mechanisms
Deployment Responsiveness Generality

Group Allocation Configuration at routers < 1 msec Only TCP flows
Only Hierarchical max-min

Rate Throttling Configuration at routers 10-50 msec Only Hierarchical max-min
Added endnode or router software

Centralized Allocation Centralized allocation software 10 - 100 msec More general allocation policies
Added router software

on TCP, and so it can be augmented with the UDP rate throttling to
handle non-TCP traffic. The centralized allocator avoids the need
for the UDP rate throttling in general, at the cost of higher com-
plexity and lower responsiveness due to the control loop. Note that
increasing generality must be paid for by smaller responsiveness
and more software deployment.

3. AUTOMATIC WEIGHT ASSIGNMENT
We propose a technique to perform service isolation by assign-

ing weights to different services at each port in the network auto-
matically. This helps avoid the need for network administrators to
manually determine what weights different services must use. In
an enterprise or cloud data center, when resources are provisioned
for an application or customer, the customer usually requests some
number of servers or VMs (instances) each with some number of
CPUs, RAM and disk. Besides this, each instance must also be
allocated some units of network bandwidth. For example, if each
server has a 10Gbps NIC, we could place up to 10 VMs on the
server with each allocated 1Gbps of bandwidth.

We leverage two fundamental ideas. First, we use per switch-
port weights i.e., weights per application can vary from switch to
switch, and even from one switch port to another. Second, we as-
sign weights based on VM placement. We compute both the down-
stream and upstream sums of the bandwidths assigned to all VMs
allocated to application A with respect to switch port P . Then the
weight assigned to A at P is the smaller of the two.

As an example, suppose there is an accounting application with 2
servers connected to an edge switch and each server has 4 instances
of an accounting application. The uplink of the edge switch is con-
nected to a core switch and from there to other servers with 8 in-
stances of the accounting application. Assume each VM instance is
allocated 1 Gbps. Then we set the accounting application’s weight
at each of the 2 downlink ports of the edge switch to be 4 (smaller of
4 and 12), while we set its weight at the uplink port to be 8 (smaller
of 8 and 8). Note that taking the minimum makes sense because
even if there are 8 VMs upstream that can transmit at 8 Gbps, there
are only 4 VMs downstream that can receive only at an aggregate
capacity of 4 Gbps.

We make the following assumptions. First, VM bandwidths at
the servers are enforced using mechanisms like Linux HTB qdisc.
Second, we have knowledge of the complete topology and place-
ment of each VM instance. Third, in a multirooted tree network,
forwarding is based on ECMP. We assume that each egress port in
a switch either forwards traffic upwards from a server towards the
core layer (up-facing ports) and the rest of the fabric or forwards
traffic down towards a server (down-facing ports). This is a tech-
nique that simplifies the routing while also avoiding routing loops.
Finally, in this setup, each egress port on the switch has a definite
role in terms of which server’s traffic flows through it. For ex-
ample in a two level multirooted tree network, a down facing port
on a core switch can forward traffic to servers in a particular edge
switch from all other edge switches while an up-facing port on an
edge switch can forward traffic from the servers on that edge switch

(a) Single path (1 core) (b) Multipath (2 cores)

Figure 3: Testbed topologies

to all servers in other edge switches. Servers to which the particular
port forwards traffic are called downstream servers and the servers
from which this traffic could be coming are called upstream servers
of that port.

While we have used global weights for the bulk of this paper, we
note that extending the definitions to per-port weights is straightfor-
ward. For example, the standard water-filling algorithm [3] can be
modified to use the weight of each application/service at the current
bottleneck link as opposed to a global weight.

4. EVALUATION
We implemented NetShare on a small scale data center testbed

consisting of a 24-port Fulcrum Monaco 10GigE switch [1] – a
commercial switch with an extensive programming API for cus-
tomizations. Out of the 24 switch ports, 12 were directly con-
nected to the servers. Each server had two quad core Intel Xeon
E5520 2.26GHz processors, 24 GB of RAM, and 16 local hard
disks with 8 TB of total capacity. The remaining 12 ports were used
to setup loopbacks (through a Glimmerglass optical MEMS switch)
for partitioning the original 24-port physical switch into several vir-
tual switches using VLANs and creating multi-switch data center
topologies. Figure 3 shows our topologies. Multipathing was based
on Equal-Cost Multipath (ECMP).

We evaluate the performance by investigating application com-
pletion times as the overall performance metric for the applications.
Since the network is not the only factor, we also plot bandwidth uti-
lization to demonstrate the ground truth. In this section, we show
several key results to demonstrate the effectiveness of NetShare in
sharing real data center applications, providing both bandwidth iso-
lation and statistical multiplexing. Comprehensive experimental re-
sults are presented in [6].

4.1 Multipath Experiments
In this section, we demonstrate NetShare effectiveness by show-

ing that it truly divides the bisection bandwidth (both core links) on
demand with the topology in Figure 3b. Note that the core switches
were the bottlenecks with an oversubscription factor of 2:1 for traf-
fic between different edge switches. We used two Hadoop Sort
applications A1 with 96 maps and 96 reducers, and A2 with 96
maps and 48 reducers.

Concretely, we first generated 96GB of data for each instance
using the Hadoop RandomWriter application (8 maps per slave ×
12 slaves). We subsequently ran two Hadoop Sort jobs in the two
Hadoop instances A1 and A2. A1 used a total of 96 maps (8 per

ACM SIGCOMM Computer Communication Review 9 Volume 42, Number 3, July 2012



time (sec)
0 30 60 90 120 150

T
hr

ou
gh

pu
t (

M
bp

s)

0

200

400

600

800

1000
App 1

App 2

App 3

Figure 4: NetShare with Group Allocation (DRR) +
Rate Throttling

Time(s) A1 A2 A3 Bottlenecks
5-35 � � X E1, C
35-65 X � � C,E3
65-95 � X � E2, C
95-125 � � � All of the above

Table 2: Traffic pattern that indicates times during
which different flows were active.

slave) and 96 reducers (8 per slave) while A2 used 96 maps (8 per
slave) and 48 reducers (4 per slave). The Hadoop Distributed File
System (HDFS) was configured with a default replication factor of
3 and the HDFS block size was set to 256 MB.

First we ran the sort jobs without NetShare in the network. In this
case, A1 used twice the bandwidth (summed over all core links, the
“bisection bandwidth”) when compared to A2 because it opens up
nearly twice the connections. Next, we set up NetShare by config-
uring DRR with equal weights for the 2 applications. Note that the
bandwidths on the various core links are not shared as uniformly
because of hashing effects and because the sort job does not satu-
rate all links consistently.

Using NetShare, A1 completed sorting in 1633s while A2 com-
pleted sorting the data in 1810s. As a comparison, we also ran
A1 and A2 in the same fashion, but using the single core topology
shown in Figure 3a. In this case, we found that A1 and A2 finished
sorting in 3070s and 3212s respectively. After factoring out the
500s for the map phase (that is unaffected by the extra bandwidth),
the bisection bandwidth appears to be nearly equally shared be-
tween the two “services” and both were sped up by nearly a factor
of 2 in the multipath topology. Some difference is not surprising
because A1 has more connections, and thus its use of ECMP load
balancing is likely more effective than A2.

4.2 How Effective is Rate Throttling?
We deployed three applications in the testbed in Figure 3a: A1

generated a TCP flow from host H1 to host H5; A2 generated a
UDP flow from host H2 to host H9; and A3 generated a UDP flow
from host H6 to host H10. The weights of the applications A1,
A2, A3 were set to 1:3:9 respectively.

Table 2 shows the traffic pattern. During the time 5-35s, A3 was
inactive and thus the TCP flow A1 (weight 1) contended with the
UDP flow A2 (weight 3) for the core link E1, C. From time 35-
65s, the two UDP applications A2 and A3 (with weights 3 and 9)
contended for the core link C,E3. From time 65-95s, the TCP
application A1 contended with the high weight UDP application
but only on the link from edge router E2 to core router C. Thus the
UDP application could only interfere with TCP acknowledgements
for A1 destined to Host H1.

We evaluate the following scenarios.
1. Group Allocation and Rate Throttling: We show that if

we just set static weights locally, then with UDP, bandwidth allo-

Figure 8: Topologies for Stochastic DRR experiments

cation can be suboptimal. In Figure 4, each application received its
weighted share of the network resources. For instance, during the
period 5-35s, A2 got 750 Mbps and A1 got 250 Mbps as they were
sharing the bottleneck E1, C in the ratio 3:1 of their weights. How-
ever, from t=95-125s A1’s TCP flow got close to 725Mbps, which
exceeded the share allocated by its application weight, but since
A2’s UDP flow had a downstream bottleneck on the link C,E3
only 250 Mbps of the UDP flow was “useful” (that is the through-
put of the UDP flow that actually reached the receiver H9). So in
this case, A2 was rate-limited at the ingress switch to 275 Mbps
(250 * 1.1) which results in A1 getting close to 725 Mbps. With-
out rate throttling A1 would have sent at much higher rates and got
dropped at C.

2. No NetShare: We demonstrate that without a bandwidth iso-
lation mechanism, a bandwidth-aggressive application can acquire
much more than fair share. In Figure 5, when A1 and A2 were both
active from t=5-35s, A1’s TCP flow was overwhelmed by A2’s
UDP flow and received zero throughput. Note that from t=65-95s,
A1’s throughput did not reach 1 Gbps although its path from H1
to H5 was not affected by A3’s UDP flow. However, the ACKs
from H5 to H1 shared a link with A3’s UDP flow; some of the
ACKs were dropped, this resulted in A1’s throughput dropping to
sometimes as low as 750 Mbps.

3. Group Allocation Only: Figure 6 shows the impact of omit-
ting Rate Throttling. In the period t=95-125s, A2 and A3 shared
the bandwidth of their shared bottleneck link in the ratio of their
application weights (3:9). Thus A2 only received 250Mbps. Un-
fortunately, A1 also received only 250Mbps because A2 continued
to send greedily at 750Mbps on the E1, C link of which 500Mbps
got dropped at C.

4. Rate Throttling Only: In Figure 7, the behavior was sim-
ilar to Case 1 from t=5-95s. However from t=95-125s, A1 only
achieved 450-500Mbps. This is because A2 was rate-limited at E1
to a little over 500Mbps, so A1 was able to use the remaining band-
width on the E1, C link. Thus rate throttling and fair queuing are
orthogonal and complementary mechanisms.

4.3 Scalability of Stochastic NetShare
A concern with Group Allocation is that it requires a number of

queues equal to the number of applications. To scale beyond 16
queues commonly available today and the 1000’s available shortly
with AFD-based routers [13], we proposed Stochastic NetShare
in Section 2.2. Due to restrictions on the physical queues in the
switch, we had a simulation setup as in Figure 8. The topology had
one core switch C0, four edge switches E1 to E4, and eight servers
S1 to S8 (two servers per edge switch). Note that all links had
equal capacity with an oversubscription factor of 2 at the core. We
had 32 applications and one instance of each application on each
server creating an all-to-all traffic pattern. One application was
“bad”, i.e. with low priority weight and competing aggressively for
bandwidth by opening ten times the number of connections. The
link capacity was B = 100 Mbps. We evaluated the scalability of
Stochastic DRR by varying the number of DRR queues per switch
port Q = 4, 8, 16.

Table 3 shows the application bandwidth at one typical server.
All DRR queues were assigned the same weights independent of
the number of applications being hashed into them. Due to the

ACM SIGCOMM Computer Communication Review 10 Volume 42, Number 3, July 2012



time (sec)
0 30 60 90 120 150

T
hr

ou
gh

pu
t (

M
bp

s)

0

200

400

600

800

1000
App 1

App 2

App 3

Figure 5: No NetShare mech-
anisms
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Figure 6: NetShare with
Group Allocation Alone
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Figure 7: NetShare with Rate
Throttling Alone

T=5 T=10 T=20
Q=4 Bad app (13.6, 3.3) (14.3, 2.6) (12.4, 2.8)

B̄ = 2.3 Good app (2.2, 1.5) (2.2, 1.3) (2.4, 1.4)
Q=8 Bad app (8.9, 2.1) (8.9, 1.9) (9.0, 2.0)

B̄ = 2.7 Good app (2.8, 2.2) (2.3, 1.7) (2.5, 1.8)
Q=16 Bad app (6.7, 1.5) (6.6, 1.6) (6.7, 1.7)

B̄ = 2.9 Good app (2.8, 1.9) (3.1, 2.2) (3.3, 2.5)

Table 3: Scalability of Stochastic DRR: application
bandwidth at one typical server in (mean, stddev) over
time. All queues had equal weights. B̄ = B

N
· Q−1

Q
is the expected bandwidth per application. Ideal band-
width is B

N
= 3.1 Mbps. T is rehashing period (in

seconds).

periodic rehashing process of Stochastic NetShare, the application
rates oscillated, so our evaluation relied on mean and variance of
the rate measurements. As shown in Table 3, the isolation perfor-
mance of NetShare degraded gracefully with decreasing number of
queues. Also, the impact of the bad application declined with addi-
tional queues in the system. The mean was close to our prediction
(the ideal bandwidth is B/N which was around 3.1 Mbps, together
with a degradation of Q−1

Q
, where Q is the number of queues).

Note that periodic rehashing of applications onto DRR queues
reduced variance. Clearly the rehashing period T should neither be
too small (for good stability and minimizing out-of-order packets)
nor too large (for good bias correction).

5. RELATED WORK
The need for QoS in data centers has become apparent in several

recent papers [11]. Seawall [15] performs isolation by enforcing
VM-to-VM rates for VMs belonging to one application/customer
in the hypervisor using congestion feedback. SecondNet [5] pro-
poses a heuristic to map virtual data center specifications into the
physical data center infrastructure with constraints on resource de-
mands. SecondNet uses reservations and hence is complementary
to NetShare. Flowvisor [14] virtualizes a testbed network to allow
multiple experiments to run concurrently but does so using subop-
timal hop-by-hop allocation. The HP QoS Framework [10] allows
network QoS to be implemented centrally but is only a framework
that can, in fact, be used to implement NetShare. Oktopus [2] dis-
cusses a VM placement policy based on the network requirements
for each customer. Bandwidth is reserved for each customer’s VMs
and the fair share for each flow is computed by a centralized con-
troller for that customer. Multiplexing across customers requires
coordination among controllers of different customers or a single
central controller similar to NetShare.

6. CONCLUSIONS
NetShare allows managers to use weights to tune the relative

bandwidth allocation for different services, providing isolation and
statistical multiplexing without changing routers. Managers can

use NetShare with Virtual Disks and Virtual Machines to create
Virtual Data Centers. While NetShare is based on a simple packag-
ing of existing ideas (max-min fair share, stochastic fair queuing,
UDP rate throttling), no such mechanism is used today.

Group allocation works well with only configuration changes at
routers; it can be extended to scale to more applications than the
number of DRR queues available today either using AFD [13] or
stochastic methods. Rate throttling handles UDP applications and
may be simpler than deploying TCP-friendly UDP by modifying
applications. Finally, centralized allocation can implement arbi-
trary bandwidth allocation policies, and can provide stability. We
suggest a simple automatic weight assignment algorithm based on
finding the number of VMs upstream and downstream from a port.
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