
Coterie availability in sites

Flavio Junqueira and Keith Marzullo

Department of Computer Science and Engineering
University of California, San Diego

{flavio,marzullo}@cs.ucsd.edu

Abstract. In this paper, we explore new failure models for multi-site systems,
which are systems characterized by a collection of sites spread across a wide
area network, each site formed by a set of computing nodes running processes.
In particular, we introduce two failure models that allow sites to fail, and we use
them to derive coteries. We argue that these coteries have better availability than
quorums formed by a majority of processes, which are known for having best
availability when process failures are independent and identically distributed.
To motivate introducing site failures explicitly into a failure model, we present
availability data from a production multi-site system, showing that sites are fre-
quently unavailable. We then discuss the implementability of our abstract models,
showing possibilities for obtaining these models in practice. Finally, we present
evaluation results from running an implementation of the Paxos algorithm on
PlanetLab using different quorum constructions. The results show that our con-
structions have substantially better availability and response time compared to
majority coteries.

1 Introduction

There has been a proliferation of large distributed systems that support a diverse set
of applications such as sensor nets, data grids, and large simulations. Such systems
consist of multiple sites connected by a wide area network, where a site is a collection
of computing nodes running one or more processes. The sites are often managed by
different organizations, and the systems are large enough that site and process failures
are common facts of life rather than rare events.

Critical services in such systems can be made highly available using replication.
In data grids, for example, data sets are the most important assets, and having them
available under failures of sites is very desirable. To improve availability, the well-
known quorum update technique can be used. This technique consists of implementing
a mutual exclusion mechanism by reading and writing to sets of processes that intersect
(quorums) [7]. As another example, the Paxos protocol [16] enables the implementation
of fault-tolerant state machines for asynchronous systems. Paxos is a popular choice be-
cause of its ability to produce results when a majority of replicas survive, for its feature
of not producing erroneous results when failures of more than a majority (indeed, up
to a complete failure) occur, and its very weak assumptions about the environment.
Underlying Paxos (and other similar protocols) is the same quorum update technique.

This paper considers quorum constructions for multi-site systems. The problem area
of quorums for multi-site systems is large and not well studied. We address a set of

problems from this area as an early foray. We first give a failure model for multi-site
systems that is simple and has intuitive appeal, and then give a second failure model
that has less intuitive appeal but theoretical and practical interest. Because sites can fail,
the failures of processes are not independent, and so an IID (independent, identically
distributed) model is not appropriate. We define a new metric for availability that is
suitable to non-IID failures, and give optimal quorum constructions for both models.
We discuss the implementability of the two failure models, and discuss an experiment
of running Paxos on PlanetLab [21] that gives some validation of our results.

Related work Quorum systems have been studied for over two decades. The first al-
gorithms based on quorums use voting [8]. Garcia-Molina and Barbara generalized
the notion of voting mechanisms, and proposed the use of minimal collections of in-
tersecting sets, or coteries [7]. Most of the following work (such as [15,18,20]) has
concentrated on how quorums can be constructed to give good availability, load and
capacity assuming relatively simple system properties (such as identical processes and
independent failures) [2,3,19]. Only recently the problem of choosing quorums accord-
ing to properties of the system (such as location) has attracted some attention [9,14].
Of particular interest to our current work are the constructions of [15] and [6]. In [15],
Kumar proposed, to the best of our knowledge, the first hierarchical quorum construc-
tion, and showed that by doing so one can have smaller quorums. The analysis in [15],
however, assumes IID failures. The work by Busca et al. assumes a multi-site system
similar to what we assume here, and their quorum construction [6] is very similar to
our Qsite construction. Their focus, however, was on performance. If one considers the
distribution of response times from a quorum system, performance is often measured
using the average or median, while availability is a property of the tail of the distribu-
tion. Thus, high performance does not necessarily imply high availability. Availability
in quorum systems has been studied before [2,3,19], but we argue here that the previous
metrics are not suitable for multi-site systems. A notable exception is the work by Amir
and Wool [1], which evaluates several existing quorum constructions in the context of
a small, real network.

A network partition is a failure event that leads to one set of non-faulty processes
being unable to communicate with another set of non-faulty processes (and, often, vice
versa). Quorum systems are asynchronous, and so a network partition is treated identi-
cally to slow-to-respond processes. Long-lasting network partitions can make it impos-
sible to obtain a quorum. A recent paper by Yu presents a probabilistic construction that
does increase availability in the face of partitions, but it assumes a uniform distribution
of servers across the network [24]. In comparison, our constructions are deterministic
and make no assumption about distributions of sites.

2 System model

We consider a system of a set P of processes. The processes are partitioned into sites
B = {B1, B2, . . . , Bk}, and between each pair of processes there is a bidirectional
communication channel. Processes can fail by crashing, and a crashed process can re-
cover. Similarly, a site can fail and recover. A site failure represents the loss of a key

resource used by the processes in the site (such as network, power, or a storage server)
or some event that causes physical damage to the equipment on the site (such as loss of
A/C); the processes in the site are all effectively crashed while the site is faulty.

Let E represent the executions of the system. Each execution E ∈ E is a sequence
of system states. Each state s ∈ E of an execution has an associated failure pattern
F (s,E) ⊆ P , which is the set of processes that are faulty in s. If site Bi is faulty in
s, then all of the processes in Bi are in F (s,E). We use NF(E, s) = P \ F (E, s) to
denote the set of non-faulty processes in s. We say that a failure pattern f is valid iff
∃E ∈ E : ∃s ∈ E : f = F (E, s).

We use survivor sets to express valid failure patterns. Survivor sets were introduced
in [11] to provide a more expressive model of process failures. Informally, a survivor set
is a minimal subset of non-faulty processes. There are different ways to define survivor
sets more formally: we have used probabilities [11] and have used the complement of
maximal failure patterns [13]. We use the second one here. This definition does not
rely on probabilities directly, although failure probabilities can be used to determine
survivor sets; we discuss this point later in this paper. The definition is:

Definition 1. Given a set of processes P , a set S is a survivor set if and only if:1∧
S ⊆ P∧
∃E ∈ E : ∃s ∈ E : S = NF(E, s)∧
∀p ∈ S : ∀E ∈ E : ∀s ∈ E : S \ p 6= NF(E, s)

We use SP to denote the set of survivor sets of P , and we call a pair 〈P,SP 〉 a
system profile.

We now repeat a few definitions that have appeared elsewhere and that we use in this
paper. A coterie Q is a set of subsets of P that satisfies the following two properties [7]:
1) ∀Qi, Qj ∈ Q : Qi ∩ Qj 6= ∅; 2) ∀Qi, Qj ∈ Q, Qi 6= Qj : Qi 6⊂ Qj ∧ Qj 6⊂ Qi. The
first property is called 2-Intersection [13], and it says that quorums in a coterie pairwise
intersect. This property guarantees mutual exclusion when executing operations on quo-
rums, such as reads and writes, as every pair of quorums must have at least one process
in common. The second property states that all quorums are minimal. A coterie Q is
dominated if there is a coterie Q′ such that: 1) Q 6= Q′; 2) ∀Q ∈ Q : ∃Q′ ∈ Q′ : Q′ ⊆ Q.
If no coterie dominates a coterie Q, then we say that Q in non-dominated.

A transversal of a coterie is a subset of processes that intersects every quorum in
the coterie. We use T (Q) to denote the set of transversals of the coterie Q. Transversals
are useful for defining the availability of a coterie: a coterie Q is available in a step s of
some execution E if and only if F (s,E) 6∈ T (Q).

3 Computing availability

The availability of coteries can be computed in various ways. One metric is node vul-
nerability which is the minimum number of nodes that, if removed, make it impossible

1 We use the “bulleted conjunction” and the “bulleted disjunction” notation list invented in
TLA+ [17]. In Definition 1, the list corresponds to the conjunction of the statements to the
right of the “

∧
” marks.

to obtain a quorum [3]. A similar metric, edge vulnerability, counts the minimum num-
ber of channels whose removal makes it impossible to obtain a quorum (no connected
component contains a quorum). Both of these metrics are appropriate when failures are
independent and identically distributed (IID) because they measure the minimum num-
ber of failures necessary to halt the system. They are not necessarily good metrics for
multi-site systems. Consider the following three-site system in which a survivor set is
the union of majorities of processes in a site for some majority of sites:2

P = {a1, a2, a3, b1, b2, b3, c1, c2, c3}
B = {a1a2a3, b1b2b3, c1c2c3}
SP = {aiajblbm : i, j, l, m ∈ {1, 2, 3} ∧ i 6= j ∧ l 6= m}

∪ {aiajclcm : i, j, l, m ∈ {1, 2, 3} ∧ i 6= j ∧ l 6= m}
∪ {bibjclcm : i, j, l, m ∈ {1, 2, 3} ∧ i 6= j ∧ l 6= m}

From our system model, processes are pairwise connected. According to the results
in [3], the best strategy for both node and edge vulnerability is then to use quorums
formed of majorities, which for this system is any subset of five processes. By definition,
for every S ∈ SP , there is some step s of some execution E ∈ E such that S =
NF(s,E), where E is the set of executions of 〈P,SP 〉. As P contains nine processes
and every S ∈ SP contains four processes, there are five faulty processes in such a step,
and hence no majority quorum can be obtained. If one uses SP as a coterie, however,
then there is one quorum available in every step, by construction. SP has therefore
better availability than the majority construction.

An alternative to node and edge vulnerability is, given probabilities of failures, to
directly compute the probability of the most likely failure patterns that make it impossi-
ble to obtain a quorum. Probability models, however, can become quite complex when
failures are not IID. To avoid such complexity, we use a different counting metric: the
number of survivor sets that allow a quorum to be obtained. More carefully,

Definition 2. Let 〈P,SP 〉 be a system profile and Q be a coterie over P . The availabil-
ity of Q is given by: A(Q) = |{S : S ∈ SP ∧ P \ S 6∈ T (Q)}|

A coterie Q covers a survivor set S if there is a quorum Q ∈ Q such that Q ⊆ S.
By the definition, A(Q) is hence the number of survivor sets that Q covers.

This is a good metric because in every step s of an execution E, there is at least
one survivor set in SP that does not intersect F (s,E). If a coterie allows a quorum to
be obtained for more survivor sets, then this coterie is available during more steps. As
node vulnerability and edge vulnerability, A() is a deterministic metric and as such has
a similar limitation with respect to probabilities. If we assign probabilities of failure to
subsets of processes, then our metric may lead to wrong conclusions, as there might
be higher available coteries that include discarded survivor sets. For the constructions
and examples we discuss in this paper, however, using this metric gives us coteries with
optimal availability.

If a coterie Q is dominated, then by definition there is some other coterie Q′ that
dominates Q. Under reasonable assumptions, the availability of Q′ is at least as high as
the availability of Q. Thus, we use domination to break ties between coteries that cover
the same number of survivor sets. We say that Q ≺a Q′ iff:

2 We use x1x2 . . . xn as a short notation for the set {x1, x2, . . . , xn}.

∨
A(Q′) > A(Q)∨
(A(Q′) = A(Q)) ∧ Q′ dominates Q

In Section 5, we give quorum constructions that are optimal with respect to this
metric without the tiebreaker rule. We do not discuss how to construct non-dominated
coteries from dominated ones; possible ways to do so are discussed in [4] and [7].

4 Failure models

In this section, we present two failure models that we use to derive quorum construc-
tions. Both models are specific to multi-site systems, and although they both model site
failures, they model different system properties as we discuss in Section 6.

4.1 The multi-site hierarchical model

The first model, which we call the multi-site hierarchical model, decouples site failures
from process failures. The failure model has two components: Fs, which characterizes
the failures of sites, andFp, which characterizes failures within a site. More specifically,
Fs is a set of maximal subsets of sites that can fail simultaneously, |Fs| > 0. Fp is
an array with one entry for each site, where Fp[i] is the set of maximal subsets of
processes that can be simultaneously faulty in site Bi when Bi is not faulty, |Fp[i]| > 0,
i ∈ {1, . . . , |B|}. Given an instance of this model, a set Si ⊆ P is in SP if and only if:

∃FS ∈ Fs :
∧
∀Bj ∈ B \ FS : ∃FP ∈ Fp[j] : Bj ∩ Si = Bj \ FP∧
∀Bj ∈ FS : Si ∩Bj = ∅

The multi-site threshold model proposed in [14] is a threshold-based version of this
model: fs is the maximum number of sites that fail simultaneously, and Fp[i] is the
maximum number of processes that fail simultaneously in site Bi.

4.2 The bimodal model

The bimodal model is similar to the multi-site hierarchical model: it also has two com-
ponentsFs andFp. In general, this model represents settings in which there are multiple
sites (|B| > 1), all sites can fail but one, and if only one site is not faulty, then all pro-
cesses in it are correct. Thus, each site is a survivor set. If multiple sites are non-faulty,
then the non-faulty sites can have faulty processes. We describe these process failures
with Fs and Fp. Finally, we assume that there exists at least one site Bi such that
Bi 6∈ FS for every FS ∈ Fs. Although Bi is not in any element of Fs, it can still fail
in the case that there is one non-faulty site Bj with no faulty processes, and j 6= i. This
assumption is necessary to derive an optimal construction, as we explain in Section 5.2.

The bimodal model contains the same failure patterns as the multi-site hierarchi-
cal model for the same components Fs and Fp, but it contains |B| additional failure
patterns, one for each site Bi. More specifically, a set Si ⊆ P is a survivor set for an
instance of this model if and only if:

∨
∃FS ∈ Fs :

∧
∀Bj ∈ B \ FS : ∃FP ∈ Fp[j] : Bj ∩ Si = Bj \ FP∧
∀Bj ∈ FS : Si ∩Bj = ∅∨

∃Bj ∈ B : Si = Bj

To construct a proper set of survivor sets, we need to impose the following con-
straint: ∀FS ∈ Fs : (|B \FS| > 1)∧ (∀Bi ∈ FS : Fp[i] 6= {∅}). Without this constraint, the
set of survivor sets might not be minimal, violating minimality.

The bimodal model does not have the intuitive appeal of the multi-site hierarchi-
cal model. Nonetheless, we argue in Section 6 that for at least two-site systems, it is
practical. In addition, it has theoretical interest, which we describe in Section 5.

5 Quorum constructions

In this section, we use the failure models described to derive quorum constructions that
are optimal with respect to the metric A(). The first construction covers all survivor
sets in SP by using SP itself. We provide a necessary and sufficient condition for this
to hold. The other construction is for systems in which it is not possible to cover all
survivor sets. This is important when survivor sets do not pairwise intersect. This con-
struction is also optimal with respect to the metric A() except that the resulting coterie
may be dominated.

5.1 Achieving optimal availability

Let 〈P,SP 〉 be a system profile, and suppose that we use the multi-site hierarchical
model to determine SP . To cover all survivor sets in SP , it is necessary and sufficient
that Fs and Fp satisfy the following property:

∀FS, FS′ ∈ Fs : ∃Bi ∈ B :
∧

Bi 6∈ FS∧
Bi 6∈ FS′∧
∀FP, FP′ ∈ Fp[i] : ∃p ∈ Bi : p 6∈ FP ∧ p 6∈ FP′

In words, we require that there is at least one site shared between any two survivor
sets, and within that site there is at least one process that is shared between the two
survivor sets. To show that this property is necessary, suppose that this property is vi-
olated. That is, there are FS, FS′ in Fs such that, for every Bi ∈ B, at least one of
the following holds: 1) Bi ∈ FS; 2) Bi ∈ FS′; 3) there are FP, FP′ ∈ Fp[i] such that
for every p ∈ Bi, either p ∈ FP or p ∈ FP′. This implies that there are at least two
disjoint survivor sets S and S′ in SP . Now suppose by way of contradiction that there
is a coterie Q that covers all survivor sets in SP , i.e., A(Q) = |SP |. We then have that
there is a quorum Q ∈ Q such that Q ⊆ S. Similarly, there is a quorum Q′ ∈ Q such
that Q′ ⊆ S′. Thus, if S ∩ S′ = ∅, then Q ∩ Q′ = ∅. We conclude that Q cannot be a
coterie because it violates the 2–Intersection property.

To see that the property is sufficient is straightforward: by the definition of survivor
sets, no survivor set is strictly contained in another, and the intersection property is
guaranteed by assumption.

If we use SP as a coterie, then we have achieved the best possible value for our
availability metric because it covers all the survivor sets (i.e., A(SP) has the maximum
value of |SP |). Using all the sites in the system, however, may be unnecessary. For
example, if the system satisfies k–Intersection for some k > 2, then we may be able to
construct a coterie over fewer sites. 3 We illustrate this point with a threshold version
of the multi-site hierarchical model. Suppose that every set FS ∈ Fs has the same size
fs ≥ 0, and that for every Bi ∈ B and every FP ∈ Fp[i], we have that |FP| = t for
some nonnegative integer t. Then, if |B| ≥ 2fs + 1, we only need to select a subset
B′ ⊆ B of 2fs + 1 sites. For each site Bi ∈ B′, we select 2t + 1 processes from Bi. A
quorum is obtained by selecting a majority of processes from a majority of sites in B′.

We call this construction Qsite. As an example, suppose that |B| = 4, fs = 1, and
for each site Bi, we have that |Bi| = 4 and t = 1. We then use 3 sites, as 2fs + 1 = 3,
and 3 processes from each site, as 2t + 1 = 3. From the construction, a quorum in Q is
hence composed of four processes, two from a site Bi and two from a site Bj , i 6= j.
This system has nine processes, and so a majority would consist of five processes. For
both majority and Qsite, the coterie is available as long as there are fs + 1 = 2 non-
faulty sites. Majority, however, not only requires that two sites are non-faulty, but also
that at least one of the sites contains no faulty processes. A coterie generated by Qsite
does not have this same constraint, and it is available as long as there are two non-faulty
sites, each non-faulty site containing two non-faulty processes. This happens because
majority uses larger quorums, and it tolerates fewer process failures.

It is not hard to see that Qsite requires fewer processes compared to majority coter-
ies, and that the difference increases with the value of fs (see [14] for details). Using
fewer processes in each quorum reduces the load handled by any particular process, if
quorums are uniformly selected, and increases the total capacity of the system [19].

5.2 The bimodal construction

It may be the case that the set of survivor sets do not satisfy 2–Intersection, and so can
not be used as a coterie. For example, in the bimodal model, for each site Bi, Bi is a
survivor set, and since sites are disjoint, SP is not a coterie.

One can construct a coterie from any SP , though, by simply discarding survivor sets
until remaining sets satisfy 2-Intersection. This procedure clearly will terminate with a
coterie since a single set is a coterie of one quorum. To obtain a coterie that is optimal
with respect to A(), we need to determine the minimal set S ⊂ SP such that SP \ S is
a coterie. The problem of computing the minimum number of survivor sets that have to
be removed from SP to obtain a coterie, however, is in general NP-Complete [12].

Under the bimodal model, it is simple to determine which survivor sets to discard.
Consider the following intersection property that we call k-bimodal Intersection, k > 1:

∀ distinct S1, S2, . . . , Sk+2 ∈ SP :
∨
∃i, j ∈ [1, k] : Si ∩ Sj 6= ∅∨
Sk+1 ∩ Sk+2 6= ∅

Assume 〈P,SP 〉 follows the bimodal failure model. According to the model, it con-
tains |B| survivor sets that are disjoint, one for each site Bi ∈ B. Also by the failure

3 k–Intersection generalizes 2–Intersection, and states that all subsets of k quorums intersect.

model, there is a site Bi such that Bi 6∈ FS, for every FS ∈ Fs. Let Si be the survivor
set consisting of the processes of Bi. If 〈P,SP 〉 also satisfies k-bimodal Intersection,
k = |B|, then we know that any two survivor sets Sa, Sb in SP \ {S1, S2, . . . Sk} inter-
sect, and that Si ∩ Sa 6= ∅ and Si ∩ Sb 6= ∅. Since this is true for any Sa and Sb, the set
Q` = {Si}∪ (SP \ {S1, S2, . . . Sk}) is a coterie, and A(Q`) = |SP | − (k− 1). This is
clearly optimal, since all of the remaining k − 1 survivor sets do not intersect Si. Also,
if 〈P,SP 〉 does not satisfy k-bimodal Intersection, then there is no coterie that covers
|SP | − (k − 1) survivor sets, as there is no subset of SP of size |SP | − (k − 1) that
pairwise intersect. We call this construction Bsite.

6 Failure models in practice

The failure models presented in Section 4 are abstract views of failures in a multi-
site system. In this section, we present probabilistic models that we use to extract the
parameters of our failure models. First, we use data from a real system to argue why we
believe site failures are common in multi-site systems. In the remainder of the section,
we discuss process failures for the two models we propose in this paper. For each model,
we discuss a framework based on a Markov chain and illustrate with an example.

6.1 Site failures
To understand how sites fail in a multi-site system, we studied the failure data of a
particular system, the BIRN Grid [5,14]. We obtained monthly availability data for
15 BIRN sites from January 2004 through August 2004.4 According to this data, a site
becoming unavailable is surprisingly common. On average, each site did not have 100%
availability during five of the eight months, and in any given month several sites had
unplanned outages and became unavailable.

Figure 1 summarizes the availabil-

< !

Fig. 1: Number of sites with availability below α.
The error bars correspond to the standard error.

ity of sites. For each month, we count
the number of sites that had availabil-
ity below some value α, for different
values of α. We then compute the av-
erage across the eight months for each
value. This average is what we plot in
Figure 1. From the figure, on average
over ten sites do not have 100% avail-
ability in a month.

In trying to determine what causes
low monthly site availability, we iden-
tified a few reasons for a site to be
unavailable, observed in BIRN sites,
in TeraGrid sites [23], and in a local
computer cluster. They are (in no par-
ticular order): Software problems; Power outages; Failure of shared resources (e.g. stor-
age); Flooding resulting from broken pipes; Local campus network problems; Loss of
air-conditioning. We are currently attempting to further quantify these failures.

4 This data is consistently collected by the BIRN staff, and made available through their web
page. Availability figures are based on active probing (via ping) and on notifications generated
by the Storage Resource Broker (SRB) service.

6.2 Obtaining the multi-site hierarchical model

The multi-site hierarchical model has two components: Fs that describes sites failures,
and Fp that describes the failures of processes within a site. We can determine Fs

using, for example, data such as described in Section 6.1. To determine Fp, we need
a model of failures within a site. Even when sites are not faulty, individual processes
can fail due to, for example, hardware faults. In many multi-site systems, hardware and
software platforms are the same across the computing nodes (where processes run) of
a site because of the difficulty in managing a heterogeneous environment. We hence
assume that the reliability of processes within a site is uniform and independent. Of
course, this assumption may be violated by viruses and worms [10], but their effects are
outside the scope of this work.

We can model failures in sites using a Markov chain [22]. Instead of modeling the
whole system, we have chosen to model sites individually. We assume that sites operate
independently, and that outside of expected message communication the operation of a
process at a site has little or no influence on the operation of a process at another site.
As a consequence, sites change their failure states concurrently.

As process failures are independent, states of the model correspond to the number
of faulty processes in a site, and the probability of undergoing a transition from a state
with f faulty processes to a state with f +1 process is p. Repair transitions (from f +1
to f), however, may have probabilities that change with the value of f . For example,
resources to repair processes can be progressively allocated as more processes fail. As
a result, the repair probability remains constant or even increases with the value of f .

Figure 2 depicts the chain we just described.

. . . .0 1 2 n

p ppp

r0 r1 rn-1r2

Fig. 2: Model for a single site with n
process.

Assuming that no transition probability is zero,
we have that this chain is irreducible and ergodic.
According to the model, processes fail indepen-
dently, but the probability of repair (undergoing a
transition from state f + 1 to f) may change with
the value of f . In our model, we use rf to denote
the probability that the site undergoes a transition
from state f + 1 to state f .

Repairs in different sites happen independently, and hence the probability of a re-
pair transition does not increase with failures in different sites. That is, if a process
fails in site Bi and another in site Bj , i 6= j, they do not mutually affect their repair
probabilities.

Using this model, we can easily compute a threshold on the number of failures
for each site. First, we need to determine a target degree of reliability ρ, which is the
probability that the number of simultaneous process failures in any site is higher than
expected. Because our model is an irreducible ergodic Markov chain, we can compute
the limiting probabilities of all states [22]. That is, the probability of being at a state j
after a long time has elapsed, independent of the initial state i (πj = limn→∞ Pn

ij). Us-
ing these limiting probabilities, we can determine a threshold for each site: the threshold
for a site Si is the number of failures associated to the first state that has a limiting prob-
ability smaller than ρ. This is implies that any state with failures above the threshold
has probability lower than ρ.

To illustrate the process of obtaining a threshold for a site, we give an example. Let
B be a collection of sites such that each site has three processes. Suppose that the prob-
abilities of failure and repair are the same across all the sites. These probabilities are as
follows: p = 0.01, r0 = 0.3, r1 = 0.4, and r2 = 0.5. Computing the limiting prob-
abilities, we have the following: π0 = 0.96695, π1 = 0.03223, π2 = 0.00080, π3 =
0.00002. If ρ is 0.001, for instance, we have that the threshold is one for every site, and
Fp is as follows: Fp[i] = {ai : ai ∈ Bi},∀Bi ∈ B.

Note that the reverse order is also possible: choose a value for t and compute the
corresponding probability of violating this threshold. Using one method or the other
depends on design constraints.

6.3 Obtaining the bimodal model

From the description of the bimodal model in Section 4, when k − 1 sites fail, the
remaining site has no faulty processes. This means that the processes of each site com-
prise a survivor set. At the same time, it is possible that all available sites have faulty
processes. We model this with a framework based on a Markov chain. Due to the com-
plexity of this model, our framework is only meant to give a more practical view rather
than serve as a general framework.

As in the previous section, the basic idea consists in determining probabilities for
the possible states of the system, and to use a degree of reliability (a value ρ ∈ [0, 1]) to
determine the states that we consider as normal states. Compared to the chain from the
previous section, a state corresponds to failures across all the sites. We then label states
with counters, one for each site. That is, we have one state for each possible value of
the string f1 · f2 · . . . · fk, where 0 ≤ fi ≤ |Bi| and Bi ∈ B. Using a directed graph as a
way of visualizing the model, we have that the states are represented by nodes, and the
transitions by edges, where each edge has a weight that is the transition probability. In
this model, we have three types of edges: site-failure edges, process-failure edges, and
repair edges. A site-failure edge corresponds to the transition from a state in which a
given site has one or more available processes to one in which all processes in this site
are faulty. Using probability notation, let Xs be the random variable representing the
state at step s. We then have that:

Pr{Xs+1 = f1 · · · |Bi| · fi+1 · · · fk|Xs = f1 · · · fi · fi+1 · · · fk} = ps, fi < |Bi| − 1

Pr{Xs+1 = f1 · · · |Bi| · fi+1 · · · fk|Xs = f1 · · · |Bi| − 1 · fi+1 · · · fk}= pf + ps, fi

= |Bi| − 1

where pf is the probability of a process failure, and ps is the probability of a site failure.
As a simplifying assumption, we have that ps and pf are constant across the sites. A
process-failure edge is a transition from a state in which some site Bi has fi faulty
processes to a state in which Bi has fi+1 faulty processes, fi < |Bi|. Using probability
notation, we have:

Pr{Xs+1 = f1 · · · fi + 1 · · · fk|Xs = f1 · · · fi · · · fk} = pf , fi < |Bi|

Finally, we call a repair edge a transition from a state in which fi + 1 processes of
some site Bi are faulty to a state in which fi processes of Bi are faulty. That is:

Pr{Xs+1 = f1 · · · fi · · · fk|Xs = f1 · · · fi + 1 · · · fk} = pr(f1 · · · fi + 1 · · · fk), fi ≥ 0

where pr() is a repair probability mapping. Different from ps and pf , we assume that
the repair probability may differ for different states. In fact, this control over repair
probabilities is what we use to guarantee that the properties of the bimodal model hold.
An additional assumption that completes the model is that all other possible transitions
have zero probability.

Figure 3 illustrates a model for two iden-

n0

t 0 t1 t t

00 01 0t

10 11 1t

0n

n1 nt nn

tn

1n

Fig. 3: Model for two sites.

tical sites B1 and B2 of n processes each. In
the figure, we mark the undesirable states by
including them in a gray region. These states
are the ones that violate the Bsite construc-
tion, and therefore must have low probability.
To determine the probability of a state, we use
also limiting probabilities.

In this model, we assume that probabili-
ties of failure are constant, and they cannot
be changed as the system changes states. We
assume, however, that we are able to have dif-
ferent repair probabilities for different states.
As a physical explanation, repair probabilities
change as the effort spent to repair the system
changes. Thus, we can increase the repair probability for an undesirable state, thereby
decreasing the probability of being in this state. In practice, this means that the amount
of physical resources used to repair processes must increase with the number of failures
in the system. It is then necessary to be able to detect failures. A failure detector for this
application, however, can be unreliable as the only side-effect is to have more resources
used to repair processes unnecessarily. Having an unreliable failure detector implies that
the repair probabilities have to take into account false positives. We therefore assume
that it is possible to bound and estimate the frequency with which the failure detector
makes mistakes.

As an example, suppose that n = 3, ps = 0.004, pf = 0.001, and pr(f1 ·f2) = 0.1,
if f1 · f4 is outside the gray region, and pr(f1 · f2) = 0.4, if f1 · f2 is inside the
gray region. We have chosen these values using the following guidelines. First, as we
observed in Section 6.1, site failures are common. We then assume that the probability
of a site failure is higher than of a process failure, although we kept them in the same
order of magnitude. Second, we assume that repair probabilities are much higher than
the failure probabilities.

One still needs to choose a value for t, as repair probabilities depend upon this value.
For such a small system, this choice is constrained to be either t = 0 or t = 1. If t is
greater than 1, then the 2-bimodal intersection property cannot be satisfied, and we are
not able to construct a coterie using the technique proposed in Section 5. We therefore

assume that t = 1, and we have the following limiting probabilities:

M =

 0.7815 0.0391 0.0332 0.0344
0.0391 0.0020 0.0004 0.0004
0.0332 0.0004 0.0003 0.0004
0.0344 0.0004 0.0004 0.0004

where M [f1 + 1, f2 + 1] is the limiting probability of state f1 · f2. More specifically,
we have that πf1·f2 = M [f1 + 1, f2 + 1].

Suppose now that a1, a2, a3 are the processes on one site, b1, b2, b3 are the processes
on the other site, and 4 × 10−4 < ρ < 2 × 10−3. We have that: 1) Fs = {∅}; 2)
Fp[1] = {ai : ai ∈ B1}; 3) Fp[2] = {bi : bi ∈ B2}. The set of survivor sets is as
follows:

SP = {a1a2a3, b1b2b3} ∪ {aiajblbm : i, j, l, m ∈ {1, 2, 3} ∧ i 6= j ∧ l 6= m}

and from the Bsite construction, we have, for example, the following coterie:

Q = {a1a2a3} ∪ {aiajblbm : i, j, l, m ∈ {1, 2, 3} ∧ i 6= j ∧ l 6= m}

which is dominated by:

Q′ = {a1a2a3} ∪ {aibjbl : i, j, l ∈ {1, 2, 3} ∧ j 6= l}

and we have by definition that Q ≺a Q′. From the matrix M , observe that Q′ is
unavailable only in state 30, considering only allowed states (states that have probabil-
ity greater than the degree of reliability). This is optimal as there is no coterie that is
available for both states 30 and 03.

Although the system of the example is a simple one, it illustrates well that the bi-
modal model is implementable. We believe that the results can be generalized for two-
site systems with more processes, but it is an open question whether there is a practical
implementation for systems with more than two sites.

7 Evaluating coteries on PlanetLab

To evaluate the different choices for quorums in a multi-site system, we conducted an
experiment on PlanetLab using an implementation of the Paxos algorithm [16]. In brief,
Paxos assumes that processes have one or more of the three following roles: Proposer,
Acceptor, and Learner. Proposers propose ballots that are accepted by Acceptors. To
propose, a Proposer has to read from and write to a quorum of Acceptors. Once an
Acceptor accepts a ballot, it notifies the set of Learners. A Learner decides upon a value
once it receives notifications from a quorum of Acceptors.

In our experiment, we have three settings. In all settings, one single host (a UCSD
host) has the roles of both a Proposer and a Learner, whereas the Acceptors are Planet-
Lab hosts spread across three sites (UC Davis, UT Austin, Duke). The settings are:

3Sites: One host from each site. A quorum consists of any set of two hosts. This is the
Qsite construction, for fs = 1, and t = 0;

3SitesMaj: Three hosts from each site. A quorum consists of majorities of hosts from
two sites, and it has size four. This is the Qsite construction for fs = 1, and t = 1;

SimpleMaj: Three hosts from each site. A quorum consists of any simple majority of
sites. That is, any subset of five Acceptors.

For each setting, we have the Proposer issuing a new ballot every 15 minutes, and
we log the time it takes to decide upon a value on this ballot. To implement a reliable
channel, we create a new thread for every message sent, and this thread tries to send
the message through a TCP connection until it succeeds. As a consequence, we have
that every message sent by one process to another is eventually received, as long as the
receiving process eventually recovers if it fails.

To register failures, every time

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4

%
 o

f
b

a
llo

ts
 (

c
u

m
u

la
ti
v
e

)

Latency in seconds

3Sites
3SitesMaj
SimpleMaj

Fig. 4: Cumulative latency distribution.

establishing a TCP connection to an-
other host times out, we log it to
a file. A failure in this case is the
inability to reach the Acceptor, not
necessarily implying that the host
has crashed. That is, the unavailabil-
ity of a host may be caused by a net-
work partition.

We had these three settings run-
ning in parallel for 27 days in April
2005. Figure 4 shows part of the cu-
mulative distribution function for the
latency of reaching agreement on each
ballot. We also show in Table 1 the percentage of samples with value greater than 4s.

It is not surprising that 3Sites has best response time for the average case, followed
by 3SitesMaj and SimpleMaj, since quorums have fewer Acceptors in this exact order.
However, the graph shows that there is a point (around 3.5s) in which the curve for
3SitesMaj crosses 3Sites. This implies that there are fewer samples for 3SitesMaj with
latency greater than 3.5s than for 3Sites. As the tail of the distribution for 3SitesMaj
contains fewer samples, it has best availability among the three in this experiment.

To understand why this is the case, we need to Latency > 4s (%)
3Sites 0.0020

3SitesMaj 0.0016
SimpleMaj 0.0057

Table 1: Samples with value greater
than 4 seconds.

understand what components are involved in de-
ciding upon a ballot. The latency of a ballot has
two main components: message latency and pro-
cess failures. From the graph, the message latency
component dominates until 3.5s. After 3.5s, the
delay is mostly caused by the inability to reach
enough Acceptors. Having more processes increases
the latency for 3SitesMaj and SimpleMaj compared to 3Sites for values under 3.5s,
where the message latency component has more weight. On the other hand, 3SitesMaj
presents better response time for values greater than 3.5s, when there are process fail-
ures. Thus, there is a tension between obtaining good response time on average and
having a larger percentage of the samples within a bounded response time. This infor-
mation is important, for example, when determining the time-out for a quorum-based
service. Considering our three settings, if a time-out value greater than 3.5s is chosen,
then 3SitesMaj is likely to time out less often than 3Sites and SimpleMaj. Finally, an

interesting observation is that SimpleMaj not only had the worst average response time,
but also had the largest percentage of samples with response time greater than 4s. This
indicates that using majority quorums is a poor choice for multi-site systems.

We also counted the number of ballots for which the Proposer could not initially
contact enough Acceptors to obtain a quorum, and the decision on the ballot was there-
fore delayed until enough Acceptors were available. When this happens to a ballot, we
say that this ballot is postponed. For each setting, we have the following:

3Sites: There were 3 postponed ballots;
3SitesMaj: There were 2 postponed ballots. Only for one of these ballots, there would

be one quorum available in the simple majority scheme;
SimpleMaj: There were 4 postponed ballots. For all these ballots, using the majorities

of two sites would give us an available quorum.

The data presented in this section is perhaps not conclusive because the number of
failures observed was too small to be statistically valid. Moreover, PlanetLab is not a
production system in the sense that sites are not designed to be highly available, and
node repair is often leisurely. On the other hand, the results presented do not contradict
any of our assumptions, thus indicating that our models may be suitable even for multi-
systems such as PlanetLab.

8 Conclusions

This paper is a first step into the practical construction of coteries for multi-site sys-
tems. We base one coterie construction on a failure model that we motivate from failure
measurements from a deployed multi-site system and from a Markov model. We also
consider a weaker failure model that has some theoretical and practical interest. We
define optimality by introducing a metric that is suitable to dependent failures, and we
show that our quorum constructions are optimal with respect to this metric.

Being a first step, this paper leaves some questions unanswered. First, our multi-site
hierarchical model is intuitive and is based on some failure data from a real system. How
typical is this system? Is the model broadly applicable? Second, our bimodal model
is based on the idea of having different repair probabilities for different states. This
technique, which essentially integrates operating procedures with the failure model,
appears to be a potentially powerful new direction for the design of novel and efficient
protocols. Finally, we describe a method of building a coterie from survivor sets that do
not satisfy 2-Intersection. The survivor sets are defined by some target availability, and
the availability of the quorum system is reduced by discarding survivor sets. How does
this strategy compare with one in which the initial target availability is increased until
the survivor sets satisfy 2-Intersection?

Acknowledgments We would like to express our gratitude to Geoff Voelker and the
anonymous reviewers for valuable comments on this paper. Support for this work was
provided by AFOSR MURI Contract F49620-02-1-0233.

References

1. Y. Amir and A. Wool. Evaluating quorum systems over the Internet. In Proceedings of the
26th IEEE FTCS, pages 26–37, Sendai, Japan, June 1996.

2. Y. Amir and A. Wool. Optimal availability quorum systems: Theory and practice. Informa-
tion Processing Letters, 65(5):223–228, Mar. 1998.

3. D. Barbara and H. Garcia-Molina. The vulnerability of vote assignments. ACM Transactions
on Computer Systems, 4(3):187–213, Aug. 1986.

4. J. Bioch and T. Ibaraki. Generating and approximating nondominated coteries. IEEE Trans-
actions on Parallel and Distributed Systems, 6(9):905–914, Sept. 1995.

5. The Biomedical Informatics Research Network (BIRN). http://www.nbirn.net.
6. J.-M. Busca, M. Bertier, F. Belkouch, P. Sens, and L. Arantes. A performance evaluation of

a quorum-based state-machine replication algorithm for computing grids. In Proceedings of
the 16th IEEE SBAC-PAD’04, Foz do Iguaçú, PR, Brazil, Oct. 2004.

7. H. Garcia-Molina and D. Barbara. How to assign votes in a distributed system. Journal of
the ACM, 32(4):841–860, Oct. 1985.

8. D. Gifford. Weighted voting for replicated data. In Proceedings of ACM SOSP, pages 150–
162, Pacific Grove, CA, USA, Dec. 1979.

9. S. Gilbert and G. Malewicz. The Quorum Deployment Problem. In Proceedings of OPODIS,
pages 218–228, Grenoble, France, Apr. 2004.

10. F. Junqueira, R. Bhagwan, A. Hevia, K. Marzullo, and G. M. Voelker. Surviving Internet
catastrophes. In Proceedings of USENIX Tech. Conference, General Track, pages 45–60,
Anaheim, CA, USA, Apr. 2005.

11. F. Junqueira and K. Marzullo. Synchronous consensus for dependent process failures. In
Proceedings of the 23rd IEEE ICDCS, pages 274–283, Providence, RI, USA, May 2003.

12. F. Junqueira and K. Marzullo. Coterie availability in sites (extended version). Technical
report, UC San Diego, La Jolla, CA, USA, June 2005.

13. F. Junqueira and K. Marzullo. Replication predicates for dependent-failure algorithms. In
Proceedings of the 11th Euro-Par Conference, LNCS 3648, pages 617–632, Lisbon, Portu-
gal, Aug. 2005.

14. F. Junqueira and K. Marzullo. The virtue of dependent failures in multi-site systems. In
Proceedings of the IEEE Workshop on Hot Topics in System Dependability, Supplemental
volume of DSN’05, pages 242–247, Yokohama, Japan, June 2005.

15. A. Kumar. Hierarchical Quorum Consensus: A new algorithm for managing replicated data.
IEEE Transactions on Computers, 40(9):996–1004, Sept. 1991.

16. L. Lamport. The part-time parliament. ACM Transactions on Computer Systems, 16(2):133–
169, May 1998.

17. L. Lamport. Specifying systems: The TLA+ language and tools for hardware and software
engineers. Addison-Wesley, 2002.

18. M. Maekawa. A
√

n algorithm for mutual exclusion in decentralized systems. ACM Trans-
actions on Computer Systems, 3(2):145–159, May 1985.

19. M. Naor and A. Wool. The load, capacity, and availability of quorum systems. SIAM Journal
on Computing, 27(2):423–447, Apr. 1998.

20. D. Peleg and A. Wool. Crumbling Walls: A class of practical and efficient quorum systems.
In Proceedings of ACM PODC, pages 120–129, Ottawa, Ontario, Canada, Apr. 1995.

21. The Planetlab testbed. http://www.planet-lab.org/.
22. S. Ross. Introduction to probability models. Harcourt Academic Press, 2000.
23. The TeraGrid project. http://www.teragrid.org/.
24. H. Yu. Signed Quorum Systems. In Proceedings of the 23rd ACM PODC, pages 246–255,

St. John’s, Newfoundland, Canada, July 2004.

http://www.nbirn.net
http://www.planet-lab.org/
http://www.teragrid.org/

