
When You Don’t Trust Clients: Byzantine Proposer Fast Paxos

Hein Meling∗, Keith Marzullo†, and Alessandro Mei‡
∗Department of Electrical Engineering and Computer Science, University of Stavanger, Norway
†Department of Computer Science and Engineering, University of California San Diego, USA

‡Department of Computer Science, Sapienza University of Rome, Italy
Email: hein.meling@uis.no, marzullo@cs.ucsd.edu, mei@di.uniroma1.it

Abstract—We derive a consensus protocol for a hybrid
failure model. In this model, clients are Byzantine faulty and
servers are crash faulty. We argue that this model is well
suited to environments where the servers run within one
administrative domain, and the clients run outside of this
domain. Our consensus protocol, which is derived from crash
Paxos, provides low latency for client requests, tolerates any
number of (Byzantine) faulty clients, up to 1/3 (crash) faulty
servers, and does not rely on computing costly signatures in the
common case. It can be used to build state machine replication
that provides a highly available service.

I. INTRODUCTION

State machine replication is a general approach for construct-

ing fault-tolerant services, and a key protocol underlying

state machine replication is consensus. The set of Byzantine

failures is so large that it has been applied for masking the

effects of compromised systems, and so Byzantine-tolerant

consensus has been used to construct systems that are meant

to ameliorate the effect of compromise (see [4] among many

others). In the Byzantine model, there is no trust among

processes: any process can behave in an arbitrarily faulty

manner. However, in multi-site systems, processes executing

within an administrative domain typically have a measure of

mutual trust. This is because such processes share fate: for

example, if a process in a domain is compromised, then

other processes—perhaps all of them—can be compromised

as well, and the local services they rely upon may be

compromised. Byzantine-tolerant consensus can only mask

the effects of a fraction of the processes exhibiting Byzantine

failures. So, one has to be careful when thinking about

using Byzantine-tolerant consensus to mask failures arising

from processes that are in the same domain and have been

compromised.

Insider attacks are examples of attacks that are hard to

mask using Byzantine-tolerant consensus. In practice, other

tools are used to detect and recover from an attack on an

administrative domain. These tools, which include intrusion

detection and sandboxing with virtual machines, are far from

perfect, but they are regularly used in practical systems.

Outsider attacks are waged by communication. In this pa-

per, we consider a service architecture that consists of three

levels: (1) clients, which are untrusted; (2) proxies, which are

processes that communicate directly with clients and so are

vulnerable to outsider attack; (3) servers, that communicate

with proxies and use replication to mask benign failures. The

servers assume the proxies to be Byzantine faulty, because

they can be compromised. But, the communication path

between clients and proxies is narrow, reducing the ability

of the proxies to be used to wage an attack on the servers.

If such an attack on servers does happen, then it would be

treated like an insider attack on the servers: using the tools

mentioned above for detection and recovery.

We develop a consensus protocol, amenable for state ma-

chine replication, based on this service architecture. We call

this protocol Byzantine Proposer (BP) Fast Paxos and de-

velop it from Paxos with a set of refinements. BP Fast Paxos

provides low latency for client requests, can tolerate any

number of (Byzantine) faulty proxies, up to 1/3 (crash)

faulty servers, and can protect itself against denial of service

attacks waged by clients or proxies.

II. SYSTEM MODEL

We assume the classic asynchronous system model in which

the relative speed of processes and communication delay is

unbounded, and clocks are not synchronized. The network

is unreliable, allowing messages to be dropped, reordered

or duplicated. However, we assume links are fair, meaning

that if a message is sent infinitely often it will be received

infinitely often. Our algorithms rely on reliable links, which

can be implemented over fair links. A message receiver

knows who the sender is; that is, messages must be authen-

ticated in order to validate their origin. Note that, message

authentication can be implemented efficiently by using a

shared secret (symmetric) key for each node pair, instead

of costly digital signatures.

The protocol is described, akin to Paxos [13], in terms

of the following agent roles: proposers, acceptors, and

learners. Paxos makes no assumption about the placement

of these agents, but in a typical replicated state machine

configuration, all server processes play all roles, while client

processes interact with the proposers. In BP Fast Paxos, the

choice of where to place the agents is dictated by our service

architecture. Figure 1 illustrates our service architecture with

an example agent configuration and their respective trust

domains. In our architecture, a proposer is a proxy and

is placed at the data center edge where it is more prone

2012 32nd IEEE International Conference on Distributed Computing Systems

1063-6927/12 $26.00 © 2012 IEEE

DOI 10.1109/ICDCS.2012.38

193

c0 c1 c2 . . .

p(0) p(1) . . . p(n)

a0

l0

a1

l1

a2

l2

a3

l3

Clients

Proposers

Servers

Figure 1. Proposers (proxies), p(k), mapped to data center edge nodes.
Rectangular boxes represent different trust domains. Rounded boxes repre-
sent Paxos agents, clients, or servers (acceptors ai, learners li).

to attacks, and thus can become Byzantine. Acceptors are

servers and may only experience crash failures because

they are better protected, e.g. by firewalls. Servers are also

learners. An alternative architecture in which proposers are

placed at clients may also be possible, but is not considered

in this paper.

There are issues that arise with such a service architecture

in which clients and proposers are separated. For example, a

proposer can construct a man-in-the-middle attack [22]; this

can be thwarted by establishing a session key between the

client and the servers using public-key based signatures (this

is both secure and efficient, since the session key can then be

used by the client to submit a long sequence of commands).

A client needs to communicate with the proposer that has

the role of leader (described below); this can be done, for

example, by using multicast to all the proposers, by receiving

a hint from a server, or by redirection among proxies. Each

approach has its benefits and drawbacks, and are outside of

the scope of this paper.

We assume that there are np > tp proposers, na > 3ta
acceptors, and nl learners, where tp and ta denote the

maximum number of Byzantine faulty proposers and crash
faulty acceptors, respectively. The number of learners nl

is application dependent, but our protocol requires that

acceptors also be learners to detect misbehaving proposers.

Hence, we have that nl ≥ na.

The protocol is a general consensus protocol, and it can

be used to implement state machine replication. We assume

the existence of mechanisms for agent membership manage-

ment [16], for example as commands to the state machine.

We also assume key distribution mechanisms to support

message authentication and signatures. We assume that

cryptographic primitives cannot be trivially circumvented.

For simplicity, our initial description of BP Fast Paxos rely

on digital signatures, but we later show that these can be

replaced by MAC-based authenticators instead. Finally, we

assume that Byzantine participants are not able to forge

signatures or authenticators, and correct participants do not

divulge any key information that would otherwise enable an

attack.

As mentioned above, our protocol can tolerate an arbitrary

number of faulty proposers. And even if all proposers are

faulty, non-faulty learners will always observe a consis-

tent system state. However, liveness can be violated if all

proposers are faulty. Faulty proposers are detected using

a muteness augmented ♦S failure detector, as we explain

in Section V-C. Moreover, a faulty client may propose

disruptive commands that will be learned and executed by

the system, but consistency among correct learners is never

violated under the given assumptions. Prohibiting Byzantine

faulty clients is of course impossible, but its risks can be

reduced by using access control mechanisms on clients [19].

Applications using the protocol might also exploit semantic

knowledge about the proposal values to detect misbehaving

clients.

BP Fast Paxos is a refinement from Paxos, thus in the

remainder of the paper, we refer to Paxos agents rather than

to clients, proxies, and servers.

III. CONSENSUS AND PAXOS

This section defines consensus and gives a brief overview

of Paxos and Fast Paxos. The objective of a distributed

consensus algorithm is to have a single value chosen among

those proposed. Typically, consensus is stated in terms safety
and liveness properties [14], [18]:

CS1 Only a proposed value may be chosen.

CS2 Only a single value is chosen.

CS3 Only a chosen value may be learned by a correct

learner.

CL1 Some proposed value is eventually chosen.

CL2 Once a value is chosen, correct learners eventually

learn it.

Note that the definition permits multiple values to be pro-

posed, e.g. by a faulty proposer. An algorithm satisfying

the safety properties is considered safe in the sense that all

participants that learn the chosen value remain consistent

with each other.

The term round is defined as a set of semantically related

messages that may or may not conclude the consensus

protocol. We say that the protocol solves consensus in some

round. Due to asynchrony and failures, a consensus protocol

may need to run several rounds to solve consensus. In the

protocols, we shall use the variables rnd and vrnd to denote

round numbers.

We use the term consensus instance to refer to one among

several executions of consensus. Each instance has its own

set of variables and they may operate concurrently and

independently. When using consensus to order messages for

state machine replication, a sequence of consensus instances

define the correct ordering to be executed by the replicas.

194

A. Classic Paxos

Paxos [13], [14] is described in terms of three separate

agent roles: proposers that can propose values, acceptors that

accept a value among those proposed, and learners that learn

the chosen value. A process may take on multiple roles: in

a typical configuration, all processes play all roles. Paxos is

safe for any number of crash failures, and can make progress

with up to ta crash failures, given 2ta + 1 acceptors.

Every round is associated with a single proposer, which

is the leader for that round. Proposers can start off rounds

concurrently by sending a 〈PREPARE〉 message to accep-

tors, trying to make the value they propose chosen by the

acceptors. Every round runs in two phases: (1) A proposer

collects a majority of 〈PROMISE〉 messages in response to

a previously sent 〈PREPARE〉 message; and (2) the proposer

then sends 〈ACCEPT〉 messages for some value v to accep-

tors, who respond by sending 〈LEARN〉messages to learners.

The value v to select is the value with highest round among

those provided in the 〈PROMISE〉 messages or if no votes

are provided in the 〈PROMISE〉 messages, any value can be

chosen. A complete classic Paxos algorithm is provided in

our technical report [21].

In Paxos, acceptors are said to have chosen a value v, if

a majority of acceptors have voted for v in the same round.

Once a value has been chosen by acceptors in a round, no

other value can be chosen in any other round. However,

if there is no majority of acceptors that have voted for v,

then the acceptors may vote for different values in other

rounds. This will be an important issue when proposers may

be Byzantine.

B. Fast Paxos

Fast Paxos [15] changed the communication pattern of Paxos

by letting the proposer send its proposals directly to the

acceptors, bypassing the leader and saving one message

delay. In Fast Paxos, rounds are classified as fast or classic,

depending on the round number.

The algorithm changes Paxos in several ways: (i) In

fast rounds, the leader sends an 〈ACCEPT-ANY〉 message

to acceptors. This enables acceptors to receive 〈ACCEPT〉
messages for any value from all proposers instead of just

the leader. However, since proposers are not synchronized,

they may propose differently to the acceptors, and thus

we may have that a value is not chosen. This is called a

collision. (ii) To make progress in this situation, there are

two alternative recovery schemes. In coordinated recovery,

acceptors send their 〈LEARN〉 messages to both learners and

the leader. If the leader sees a collision, it starts another

round by sending 〈ACCEPT〉 for a value based on those

seen in 〈LEARN〉 messages. In uncoordinated recovery,

acceptors instead send their 〈LEARN〉 messages to all other

acceptors, allowing acceptors to immediately pick a value

and send another 〈LEARN〉 based on the values from the

previous round of 〈LEARN〉 messages without involving the

leader. (iii) The rule the leader uses for picking the value

v for 〈ACCEPT〉 messages must be modified to support

multiple proposals. That is, if no value has enough votes, any
value among those proposed is used. Acceptors in case of

uncoordinated recovery, use the same rule to prepare a new

〈LEARN〉. However in this case, some additional restrictions

can be applied to avoid further collisions [15]. (iv) Finally,

in Fast Paxos the replication requirement is na ≥ 3ta + 1.

IV. DERIVING TRUST CHANGE PAXOS

As the first step in deriving BP Fast Paxos, we retain the

crash failure assumption of Paxos, and modify it such that

the trust relation between proposers and acceptors becomes

more explicit. In Paxos, any proposer can start its round

whenever it wishes. In Trust Change (TC) Paxos, proposers

start non-0 rounds only when asked. A detailed TC Paxos

algorithm is provided in our technical report [21].

A. Moving the Responsibility of Initiating Rounds

In TC Paxos, just like in Paxos, each round is assigned to

a single proposer. The choice of the proposer for round i
is determined by a deterministic mapping p : B → P ,

where B is the set of round numbers and P is the set

of proposers. In this paper we assume that B is the set

of natural numbers. Mapping p can be arbitrary as long

as it maps infinitely many rounds to every proposer in P .

For simplicity, we can assume that proposers have assigned

identities 0, 1, . . . , |P | − 1, where |P | = np. Then, we can

choose mapping p such that p(i) = i (mod |P |).
In TC Paxos, the initiative of starting off a round lies

with the acceptors. The acceptors change trust from one

proposer to the next if the current one is faulty. This is done

with 〈TRUSTCHANGE〉 messages, which in turn, trigger

〈PROMISE〉 messages sent to the newly trusted proposer. As

in Paxos, when a proposer has received a quorum of such

〈PROMISE〉 messages, it properly chooses a value and sends

a corresponding 〈ACCEPT〉 message. Moreover, accepting

and learning are also identical to Paxos. By itself TC Paxos

is interesting as an alternative way of implementing Paxos.

Moreover, it is an important lead-up to BP Fast Paxos, our

version of Paxos that can tolerate Byzantine proposers.

The 〈TRUSTCHANGE〉 messages are the equivalent of the

〈PREPARE〉 messages of Paxos. Indeed, just like in Paxos,

a 〈TRUSTCHANGE〉 message is followed by a 〈PROMISE〉
message from the acceptors to the proposers. The idea of the

following simple lemma is to show that TC Paxos is safe

by reducing TC Paxos to Paxos and relying on the fact that

Paxos is safe.

Lemma 1: TC Paxos has Properties CS1, CS2, and CS3.

Proof: We show that, at the message level, every legal

execution of TC Paxos can be transformed into a legal

execution of Paxos. Since we know that Paxos is safe, i.e.

it has Properties CS1, CS2, and CS3 [13], [14], we argue

that TC Paxos must be safe as well.

195

Take a legal execution of TC Paxos at the message

level. Every 〈TRUSTCHANGE〉 message that changes trust

to round i + 1 and that is received by acceptor a is

replaced by a 〈PREPARE〉 message from proposer p(i + 1)
to acceptor a with the same round. It is easy to see that

the resulting execution is a legal execution of Paxos. Since

Paxos has Properties CS1, CS2, and CS3, TC Paxos has

these properties as well.

B. Progress in Trust Change Paxos

To achieve progress, Paxos implementations usually rely

on a leader election protocol that is used to select a

“distinguished” proposer that is the only one supposed to

be executing rounds. Without a unique leader, progress is

not guaranteed. More formally, Paxos relies on the failure

detector Ω [5], which is the weakest failure detector to solve

consensus and that, eventually, indicates the same correct

leader to all the correct processes. By using Ω, eventually a

value is chosen, provided that np > tp and na ≥ 2ta + 1.

In TC Paxos, it is more natural to use failure detector ♦S
(which is equivalent to Ω). Failure detector ♦S has strong

completeness (eventually every process that crashes is per-

manently suspected by every correct process) and eventual

weak accuracy (eventually some correct process is not sus-

pected by any correct process). For a more formal definition

see [6]. The ♦S abstraction is used by the acceptors to

monitor the status of the proposers and, eventually, agree

on the same correct proposer to trust.

Lemma 2: Using ♦S and under the assumption that np >
tp and na ≥ 2ta + 1, TC Paxos satisfies Properties CL1

and CL2.

Proof: With ♦S, eventually (say after time t) every pro-

cess that crashes is permanently suspected by every correct

process and there will be at least one correct proposer p that

is not suspected by any correct acceptor. Let i be the highest

round at which any acceptor is at time t, and let i′ ≥ i
be a round associated with proposer p. First, note that any

acceptor that has made it to round i′ will not change its trust

beyond round i′ because proposer p is not suspected by any

acceptor using ♦S. Therefore, the number of trust changes

in the execution is finite.

Let i′′ be the highest round reached in the execution: we

know such a round exists since the number of trust changes

is finite. We also know that it is associated with a correct

process, since ♦S has strong completeness. When the first

acceptor reaches round i′′, it sends 〈TRUSTCHANGE〉 mes-

sages to all the other acceptors to change trust to round i′′.
Since we assume reliable links, eventually every acceptor

will receive the message and change trust to round i′′.
Finally, since the proposer associated with round i′′ is

correct, it will propose a value that, since na ≥ 2ta + 1,

will be chosen and learned by correct learners.

V. DERIVING BYZANTINE PROPOSER FAST PAXOS

We now relax the failure assumption of the proposers.

Specifically, we now assume proposers may be Byzantine

faulty, while the crash failure assumption is retained for

acceptors and learners. This assumption precludes imple-

menting acceptors and proposers in the same process. We

derive BP Fast Paxos, by strengthening TC Paxos to mask

Byzantine proposers. In TC Paxos, acceptors are responsible

for detecting faulty proposers. We leverage this structure in

BP Fast Paxos, by augmenting the responsibility of acceptors

to also detect Byzantine proposers. Recovery from a faulty

proposer is simply handled by reusing the trust change

mechanism introduced in TC Paxos. BP Fast Paxos is shown

in Algorithms 1 and 2.

Starting from TC Paxos, we now assume proposers may

behave maliciously with the intention to violate safety.

Acceptors in TC Paxos only process 〈ACCEPT〉 messages

for round i from proposer p(i). To ensure this also in

BP Fast Paxos, we require channels between proposers and

acceptors to be authenticated. Since acceptors only process

〈ACCEPT〉 messages for round i from proposer p(i), there

are only two ways in which the proposer can misbehave in

terms of safety: Case (i) it can choose an arbitrary value in

the 〈ACCEPT〉 message, and Case (ii) it can send different

〈ACCEPT〉 messages to different acceptors (equivocation).

Case (i) is problematic because the proposer can cause

the chosen value to change arbitrarily from one round to

another, and Case (ii) can lead to starvation or to violation

of safety. Although in TC Paxos, an acceptor will only

process 〈ACCEPT〉 messages from the current proposer, the

same proposer can portray to be in different rounds. For

example, consider proposer p(0) = p(np). This proposer can

send both 〈ACCEPT, 0, v〉 and 〈ACCEPT, np, v
′〉, and thus

change the chosen value of acceptors causing learners to

see conflicting 〈LEARN〉 messages for two different values.

This can violate safety if only a subset of learners see

the learn for v, while another subset of learners see v′.
Another situation where a faulty proposer may change the

value is the following: Assume acceptors have chosen v
in round 0, followed by suspecting p(0) and thus send-

ing a 〈PROMISE〉 to p(1), a Byzantine proposer. At this

point, p(1) can malevolently change the value to v′ in

the 〈ACCEPT, 1, 0, v′〉 message. Learners may see more

proposals for newer rounds, but newer rounds should have

the same value v as was previously voted for, because some

learners might have chosen v in an earlier round. Finally,

since learners could potentially see different values for some

round i, they may be unable to decide on the consensus value

(starvation) since a majority is required.

A. Case (i): Introducing Signatures

Since the proposer cannot be trusted, acceptors must detect

misbehavior and trigger a trust change to prevent a faulty

proposer from violating safety, as explored in the examples

196

Algorithm 1 Proposer c

1: Initialization:
2: A {Set of acceptors}
3: crnd← 0 {Current round number}
4: on event crnd = 0 and c = p(0)
5: cval← pickAny() {Propose a value}
6: send 〈ACCEPT, crnd, cval〉 to A

7: on 〈PROMISE, [rnd, vrnd, vval]a〉
8: if rnd > crnd then
9: crnd← rnd, MV ← ∅, proof ← ∅ {New round—this proposer is trusted}

10: MV ←MV � (vrnd, vval) {Collect in multiset MV last votes}
11: proof ← proof ∪ [rnd, vrnd, vval]a {Collect proof from acceptor a}
12: if |MV | ≥ na − ta then {Got enough promises from acceptors?}
13: QV ← pickLargest(MV) {Pick all votes with largest vrnd}
14: if ∃x ∈ QV : countQV (x) ≥ na − 2ta then {Does vote for x occur at least na − 2ta times?}
15: cval← x {Pick the vote value in QV }
16: else
17: cval← pickAny(QV) {If QV �= ∅, pick any vote value in QV ; otherwise, propose one}
18: send 〈ACCEPT, crnd, cval, proof 〉 to A

Algorithm 2 Acceptor a

1: Initialization:
2: P , A, L {Sets of proposers, acceptors, and learners}
3: rnd← 0 {Current round number}
4: vrnd← ⊥ {Last voted round number}
5: vval← ⊥ {Value of last voted round}
6: ML← ∅ {Multi-set of 〈LEARN〉 messages}
7: on 〈TRUSTCHANGE, n〉 with n > rnd from acceptor a {Change trust to a new proposer}
8: rnd← n {The next round number}
9: send 〈PROMISE, [rnd, vrnd, vval]a〉 to p(rnd)

10: on 〈ACCEPT, n, v, proof 〉 with n ≥ rnd ∧ n �= vrnd from proposer c = p(n)
11: if n = 0 ∨ verify(n, v, proof) then {If n > 0, check signatures and consistency of n, v, proof }
12: rnd← n, vrnd← n, vval← v
13: send 〈LEARN, n, v〉 to L
14: else
15: send 〈TRUSTCHANGE, n+ 1〉 to A {Invalid proof; notify acceptors to change trust}
16: on 〈SUSPECT, p(rnd)〉 from ♦Sa {♦Sa suspects the current proposer p(rnd) has crashed}
17: send 〈TRUSTCHANGE, rnd+ 1〉 to A {Change trust to another proposer}
18: on 〈LEARN, n, v〉 from acceptor a {Algorithm executed by learners; acceptors are also learners}
19: ML←ML � (n, v) {Store learn message for round n and value v}
20: if ∃n, v, v′ : (n, v) ∈ML ∧ (n, v′) ∈ML then {Byzantine proposer?}
21: send 〈TRUSTCHANGE, n+ 1〉 to A {Change trust to another proposer}
22: else
23: if ∃(n, x) ∈ML : countML(x) ≥ na − ta then {Quorum for value x in ML?}
24: send 〈DECIDED, x〉 to app {We’re done!}

above. In the first step, we address Case (i) above by

introducing the following modifications to TC Paxos:

1) When requesting change of trust to a new proposer, an

acceptor a signs the triplet, σa = [rnd, vrnd, vval]a,

that it voted for in the most recent round, vrnd. This

signature is then sent as part of the trust change as:

197

〈PROMISE, [rnd, vrnd, vval]a〉.
2) On receiving enough 〈PROMISE〉 messages, a new

proposer can send an 〈ACCEPT〉 to acceptors. However,

it must now include a proof = {∀a ∈ A : σa}
containing the signatures from acceptors A, attesting to

the proposer’s action to propose some value. Since up

to ta acceptors may fail, the proposer is only required

to include na − ta signatures in the proof .

3) Acceptors must verify that the value v proposed in

the 〈ACCEPT〉 from the new proposer is supported by

votes from previous rounds, and that may have been
chosen. The proof is used to verify this. If a violation

is detected, another trust change is triggered.

These changes are aimed at preventing a new proposer from

changing the vote arbitrarily. The first two changes do not

alter any significant behavior with respect to TC Paxos,

they merely add an extra field to two messages that enable

the check in Item 3 (represented by the verify() call in

Line 11 of Algorithm 2.) However, since the proposer may

be Byzantine faulty, the proof constructed in Item 2 must

be such that it can be checked by acceptors (Item 3). If the

proposer tries to change the last value that has been voted

for by the acceptors in previous rounds, a call to verify()

will detect this. In this case, the acceptor notifies the other

acceptors (Line 15) that a trust change is needed.
We now argue that the above changes to TC Paxos still

preserve safety despite proposers trying to change the chosen

value. First consider a correct proposer, in which case the

acceptors receive an 〈ACCEPT〉 with a correct proof , and

therefore Lines 12-13 are executed. This is identical to a

TC Paxos execution. TC Paxos also handles crash faulty

proposers. Next consider a semi-Byzantine proposer that

does not equivocate.
Lemma 3: A non-equivocating proposer cannot unde-

tectably change a chosen value.
Proof: By contradiction of two cases. Suppose there is

a proposer p(k) that can undetectably change a chosen value

v to v′.
First, let p(0) be the initial proposer of value v, and for

convenience let k = 1. Let p(0) be faulty, causing a majority

of acceptors that have voted for v, to issue a trust change

by sending 〈PROMISE, [1, 0, v]a〉 to p(1), vouching for v
in round 0. Assume p(1) is faulty and changes the value

to v′ by sending 〈ACCEPT, 1, v′, proof 〉. However, since a

majority of acceptors vouch for v, there must be at least

one entry in proof that vouches for (0, v), and thus the

acceptors can detect the violation. This contradicts the initial

assumption that p(1) can change a chosen value. By the

same argument, it is easy to see that this also holds for any

k > 1 too.
Second, let k = 0 and suppose p(0) = p(np) is faulty

and that it can change the chosen value from (0, v) to

(np, v
′). That is, the same proposer is proposing for both

round 0 and np, because proposers are reused after np

trust changes. Assume p(0) tries to change the value, after

its initial value v was chosen by acceptors, by sending

〈ACCEPT, np, v
′, proof 〉. However, since only acceptors can

provide the signatures necessary to construct the proof , this

prevents the proposer from having v′ chosen by acceptors.

Moreover, if an acceptor voted for v in a previous round,

e.g. np − 1 or 0, it would only sign a promise such that

the vval = v, hence preventing a proposer from collecting

a proof to support v′. Thus acceptors detect a violation,

contradicting the initial assumption.

B. Case (ii): Detecting Equivocation

Our changes so far apply to rounds i > 0, i.e. when a

trust change was necessary. For round 0, acceptors simply

send 〈LEARN〉 messages based on what they received in the

〈ACCEPT〉 message; there is no proof that can be checked

at this stage since acceptors have only seen one 〈ACCEPT〉.
This brings us to Case (ii) where a faulty proposer

may send 〈ACCEPT〉 for different values to different accep-

tors. This is essentially the same problem that occurs in

Fast Paxos [15], when in fast rounds different acceptors can

vote to accept different values in the same round, possibly

causing no value to be chosen. This can happen if accep-

tors receive proposals from different proposers in different

orders, and is called a collision. Fast Paxos offers two ways

to recover from this problem, as mentioned in Section III-B.

Thus, the next step of our derivation is to make modifications

similar to Fast Paxos to tackle this problem of acceptors

seeing different values:

1) Add equivocation detection and recovery.

2) Change the (proposer) leader’s rule for picking a value

v.

3) Increase the number of acceptors to na ≥ 3ta + 1.

Clearly, since the current proposer (leader) may send differ-

ent values to different acceptors, we need some way of de-

tecting and recovering from this misbehavior. In Fast Paxos,

a coordinated recovery could be used, in which the leader

is responsible for detection. This obviously does not work

when the leader might be Byzantine; it would be responsible

for detecting its own misbehavior. Therefore, to recover,

a combination of coordinated and uncoordinated recovery

is used, where acceptors detect misbehavior and the new

proposer coordinates recovery; it works as follows: Let ac-
ceptors be learners, i.e. acceptors send each other 〈LEARN〉
messages, in order to detect equivocation in round i; see

Lines 18-24 of Algorithm 2. If equivocation is detected

(Line 20), then that is proof that p(i) is faulty, and a trust

change to round i+1 is appropriate. This last part is different

from uncoordinated recovery, where acceptors would try to

choose a value for the next round without using the leader.

However in BP Fast Paxos, observing different votes from

the same proposer simply means that it must be faulty and

should be replaced with a new proposer. The new proposer

will coordinate recovery by proposing again.

198

This change works in concert with our first changes

above to strengthen the trust change with signatures, al-

lowing acceptors to provide evidence of misbehavior to a

new proposer during a trust change. Moreover, similarly to

Fast Paxos, we must change the rules for picking a value v
for the next round when there is a non-majority. Our rule is

the same as in Fast Paxos; see Lines 14-17 of Algorithm 1.

As in Fast Paxos, Item 3 above is also necessary because

the proposer must be able to choose a unique value that may
have been or will be chosen. To understand the necessity

for this change, consider the following example in which a

faulty proposer, proposes values {v, v, v′} to the acceptors

followed by 〈LEARN〉 messages to learners. Now a set of

learners could see the two 〈LEARN〉 messages for value v
and decide, while acceptors on seeing this misbehavior starts

a trust change. However, if the new proposer only sees two

〈PROMISE〉 messages, one for each of v and v′, it must

pick one of the two. If it picks v′ in the 〈ACCEPT〉 message,

followed by corresponding 〈LEARN〉 messages, then another

set of learners that did not learn v, e.g. due to message loss,

may now decide v′ instead, violating safety.

We now provide a correctness proof for the protocol.

Theorem 1: BP Fast Paxos satisfies the consensus safety

properties CS1, CS2, and CS3.

Proof: Property CS1 is easy to check by examining

Algorithms 1 and 2, used by the proposers and acceptors, re-

spectively. Property CS3, like in TC Paxos, follows directly

from the assumption of fair-loss links. Hence, we focus

on Property CS2. We prove, by induction, the following

safety property of BP Fast Paxos: If any acceptor votes for

a value v in round i, then no value v′ �= v can be chosen in

rounds 0, . . . , i−1. It is easy to see that this safety property

implies Property CS2.

It is trivial to see that the safety property holds for round

i = 0 (the base case). Consider i > 0 and assume that the

safety property holds for every round before i (the inductive
hypothesis). The goal is to prove that it holds for i as well.

Assume that acceptor a ∈ A has voted for value v in round i.
Since acceptors are not Byzantine, acceptor a must have

received an 〈ACCEPT〉 message for round i carrying the

proof of promises from a subset A′ ⊆ A of acceptors, where

|A′| ≥ na − ta. The proofs are checked, so the senders

in A′ are authenticated acceptors and the signed triplets

[rnd, vrnd, vval]a′ , a′ ∈ A′, are not forged. By Lemma 3,

this is sufficient to prevent a faulty proposer from changing

the chosen value.

Let j be the highest vrnd in the triplets. Clearly, j < i.
First, no value can be chosen in rounds j + 1, . . . , i − 1,

if j �= ⊥, and in rounds 0, . . . , i − 1, if j = ⊥. Indeed,

we know that the acceptors in A′ promise not to vote in

rounds before i, that |A′| > ta since na ≥ 3ta + 1, and so

the remaining |A \A′| < na − ta are not enough to form a

quorum in rounds < i. In particular, if j = ⊥, then we are

done with the proof of the inductive step. So, let’s assume

j ≥ 0 and proceed.

Let Q be the multiset of votes in round j provided by

the acceptors in A′. Since j ≥ 0, we know that Q �= ∅.
Acceptor a has voted for value v in round i, therefore, either

(i) v appears at least na− 2ta times in Q, or (ii) v ∈ Q and

no value appears at least na−2ta times in Q (see Lines 14-

17 of Algorithm 1). In case (i) v is the only value that can

still be chosen in round j, indeed the acceptors that have

not voted v are at most 2ta, and since na ≥ 3ta + 1, that

is not enough to form a quorum of na − ta acceptors on

a value v′ �= v in round j. In case (ii) no value can be

chosen in round j, indeed no quorum of na − ta acceptors

is possible on any value since |A\A′| ≤ ta. In other words,

no value v′ �= v can be chosen in round j.

Finally, by the inductive hypothesis, we also know that

no value v′ �= v can be chosen in rounds 0, . . . , j− 1, since

j < i and value v has been voted by at least one acceptor

in round j. Hence, no set of proposers can cause acceptors

to choose differently by equivocating. This concludes the

inductive step and the proof.

C. Liveness and Resilience to Performance Attacks

Next we provide an informal argument that our protocol is

live. From a progress perspective, BP Fast Paxos operates

in the same way as TC Paxos, except that proposers can be

Byzantine faulty. In general, implementing failure detection

with Byzantine faulty participants is not trivial. However,

since the acceptors implement the failure detector over the

proposers, and acceptors are only crash faulty, we only need

to ensure that the ♦S failure detector also suspects mute

Byzantine faulty processes as crashed processes. Acceptors

detect proposers sending incorrect information—and send

〈TRUSTCHANGE〉 messages to the other acceptors (Line 17)

to replace a faulty or slow proposer. Moreover, if Byzantine

behavior (e.g. equivocation) is detected by an acceptor, then

it also sends a 〈TRUSTCHANGE〉 message to the other ac-

ceptors. Thus, since TC Paxos is live under ♦S (Lemma 2),

BP Fast Paxos is live under a ♦S failure detector that detects

mute proposers.

As alluded to by the above argument, our protocol can also

support a mechanism to cope with performance attacks [3],

[9] and denial of service attacks by Byzantine proposers.

Indeed, if a Byzantine proposer delays message sending,

or acts in such a way so as to reduce performance or

otherwise prevents the system from making progress, this

can be detected by the acceptors. For instance, if a proposer

is not forwarding the expected number of commands (for

whatever reason), it can easily be replaced by another

proposer through a trust change. The change is once again

initiated by an acceptor, and the reason for the change does

not require any rigorous evaluation of misbehavior. It can

simply be viewed as a rotation of the leader, as was done

in [2], [9]. Developing this idea further is outside of the

scope of this paper.

199

D. Optimizations

In BP Fast Paxos we can replace costly digital signatures [4]

with message authentication codes (MACs). This is feasible

since digital signatures provide the stronger non-repudiation

property that is not needed in our protocol.

Acceptors are both signers and verifiers of 〈PROMISE〉
messages exchanged during a trust change. To sign a

〈PROMISE〉, an acceptor simply generates a MAC which

includes the 〈PROMISE〉 and its own identifier. A correct

proposer will collect the signed promises from acceptors into

a proof vector. Once provided with a proof from the new

proposer, acceptors can verify the correctness of its own

vector component in the proof . By assumption, acceptors

only fail by crashing and will not disclose the authenticator

key. Thus, since there is trust among the acceptors, it suffices

to use a single shared authenticator key among them.

We note that BP Fast Paxos does not rely on proof vectors

for the common case. (Of course we still need a single MAC

to authenticate the channel.) To ensure common case oper-

ation over multiple consensus instances in a state machine

implementation, it is necessary to reconfigure the proposer

function p(i). This is since common case operation is

restricted to p(0). This reconfiguration can be implemented

similarly to a Paxos membership reconfiguration [16].

VI. DETECTING BYZANTINE ACCEPTORS

Thus far we have assumed that acceptors can only fail

by crashing, a reasonable assumption if acceptors can be

adequately protected from becoming compromised, e.g. with

firewalls. In this section, we first analyze how a Byzantine

acceptor can compromise the safety of BP Fast Paxos,

followed by another change that enables correct acceptors to

detect a limited number of Byzantine acceptors. In this way,

the protocol can have a role in intrusion detection. Indeed,

if services are implemented on replicated servers by using

BP Fast Paxos with detection of Byzantine acceptors, the

detection of a misbehaving acceptor can be useful for an

intrusion detection system, since this event can indicate that

the system has been compromised.

We first show that BP Fast Paxos cannot mask even

a single Byzantine acceptor, despite its high redundancy

requirement on acceptors (3ta + 1). This is because a

Byzantine acceptor is indistinguishable from a Byzantine

proposer in round 0, making it impossible to determine

which of the two agents to remove.

A Byzantine acceptor can simply send an arbitrary value

v′ �= v in its 〈LEARN〉 message to the learners (i.e. accep-

tors), where v is the value sent by (correct) proposer p(0) in

its 〈ACCEPT〉 message. By this action, a Byzantine acceptor

can force a trust change, since this misbehavior is detected

by the (correct) acceptors, whom has no other choice but

to trigger a 〈TRUSTCHANGE〉 (Line 21 of Algorithm 2),

blaming the misbehavior on p(0). Eventually p(1) takes

over, and propose a value supported by round 0. This is

problematic because some learners may decide the correct

value v, while others may never decide because the faulty

acceptor is not removed.

However, assuming at most ta faulty acceptors, these

cannot cause the learners to decide on inconsistent values

since a learner will only decide if it can collect na − ta
identical values. Next however, we consider a more severe

example in which a faulty acceptor a0 collude with a faulty

proposer p(0) in order to change the chosen value. There

are four acceptors. Assume p(0) proposes the values v′ to

{a0, a1} and v to {a2, a3}. Since a0 is faulty, it can send a

〈LEARN〉 for v instead of v′. The other acceptors are correct,

and send their appropriate 〈LEARN〉 messages. Let Q be a

subset of learners that see a majority of 〈LEARN〉 messages

for v: these learners can decide v in round 0. (We may

assume 〈LEARN〉 messages for v′ is delayed or lost and not

yet retransmitted.) Now, assume that acceptors move their

trust to p(1). This can happen for any reason, given the

unreliable failure detector. In response to this, each acceptor

send a 〈PROMISE〉 message and sign their votes as follows:

{σa0
(v′), σa1

(v′), σa2
(v), σa3

(v)}. Note that faulty acceptor

a0 has changed its vote. The new proposer must now either

pick v or v′ non-deterministically, and so p(1) could send

〈ACCEPT〉 for v′. Let R be a subset of learners distinct from

Q. Learners in R may now see 〈LEARN〉 messages for v′

and decide on v′. This violates CS2.

It isn’t surprising that such a scenario exists: a lower

bound on two-step Byzantine consensus is one that needs

at least 5ta + 1 acceptors [18]. BP Fast Paxos is two-step,

but use only 3ta + 1 acceptors. To remain two-step and

mask Byzantine acceptors, changing BP Fast Paxos would

require 5ta + 1 acceptors, essentially making it equivalent

to FaB [18]. The other alternative is to increase the number

of steps along with signatures, taking us in the direction of

PBFT [4].

The scenario above exists because our protocol cannot

distinguish between a faulty proposer and faulty acceptor(s).

To solve this problem, we need to identify the source of mis-

behavior. Thus in the following, we sketch a simple change

that enables identifying the misbehaving Paxos agent(s).

Hence, we require that proposer p(0) include a signature,

σp(0)(0, v) in its round 0: 〈ACCEPT, 0, v, σp(0)(0, v)〉
message. Acceptors forward the signature in its

〈LEARN, 0, v, σp(0)(0, v)〉 message. This will allow

learners/acceptors to verify that the value v originated

from p(0), and prevents faulty acceptors from undetectably

changing the value. Moreover, if the proposer is faulty

by equivocation (on 〈ACCEPT〉 messages; detected by

observing different 〈LEARN〉 messages), the acceptors can

collect a proof of misbehavior [2] from the discrepancies

between pairs of signed 〈ACCEPT〉 messages. The approach

enables correct acceptors to identify faulty acceptors and/or

a faulty proposer, and either change trust or replace faulty

acceptors. Exploring the latter is beyond the scope of this

200

paper.

Note that, although this extra signature1 in the common

case execution path does introduce additional latency due

to the cost of preparing a signature at p(0), we do not

have to verify the signature at acceptors unless equivocation

in the 〈LEARN〉 messages is detected. Thus, the cost of

signature verification on the server-side is avoided in the

common case. Moreover, it is also possible to leverage

matrix signatures [1] to provide the non-repudiation property

and thus reduce the cost of preparing a signature at p(0).
Also, since we already use an all-to-all communication

pattern for sending 〈LEARN〉 messages between acceptors,

this would not add additional latency. A similar approach is

taken by Clement et al in [8].

VII. RELATED WORK

Since PBFT [4] revived the interest in Byzantine fault

tolerance by leveraging message authenticators to improve

performance, numerous works have explored a range of

other optimizations. These include reduced redundancy over-

head, further performance improvements, and retaining good

performance even during attacks (resilience to attacks).

A number of techniques have been proposed to reduce

the steep redundancy requirement of BFT [24], [7], [23],

[10]. One approach of particular interest, for use with

our protocol, is to separate the agreement and execution

phase of the BFT state machine [24]. For instance, while

BFT typically requires 3ta + 1 replicas in the agreement

phase, only 2ta + 1 replicas need to execute state machine

commands. Hence, the cost in terms of execution replicas

can be reduced significantly. BP Fast Paxos is an agreement

protocol, and can also take advantage of such separation to

reduce the replication cost of execution.

In terms of latency, BP Fast Paxos requires two commu-

nication steps to complete consensus in the common case.

FaB [18] offers similar latency, and is shown to be optimal

when also acceptors can be Byzantine. However, in the case

of FaB, 5ta + 1 replicas are necessary for agreement, and

3ta+1 for execution. Zyzzyva [12] on the other hand, offers

speculative execution of state machine commands in the

common case by letting the client accept a reply once all

3ta+1 replies have been received. For this common case be-

havior, BP Fast Paxos would need one extra communication

step compared to Zyzzyva with similar cryptographic costs.

However, this comes at additional complexity and cost when

speculation fails (e.g. not all replies are received) and in

the view change procedure. Also, Zyzzyva is optimized for

BFT state machine replication only, while BP Fast Paxos is

a general consensus protocol applicable to other application

domains.

1The signature scheme used here must have non-repudiation properties,
since a faulty acceptor can orchestrate a man-in-the-middle attack prevent-
ing correct acceptors from identifying the source of misbehavior.

Aardvark [9] and Prime [3] are both leader-based state

machine protocols that focus on retaining performance

during attacks (or failures in general). BP Fast Paxos is

also leader-based, and can easily replace the leader if its

performance is unsatisfactory.
BP Fast Paxos [20], [21] extends Paxos [13] and

Fast Paxos [15] by separating the failure model assumed

for the different Paxos agents. The proposers can behave

arbitrarily and acceptors are assumed to be only crash faulty.

To our knowledge, assuming different failure models for

the different Paxos agents has not been explored previously.

However, in RAM [17] servers in different administrative

domains were assumed mutually suspicious of each other.

Aiyer et al proposed the BAR model [2] for cooperative

services, in which peers could take on three different types

of behavior: Byzantine, Altruistic, or Rational (selfish). BAR

is a more general model than ours and requires more com-

plex protocols, typically involving incentive-based protocols.

Guerraoui et al [11] propose a modular framework for

developing BFT protocols, which could be used to develop

our protocol.

VIII. CONCLUSIONS

This paper presents BP Fast Paxos, a consensus protocol

for a service architecture designed for clients that can wage

attacks. Clients communicate through proxies that can be

Byzantine faulty, while the servers that run in their own

domain are crash faulty. Compromised servers are dealt

with like insider attacks, using the detection and recovery

tools that are now used in practical systems. BP Fast Paxos

is two-step and safe even when all proposers (proxies)

are Byzantine faulty, and does not require costly digital

signatures among the proposers, acceptors and learners for

the common case.

REFERENCES

[1] A. S. Aiyer, L. Alvisi, R. A. Bazzi, and A. Clement. Matrix
signatures: From macs to digital signatures in distributed
systems. In Proceedings of the 22nd international symposium
on Distributed Computing, DISC ’08, pages 16–31, Berlin,
Heidelberg, 2008. Springer-Verlag.

[2] A. S. Aiyer, L. Alvisi, A. Clement, M. Dahlin, J.-P. Martin,
and C. Porth. Bar fault tolerance for cooperative services. In
Proceedings of the twentieth ACM symposium on Operating
systems principles, SOSP ’05, pages 45–58, New York, NY,
USA, 2005. ACM.

[3] Y. Amir, B. Coan, J. Kirsch, and J. Lane. Prime: Byzantine
replication under attack. IEEE Trans. Dependable Secur.
Comput., 8:564–577, July 2011.

[4] M. Castro and B. Liskov. Practical byzantine fault toler-
ance and proactive recovery. ACM Trans. Comput. Syst.,
20(4):398–461, 2002.

[5] T. D. Chandra, V. Hadzilacos, and S. Toueg. The weakest
failure detector for solving consensus. J. ACM, 43:685–722,
July 1996.

201

[6] T. D. Chandra and S. Toueg. Unreliable failure detectors
for reliable distributed systems. J. ACM, 43:225–267, March
1996.

[7] B.-G. Chun, P. Maniatis, S. Shenker, and J. Kubiatowicz.
Attested append-only memory: making adversaries stick to
their word. In Proceedings of twenty-first ACM SIGOPS
symposium on Operating systems principles, SOSP ’07, pages
189–204, New York, NY, USA, 2007. ACM.

[8] A. Clement, M. Kapritsos, S. Lee, Y. Wang, L. Alvisi,
M. Dahlin, and T. Riche. Upright cluster services. In Pro-
ceedings of the ACM SIGOPS 22nd symposium on Operating
systems principles, SOSP ’09, pages 277–290, New York, NY,
USA, 2009. ACM.

[9] A. Clement, E. Wong, L. Alvisi, M. Dahlin, and M. Marchetti.
Making byzantine fault tolerant systems tolerate byzantine
faults. In Proceedings of the 6th USENIX symposium on Net-
worked systems design and implementation, NSDI’09, pages
153–168, Berkeley, CA, USA, 2009. USENIX Association.

[10] M. Correia, N. F. Neves, and P. Verissimo. How to tolerate
half less one byzantine nodes in practical distributed systems.
In Proceedings of the 23rd IEEE International Symposium
on Reliable Distributed Systems, SRDS ’04, pages 174–183,
Washington, DC, USA, 2004. IEEE Computer Society.

[11] R. Guerraoui, N. Knežević, V. Quéma, and M. Vukolić. The
Next 700 BFT Protocols. In Proceedings of the 5th European
conference on Computer systems, EuroSys ’10, pages 363–
376, New York, NY, USA, 2010. ACM.

[12] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong.
Zyzzyva: Speculative byzantine fault tolerance. ACM Trans.
Comput. Syst., 27:7:1–7:39, January 2010.

[13] L. Lamport. The part-time parliment. ACM Trans. on Comp.
Syst., 16(2):133–169, 1998.

[14] L. Lamport. Paxos made simple. ACM SIGACT News,
32(4):18–25, December 2001.

[15] L. Lamport. Fast paxos. Distributed Computing, 19(2):79–
103, 2006.

[16] L. Lamport, D. Malkhi, and L. Zhou. Reconfiguring a state
machine. SIGACT News, 41:63–73, March 2010.

[17] Y. Mao, F. Junqueira, and K. Marzullo. Towards low latency
state machine replication for uncivil wide-area networks.
In Fifth Workshop on Hot Topics in Dependable Systems
(HotDep’09), Estoril, Lisbon, Portugal, June 2009.

[18] J.-P. Martin and L. Alvisi. Fast byzantine consensus. IEEE
Trans. Dependable Secur. Comput., 3(3):202–215, July 2006.

[19] J.-P. E. Martin. Byzantine Fault-Tolerance and Beyond. PhD
thesis, University of Texas, Austin, December 2006.

[20] K. Marzullo, H. Meling, and A. Mei. Brief Announcement:
When You Don’t Trust Clients: Byzantine Proposer Fast
Paxos. In Proceedings of the 25nd International Symposium
on Distributed Computing, volume 6950 of DISC ’11, pages
143–144, Rome, Italy, September 2011. Springer.

[21] H. Meling, K. Marzullo, and A. Mei. When You Don’t Trust
Clients: Byzantine Proposer Fast Paxos. Technical report,
University of California, March 2012.

[22] B. Schneier. Applied cryptography (2nd ed.): protocols,
algorithms, and source code in C. John Wiley & Sons, Inc.,
New York, NY, USA, 1995.

[23] T. Wood, R. Singh, A. Venkataramani, P. Shenoy, and E. Cec-
chet. Zz and the art of practical bft execution. In Proceedings
of the sixth conference on Computer systems, EuroSys ’11,
pages 123–138, New York, NY, USA, 2011. ACM.

[24] J. Yin, J.-P. Martin, A. Venkataramani, L. Alvisi, and
M. Dahlin. Separating agreement from execution for byzan-
tine fault tolerant services. In Proceedings of the nineteenth
ACM symposium on Operating systems principles, SOSP ’03,
pages 253–267, New York, NY, USA, 2003. ACM.

202

