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ABSTRACT

Fault recovery is a key issue in modern data centers. In a fat tree
topology, a single link failure can disconnect a set of end hosts from
the rest of the network until updated routing information is dissem-
inated to every switch in the topology. The time for re-convergence
can be substantial, leaving hosts disconnected for long periods of
time and significantly reducing the overall availability of the data
center. Moreover, the message overhead of sending updated rout-
ing information to the entire topology may be unacceptable at scale.
We present techniques to modify hierarchical data center topologies
to enable switches to react to failures locally, thus reducing both the
convergence time and control overhead of failure recovery. We find
that for a given network size, decreasing a topology’s convergence
time results in a proportional decrease to its scalability (e.g. the
number of hosts supported). On the other hand, reducing conver-
gence time without affecting scalability necessitates the introduction
of additional switches and links. We explore the tradeoffs between
fault tolerance, scalability and network size, and propose a range of
modified multi-rooted tree topologies that provide significantly re-
duced convergence time while retaining most of the traditional fat
tree’s desirable properties.

Categories and Subject Descriptors

C.2.1 [Network Architecture and Design]: Network topology, Packet-
switching networks; C.2.2 [Network Protocols]: Routing protocols
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Data Center Networks; Fault Tolerance; Network Redundancy

1. INTRODUCTION

Modern data center networks are often structured hierarchically.
One of the most common topologies for such network fabrics is a
multi-rooted fat tree [1, 4, 30], inspired by [24]. This topology is pop-
ular in part because it can support full bisection bandwidth, and it
also provides diverse yet short paths between end hosts. In our expe-
rience operating large-scale data center infrastructure, and as shown
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in recent studies [9], a key difficulty in the data center is handling
faults in these hierarchical network fabrics.

Despite the high path multiplicity between hosts in a traditionally
defined fat tree, a single link failure can temporarily cause the loss
of all packets destined to a particular set of hosts, effectively discon-
necting a portion of the network. For instance, a link failure at the
top level of a 3-level, 64-port fat tree tree can logically disconnect
as many as 1,024, or 1.5%, of the topology’s hosts. This can dras-
tically affect storage applications that replicate (or distribute) data
across the cluster; there is a significant probability that the failure
of an arbitrary 1.5% of hosts could cause the loss of all replicas (or
pieces) of a subset of data items, and the storage overhead required
to prevent these types of loss could be expensive. Additionally, re-
cent studies [9] show that one third of data center link failures dis-
rupt ongoing traffic, causing the loss of small but critical packets
such as acknowledgments and keep-alives. It is crucial then, that
re-convergence periods be as short as possible.

However, it can take substantial time to update switches to route
around failures. For instance, the time for global re-convergence of
the broadcast-based routing protocols (e.g. OSPF and IS-IS) used
in today’s data centers [3, 29] can be tens of seconds [25, 26]. As
each switch receives an update, its CPU processes the information,
calculates a new topology and forwarding table, and computes cor-
responding updates to send to all of its neighbors. Embedded CPUs
on switches are generally under-powered and slow compared to a
switch’s data plane [26, 28] and in practice, settings such as protocol
timers can further compound these delays [22]. While more pow-
erful switch CPUs are in the works, they are not yet a reality in the
data center. The processing time at each switch along the path from
a point of failure to the farthest switches adds up quickly. Packets
continue to drop during this re-convergence period, crippling ap-
plications until recovery completes. Moreover, at data center scale,
the control overhead required to broadcast updated routing infor-
mation to all nodes in the tree can be significant.

Long convergence times are unacceptable in the data center, where
the highest levels of availability are required. For instance, an ex-
pectation of 5 nines (99.999%) availability corresponds to about 5
minutes of downtime per year, or 30 failures, each with a 10 second
re-convergence time. A fat tree that supports tens of thousands of
hosts can have hundreds of thousands of links" and recent studies
show that at best, 80% of these links have 4 nines availability [9]. In
an environment in which link failures occur quite regularly, restrict-
ing the annual number of failures to 30 is essentially impossible.

Our goal is to eliminate excessive periods of host disconnection
and packet loss in the data center. Since it is unrealistic to limit
the number of failures sufficiently to meet availability requirements,
we consider the problem of drastically reducing the re-convergence

'Even a relatively small 64-port, 3-level fat tree has 196,608 links.



time for each individual failure, by modifying fat trees to enable lo-
cal failure reactions. These modifications introduce redundant links
(and thus a denser interconnect) at one or more levels of the tree,
in turn reducing the number of hops through which routing up-
dates propagate. Additionally, instead of requiring global OSPF con-
vergence after a link failure, we send simple failure (and recovery)
notification messages to a small subset of switches located near to
the failure. Together, these techniques substantially decrease re-
convergence time (by sending small updates over fewer hops) and
control overhead (by involving considerably fewer nodes and elimi-
nating reliance on broadcast). We name our modified fat trees Aspen
trees, in reference to a species of tree that survives forest fires due to
the locations of its redundant roots.

The idea of incorporating redundant links for added fault toler-
ance in a hierarchical topology is not new. In fact, the topology used
in VL2 [11] is an instance of an Aspen tree. However, to the best of
our knowledge, there has not yet been a precise analysis of the trade-
offs between fault tolerance, scalability, and network size across the
range of multi-rooted trees. Such an analysis would help data center
operators to build networks that meet customer SLAs while satis-
fying budget constraints. As [9] shows, this is missing in many of
today’s data centers, where even with added network redundancy,
failure reaction techniques succeed for only 40% of failures.

We explore the benefits and tradeoffs of building a highly avail-
able large-scale network that reacts to failures locally. We first define
Aspen trees, and present an algorithm that generates a set of Aspen
trees given constraints such as the number of available switches or
requirements for host support. We couple this design with a failure
reaction protocol that leverages an Aspen tree’s redundant links. To
precisely specify the fault tolerance properties of Aspen trees, we
introduce a Fault Tolerance Vector (FTV), which quantifies reactiv-
ity by indicating the quality and locations of added fault tolerance
throughout an Aspen tree.

Engineering topologies to support local failure reactions comes
with a cost, namely, the tree either supports fewer hosts or requires
additional switches and links. We formalize these tradeoffs in terms
of an Aspen tree’s FT'V. Interestingly, improving fault tolerance by
adding switches and links to a tree (while keeping host count fixed)
has the potential to do more harm than good by introducing more
points of failure. However, we show that the decreased convergence
time enabled by local failure reaction more than makes up for the
added opportunity for link failures. Finally, we use simulations to
further explore the tradeoffs between fault tolerance, scalability, and
network size for a variety of Aspen trees. Through analysis and sim-
ulations, we provide data center architects insight into the tradeoffs
associated with Aspen trees, enabling them to design networks that
balance their requirements for scale, cost and fault tolerance.

2. MOTIVATION AND CONTEXT

Before describing Aspen trees and their associated tradeoffs in
detail, we first lay out some of the challenges inherent to failure re-
covery in multi-rooted fat tree topologies. We explore some existing
approaches to mitigating the effects of link failures, in order to lend
intuition to the rationale behind our Aspen tree design. As many
modern data centers are structured as multi-rooted trees, we focus
our attention on challenges inherent to these topologies.

In a traditional fat tree,* a single link failure can be devastating,
causing all packets destined to a set of hosts to be dropped while
updated routing state propagates to every switch in the topology. For

*We refer to the multi-fat tree presented in [1], in which channel
capacities are uniform at all levels, as opposed to the fat tree in [24]
in which link capacity increases moving up the tree.
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Figure 1: Packet Travel in a 4-Level, 4-Port Fat Tree

instance, consider a packet traveling from host x to host y in the 4-
level, 4-port fat tree of Figure 1 and suppose that the link between
switches f and g fails shortly before the packet reaches f. f no
longer has a downward path to y and drops the packet. In fact, with
the failure of link f—g, the packet would have to travel through h to
reach its destination. For this to happen, x’s ingress switch a would
need to know about the failure and to select a next hop accordingly,
as every (shortest) path from b to y traverses link f — g.

In other words, knowledge of a single link failure needs to prop-
agate to all of the lowest level switches of the tree, passing through
every single switch in the process. Each switch performs expensive
calculations that grow with the size of the topology, leading to sub-
stantial delay before the last switches are updated. Isolated link fail-
ures are both common and impactful in the data center [9], so timely
reaction is critical.

A number of existing routing techniques can help in avoiding
packet loss without requiring global re-convergence. For instance,
bounce routing protocols work around failures by temporarily send-
ing packets away from a destination. In the example of Figure 1,
such a protocol might send the packet from f to i. Switch i can then
bounce the packet back up to h, which still has a path to g. Thus,
bounce routing leverages more sophisticated software to support the
calculation and activation of extra, non-shortest path entries and
to avoid forwarding loops. Unfortunately, in networks that employ
link-level pause (e.g. lossless fabrics like InfiniBand), bounce rout-
ing based on local information can lead to deadlock [6, 17].

It is also possible to “bounce” a packet in the other direction, back
along its path to the nearest switch that can re-route around a failed
link, similar to the technique of DDC [26]. In DDC, the packet
of Figure 1 would need to travel from f back up to the top of the
tree and then back down to a before it could be re-routed towards
h. DDC provides “ideal connectivity;” ensuring that a packet is not
dropped unless the destination is physically unreachable, at the cost
of (temporarily) introducing long paths. F1o [27] also bounces pack-
ets on failure, using a novel asymmetrical wiring scheme to limit
the lengths of bounce paths. Fio includes three cascading failure
reaction mechanisms, for failures of different durations. We more
closely compare Aspen trees to DDC and F1o in § 10.

Our approach, on the other hand, offers an alternative to bounc-
ing packets in either direction. We modify a fat tree by introducing
redundancy at one or more levels. This allows local failure reaction
without introducing long paths or requiring global re-convergence,
at a cost in either scale or network size.

3. ASPEN TREE OVERVIEW

We define an Aspen tree as a set of k-port switches connected to
form a multi-rooted hierarchy of n levels, with hosts connected to
the leaf switches in this hierarchy. An n-level, k-port Aspen tree can



differ from a traditionally-defined n-level, k-port fat tree in that the
interconnect between adjacent levels of the tree may be denser, that
is, there may be more links between switches at adjacent levels than
in a fat tree. The density of this interconnect can vary from level to
level in an Aspen tree. Thus for any n and k, there exists a set of
topologically distinct Aspen trees. A traditionally-defined n-level,
k-port fat tree is member of the set of n-level, k-port Aspen trees;
the fat tree of Figure 1 is one such example. We are not proposing a
particular instance of Aspen trees as an ideal topology in the general
case. Instead, our goal is to show the range of possible Aspen trees
given requirements for host support, network size, failure reaction
time, and overhead.

We denote switches’ levels in an n-level, k-port Aspen tree with L,
through L, (as marked in Figure 1) and we refer to the hosts’ level as
L,. Each switch has k ports, half of which connect to switches in the
level above and half of which connect to switches below. Switches at
L, have k downward-facing ports. We group switches at each level
L; into pods.® A pod includes the maximal set of L; switches that all
connect to the same set of L;_, pods below, and an L, pod consists
of a single L, switch. An example L; pod is circled in Figure 1.

In order to limit our attention to a tractable set of options, we
introduce a few restrictions on the set of Aspen trees that we will
discuss. First, we consider only trees in which switches at each level
are divided into pods of uniform size. That is, all pods at L; must be
of equal size, though L; pods may have different sizes than pods at
Ly.f+;. Similarly, within a single level, all switches have equal fault
tolerance (i.e. equal numbers of links) to neighboring pods in the
level below, but the fault tolerance of switches at L; need not equal
that of switches at Lf.y.;. In general, we use L; fault tolerance to
refer to links between switches at L; and L;—,. In a traditional fat
tree there are S switches at levels L, through L,_, and % switches at
L,; we retain this property in Aspen trees. (In Figure 1, k is 4 and S
is 16.) We do not consider multi-homed hosts, given the associated
addressing complications.

4. DESIGNING ASPEN TREES

We now describe our method for generating trees with varying
fault tolerance properties; this lends intuition to the set of Aspen
trees that can be created, given a set of constraints such as network
size or host support. Intuitively, our approach is to begin with a
traditional fat tree, and then to disconnect links at a given level and
“repurpose” them as redundant links for added fault tolerance at the
same level. By increasing the number of links between one subset of
switches at adjacent levels, we necessarily disconnect another subset
of switches at those levels. These newly disconnected switches and
their descendants are deleted, ultimately resulting in a decrease in
the number of hosts supported by the topology.

3In some literature, these are called blocks [12, 23].

(a) Freeing Uplinks from L,

(b) Selecting L,-L, Links to Repurpose

Figure 2 depicts this process pictorially. In Figure 2(a), L, switch
s connects to four L, pods: q={q:,q.}, r={r,r.}, t={t,,t,}, and
v={v.,v,}. To increase fault tolerance between L; and L,, we will
add redundant links from s to pods g and r. We first need to free
some upward facing ports from g and r, and we choose the uplinks
from g, and r, as candidates for deletion because they connect to L,
switches other than s.

Next, we select L, downlinks to repurpose. Since we wish to in-
crease fault tolerance between s and pods g and r, we must do so at
the expense of pods t and v, by removing the links shown with dot-
ted lines in Figure 2(b). For symmetry, we include switch w with
s. The repurposed links are then connected to the open upward
facing ports of ¢, and r,, leaving the right half of the tree, hosts
and switches, disconnected and ready for deletion, as shown in Fig-
ure 2(c). At this point, s is connected to each L, pod via two distinct
switches and can reach either pod despite the failure of one such
link. We describe this tree as 1-fault tolerant at L,.*

For a tree with a given depth and switch size, there may be multi-
ple options for the fault tolerance to add at each level, and fault tol-
erance can be added to any subset of levels. Additionally, decisions
made at one level may affect the available options for other levels. In
the following sections, we present an algorithm that makes a coher-
ent set of these per-level decisions throughout an Aspen tree.

4.1 Aspen Tree Generation

Intuitively, we begin at the top level of the tree, L,, and group
switches into a single pod. We then select a value for the fault toler-
ance between L, and the level below, L,_,. Next, we move to L,,_,,
divide the L,—, switches into pods, and choose a value for the fault
tolerance between L,—, and L,_,. We repeat this process for each
level moving down the tree, terminating when we reach L,. At each
level, we select values according to a set of constraints that ensure
that all of the per-level choices together form a coherent topology.

4.1.1

Before presenting the details of our algorithm, we first introduce
several variables and the relationships among them. Recall that an
Aspen tree has n levels of switches, and that all switches have exactly
k ports. In order for the uplinks from L; to properly match all down-
links from L;4,, to avoid over-subscription, the number of switches
at all levels of the tree except L, must be the same.> We denote this
number of switches per level with S. Each L, switch has twice as
many downlinks (k) as the uplinks of an L,,—, switch (f) and so for

Variables and Constraints

L,—, uplinks to match L, downlinks, there are f L, switches.

*In Figure 2(c) we could have connected s (w) to g, (¢,) via a second
link rather than to g, (g,). This is a special case of what we call
striping, which we discuss in § 7.

> Aspen trees can be generalized to any number of (variable size)
switches at each level. For brevity, we consider only symmetric trees.

(c) Reconnecting Redundant Links

Figure 2: Modifying a 3-Level, 4-Port Fat Tree to Have 1-Fault Tolerance at L,
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At each level L;, our algorithm groups switches into pods and se-
lects a fault tolerance value to connect L; switches to L;—, pods be-
low. We represent these choices with four variables: p;, m;, r; and
ci. The first two encode pod divisions; p; indicates the number of
pods at L;, and m; represents the number of members per L; pod.
Relating p; and m; to the number of switches per level, we have:

pimi=S8,1<i<n pnmn:; (1)

The variables r; and ¢; relate to per-level fault tolerance. r; ex-
presses the responsibility of a switch and is a count of the number
of L;_, pods to which each L; switch connects. ¢; denotes the num-
ber of connections from an L; switch s to each of the L;_, pods that
s neighbors. Since we require (§ 3) that switches’ fault tolerance
properties are uniform within a level, a switch’s downward links are
spread evenly among all L;_, pods that it neighbors. Combining this
with the number of downlinks at each level, we have the constraint:

k :
rici:;,1<z<n rncn =k (2)

Each constraint listed thus far relates to only a single level of the
tree, so our final equation connects adjacent levels. Every pod g
below L, must have a neighboring pod above, otherwise g and its
descendants would be disconnected from the graph. This means
that the set of pods at L;.;», must “cover” (or rather, be responsible
for) all pods at L;_:

(3)

An Aspen tree is formally defined by a set of per-level values for
pi>» mi, ri and c¢;, such that constraint Equations 1 through 3 hold,
as well as by a striping policy for specifying switch interconnection
patterns. We defer a discussion of striping until § 7.

piri =pi_1,l<i§ n

4.1.2 Aspen Tree Generation Algorithm

We now use Equations 1 through 3 to formalize our algorithm,
which appears in pseudo code in Listing 1. The algorithm calculates
per-level (line 6) values for pi, m;, ri, ¢; and S (lines 1-5) given the
number of downlinks (line 7) at each level.

We begin with the requirement that each L, switch connects at
least once to each L,_, pod below. This effectively groups all L,
switches into a single pod, so p,=1 (line 8). We consider each level in
turn from the top of the tree downwards (lines 9, 14). At each level,
we choose appropriate values for fault tolerance variables ¢; and r;
(lines 10-11) with respect to constraint Equation 2.° Based on the
value of r;, we use Equation 3 to determine the number of pods in
the level below (line 12). Finally, we move to the next level, updating
the number of downlinks accordingly (lines 13-14).

The last iteration of the loop calculates the number of pods at L,
(line 12). Since each L, switch is in its own pod, we know that S=p,
(line 15). We use the value of S with Equation 1 to calculate m; values
(lines 16-18). If at any point, we encounter a non-integer value for
m;, we have generated an invalid tree and we exit (lines 19-20).

Note that instead of making decisions for the values of r; and c;
at each level, we can choose to enumerate all possibilities. Rather
than creating a single tree, this generates an exhaustive listing of all
possible Aspen trees given k and n.

4.2 Aspen Trees with Fixed Host Counts

The algorithm in Listing 1 creates an Aspen tree given a fixed
switch size (k), tree depth (n), and desired fault tolerance values
(¢s...cn). The number of hosts that the tree supports is an output

¢ Alternatively, we could accept as an input, desired per-level fault
tolerance values < ft,,...ft,>, setting each ¢; = ft; + 1.
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Listing 1: Aspen Tree Generation Algorithm

input : k, n

output: p, m, r, ¢, S
int p[1..n] =
2 int m1..n] =
int r[2..n] =0

-

3

s intc[2..n]=o0

5 int S

6inti=n

7 int downlinks = k

s p[n] =1

o while i > 2 do

10 choose c[i] s.t. c[i] is a factor of downlinks

u r[i] = downlinks + c[i]

s pli-1]=plilr[i]

13 downlinks = f
14 i=i—1
15 S :p[l]

16 mn]=S+2

iy fori=1ton—-1do

18 m[i] =S + p[i]

19 if m[i] ¢ Z then report error and exit
20 if m[n] ¢ Z then report error and exit

value. We present the algorithm in this way in order to match the
intuition of Figure 2. It is instead possible to create an Aspen tree by
fixing the host count of a corresponding fat tree and adding more
levels of switches in order to accommodate higher fault tolerance.
With a fixed host count, S remains identical to that for the corre-
sponding fat tree, so we begin with the fact that p,=S and work up-
wards, selecting c; and r; values according to the desired fault toler-
ance.” A concern with this technique is that the addition of switches
(and interconnecting links) introduces more points of failure. We
show in § 8.2 that the benefits of local failure reaction outweigh the
increased likelihood of a packet encountering a failure.

Another way to increase a tree’s fault tolerance without reducing
host support is to replace each k-port switch with a larger xxk-port
switch, where x€Z. As this option requires a complete replacement
of existing hardware, we expect it to be less appealing to network
operators, and we do not discuss it further.

5. ASPEN TREE PROPERTIES

An n-level, k-port Aspen tree is defined by a set of per-level values
for pi, mj, ri, and c;; these values together determine the per-level
fault tolerance, the number of switches needed and the number of
hosts supported.

5.1 Fault Tolerance

The fault tolerance at each level of an Aspen tree is determined by
the number of connections ¢; that each switch s has to pods below.
If all but one of the connections between s and a pod ¢ fail, s can
still reach g and can route packets to ¢’s descendants. Thus the fault
tolerance at L; is ¢; — 1.

To express the overall fault tolerance of a tree, we introduce
the Fault Tolerance Vector (FTV). The FTV lists, from the top of
the tree down, individual fault tolerance values for each level, i.e.

"The desired fault tolerance values are needed a priori in order to
determine the number of levels to add to the corresponding fat tree;
Aspen trees with x levels of redundant links have # + x total levels.



Fault Hierarchical
Tolerance S | Switches | Hosts Aggregation
FTV DCC L, [ Ly [ L, | Overall

<0,0,0> 1 54 189 162 3 3 3 27
<0,0,2> 3 18 63 54 3 3 9
<0,2,0> 3 18 63 54 3 1 3 9
<0,2,2> 9 6 21 18 3 1 1 3
<2,0,0> 3 18 63 54 1 3 3 9
<2,0,2> 9 6 21 18 1 3 1 3
<2,2,0> 9 6 21 18 1 1 3 3
<2,2,2> 27 2 7 6 1 1 1 1

(a) All Possible 4-Level, 6-Port Aspen Trees
(Bold rows correspond to topologies pictured.)

(c) FTV=< 0,2,0 >

an
NP

Z
W0
e

Rato

(d) FTV=< 2,0,0 > (e) FTV=<2,2,2>

Figure 3: Examples of 4-Level, 6-Port Aspen Trees

<Cy — 1,...c, — 1>. For instance, an FTV of <3,0,1,0> describes a five
level tree, with four links between every L, switch and each neigh-
boring L, pod, two links between an L, switch and each neighboring
L, pod, and only a single link between an L, (L,) switch and neigh-
boring L, (L,) pods. The FTV for a traditional fat tree is <o,...,0>.
Figure 3 presents four sample 4-level, 6-port Aspen trees, each
with a distinct FT'V. Figure 3(a) lists all possible n=4, k=6 Aspen
trees, omitting those with a non-integer value for m; at any level.
At one end of the spectrum, we have the unmodified fat tree of Fig-
ure 3(b), in which each switch connects via only a single link to each
pod below. On the other hand, in the tree of Figure 3(e), each switch
connects three times to each pod below, giving this tree an FTV of
<2,2,2>. Figures 3(c) and 3(d) show more of a middle ground, each
adding duplicate connections at a single (different) level of the tree.

5.2 Number of Switches Needed

In order to discuss the number of switches and hosts in an Aspen
tree, it is helpful to begin with a compact way to express the variable
S. Recall that our algorithm begins with a value for p,, chooses a
value for r,, and uses this to generate a value for p,—,, iterating down
the tree towards L,. The driving factor that moves the algorithm
from one level to the next is Equation 3. “Unrolling” this chain of
equations from L, upwards, we have:

D1 = pata
P2 = ps1s = po=(ps7s)rs

Pn—l = Pnrn - pl = (p,.rn)r,,,l...rsrz
Pn =1 = P1 = Tulpor. 5t

n
Viti<i<mn, pi= Hrj

j=it+1
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We use Equations 2 and 4 and the fact that S is equal to the num-
ber of pods at L, to express S in terms of the trees per-level’s ¢; val-
ues:

n n—1 n 1
S=p=[Iri=rax[]ri= <[1—
j=2 j=2 ¢ j

To simplify the equation for S, we introduce the Duplicate Con-
nection Count (DCC), which when applied to an FTV, increments
each entry (to convert per-level fault tolerance values into corre-
sponding ¢; values) and multiplies the resulting vector’s elements
into a single value.® For instance, the DCC of an Aspen tree with
FTV <1,2,3> is 2 x 3 x 4=24. We express S in terms of the DDC as:

n—1i

S = X
27[—2

1
DCC

Figure 3(a) shows the DCCs and corresponding values of S for each
Aspen tree listed, with S==.

This compact representation for S makes it simple to calculate the
total number of switches in a tree. Levels L, through L,_, each have
S switchesand L, has $ switches. This means that there are (n—2)$
switches altogether in an Aspen tree. Figure 3(a) lists the number of

switches in each example tree.

5.3 Scalability

The most apparent cost of adding fault tolerance to an Aspen tree
using the method of § 4.1 is the resulting reduction in the number
of hosts supported. In fact, each time the fault tolerance of a single
level is increased by an additive factor of x with respect to that of a
traditional fat tree, the number of hosts supported by the tree is de-
creased by a multiplicative factor of x. To see this, note that the max-
imum number of hosts supported by the tree is simply the number

(5)

8The DCC counts distinct paths from an L, switch to an L, switch.



of L, switches multiplied by the number of downward facing ports
per L, switch. That is:

n
hosts:ka: k x —
2 2"t DCC

As Equation 6 shows, changing an individual level’s value for ¢;
from the default of 1 to x > 1 results in a multiplicative reduction
by a factor of ~ to the number of hosts supported. This tradeoff
is shown for all 4-level, 6-port Aspen trees in Figure 3(a) and also
in the corresponding examples of Figures 3(b) through 3(e). The
traditional fat tree of Figure 3(b) has no added fault tolerance and a
corresponding DCC of 1. Therefore it supports the maximal number
of hosts, in this case, 162. On the other hand, the tree in Figure 3(e)
has a fault tolerance of 2 between every pair of levels. Each level
contributes a factor of 3 to the tree’s DCC, reducing the number of
hosts supported by a factor of 27 from that of a traditional fat tree.
Increasing the fault tolerance at any single level of the tree affects the
host count in an identical way. For instance, Figures 3(c) and 3(d)
have differing FT'Vs, as fault tolerance has been added at a different
level in each tree. However, the two trees have identical DCCs and
thus support the same number of hosts. This is the key insight that
leads to our recommendations for middle ground topologiesin § 8.1.

Another component of a tre€s scalability is its hierarchical aggre-
gation, or the number of L;_, pods that fold into each L; pod. This
property contributes to the efficiency of communication and label-
ing schemes that rely on shared a label prefixes for compact forward-
ing state [30, 35]. In these schemes, it is desirable to group as many
L;_, switches together as possible under each L; switch.

As with host count, there is a tradeoff between fault tolerance and
hierarchical aggregation. This is because the number of downward-
facing ports available at each switch (k) does not change as the fault
tolerance of a tree is varied. If the ¢; value for a switch s is increased,
the extra links must come from other downward neighbors of s, nec-
essarily reducing the number of pods to which s connects below.

We express the hierarchical aggregation at level L; of an Aspen
tree as m":il . Tt is difficult to directly relate fault tolerance and hier-
archical aggregation to one another at a single level, because aggre-
gation is a multi-level concept. To increase the aggregation at L; we
must either increase m; or decrease m;_,, which in turn reduces the
aggregation at either L4, or L;_,. Because of this, we consider aggre-
gation across the entire tree, using the product of per-level values.
Though imprecise, this gives intuition about the tradeoff between
fault tolerance and hierarchical aggregation.

(6)

m, S

m, 2

my Mpy—y ms % m,

Mpy—y Mp—2 m, my

Therefore, hierarchical aggregation relates to an Aspen tree’s FTV
in an identical manner to that of host count. Figure 3(b) has the
maximal possible hierarchical aggregation at each level (in this case,
3) while Figure 3(e) has no hierarchical aggregation at all. The addi-
tional fault tolerance at a single level of each of Figures 3(c) and 3(d)
costs these trees a corresponding factor of 3 in overall aggregation.
Figure 3(a) lists hierarchical aggregation values for all possible n=4,
k=6 Aspen trees. As hierarchical aggregation behaves identically to
host support, we omit further discussion of the property for brevity.

6. LEVERAGING FAULT TOLERANCE

We leverage added fault tolerance links in Aspen trees by con-
sidering an insight similar to that of failure-carrying packets [22]:
the tree consists of a relatively stable set of deployed physical links,
and a subset of these links are up and available at any given time.
Our approach is to run global re-convergence at a slower time-scale
than traditional OSPF or IS-IS deployments, and to use a separate
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Figure 4: 4-Level, 4-Port Aspen Tree with FTV=<o,1,0>

notification protocol to react to transient link failures and recover-
ies. We call this protocol the Aspen Reaction and Notification Proto-
col (ANP). ANP notifications are sent upwards to ancestors located
near to a failure, rather than being broadcast throughout the entire
tree as in OSPF or IS-IS. More importantly, these notifications are
simpler to compute and process than the calculations required for
global re-convergence. By decreasing the number of hops through
which updates propagate and the processing time at each hop, we
significantly reduce the tree’s re-convergence time.’

Recall from the example of § 2 that a traditional fat tree has no
choice but to drop a packet arriving at a switch incident on a failed
link below. In Figure 1, a packet sent from host x to host y is
doomed to be lost the instant that x’s ingress switch a selects b as
the packet’s next hop. This is because all (shortest) paths from b to y
pass through link f — g. Extra fault tolerance links can serve to push
this dooming decision farther along the packet’s path, reducing the
chance that the packet will be lost due to a failure that occurs while
it is in flight.

Figure 4 shows an n=4, k=4 Aspen tree, modified from the 4-
level, 4-port fat tree of Figure 1 to have additional fault tolerance
links between L; and L,, that is, its FTV is <0,1,0>. These added
links give a packet sent from x to y an alternate path through A, as
indicated by the bold arrows. e can route packets via h rather than
f>when link f-g fails. The purpose of ANP is to quickly notify the
appropriate switches in the event of a failure, so that the redundant
links in an Aspen tree can be leveraged to route around the failures.

We begin by examining various failure scenarios and establish-
ing the means by which ANP can enable switches to route around
a failure in each case. To determine the set of ancestors that should
receive a failure notification, we must consider the effect of a link
failure along an in-flight packet’s intended path. Shortest path rout-
ing will send packets up and back down the tree, so we consider the
upward and the downward path segments in turn.

If a link along the upward segment of a packet’s path fails, the
packet’s path simply changes on the fly. This is because each of a
switch’s uplinks leads to some nonempty subset of L, switches. In
§ 4, we introduced the requirement that all L, switches connect at
least once to all L,—, pods, so all L, switches ultimately reach all
hosts. As such, a packet can travel upward towards any L, switch,
and a switch at the bottom of a failed link can simply select an alter-
nate upward-facing output port in response to the failure, without
sending any notifications.

The case in which a link fails along the downward segment of a
packet’s intended path is somewhat more complicated. Consider
a failure between L; and L;_, along a packet’s intended downward
path. Fault tolerance properties below L; are not relevant, as the
packet needs to be diverted at or before reaching L; in order to avoid

*Note that even with localized failure reaction there will still be
background control traffic for normal OSPF behavior, but this traffic
will not be on the critical path to re-convergence.



the failure. However, if there is added fault tolerance at or above L;,
nearby switches can route around the failure according to the fol-
lowing cases:

Case 1: ¢;>1. The failure is at a level with added fault tolerance. This
case corresponds to the failure of link e—f in Figure 4. When the
packet reaches switch e, e realizes that the intended link e— f is un-
available and instead uses its second connection to f’s pod, through
h. By definition of a pod, h has downward reachability to the same
set of descendants as f and therefore can reach g and ultimately,
the packet’s intended destination, y. e does not need to send any
notifications in order to facilitate this new routing pattern; it sim-
ply forwards packets destined for y through # rather than f upon
discovering the failure of link e — f.

Case 2: ¢;=1,Ci+,>1. The closest added fault tolerance is at the level
immediately above the failure. This corresponds to the failure of link
f—g in Figure 4. In this case, if the packet travels all the way to
f it will be dropped. But if e learns of the failure of f—g before
the packet’s arrival, it can select the alternate path through f’s pod
member h. To allow for this, when f notices the failure of link f—g,
it should notify any parent (e.g. e) that has a second connection to
fs pod (e.g. via h).

Case 3: ¢i=1,Gj;j>i+1>1 The nearest level with additional links is more
than one hop above. Figure 5 shows an example of this case, in which
L, link f—g fails and the closest added fault tolerance is at L, (e.g. at
f’s ancestor d). Upon the packet’s arrival, d selects i as the next hop,
so that the packet travels along the path d—i—h—-g—y. While the
fault tolerance is located further from the failure than in case (2), the
goal is the same: f notifies any ancestor (e.g. d) that has a downward
path to another member of f’s pod (e.g. h).

Figure 5: 4-Level, 4-Port Aspen Tree with FTV=<1,0,0>

To generalize our Aspen Reaction and Notification Protocol, when
a link from L; switch s to L;_, neighbor ¢ fails, s first determines
whether it has non-zero fault tolerance. If so, it subsequently routes
all packets intended for f to an alternate member of t’s pod. Other-
wise, s passes a notification (indicating the set of hosts H that it no
longer reaches) upwards. Upon receipt of an ANP notification from
a descendant, ancestor switch a updates its routing information for
those hosts in H to which it has alternate paths and forwards a no-
tification upwards for those hosts in H to which a does not have
alternate paths. The process is similar for link recovery.

7. WIRING THE TREE: STRIPING

In § 4, we described the generation of Aspen trees in terms of
switch count and placement, and the number of connections be-
tween switches at adjacent levels. Here, we consider the striping, or
organization of connections between switches. We have deferred
this discussion until now because of the topic’s dependence on the
techniques described in § 6 for routing around failures.

Striping refers to the distribution of connections between an L;
pod and neighboring L;_, pods. For instance, consider the striping
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Figure 6: Striping Examples for a 3-Level, 4-Port Tree
(Hosts and L, switches are omitted for space and clarity.)

pattern between L; and L, in the 3-level tree of Figure 6(a). The
leftmost (rightmost) switch in each L, pod connects to the leftmost
(rightmost) two L, switches. On the other hand, Figure 6(b) shows
a different connection pattern for the switches in the rightmost two
L, pods, as indicated with the bold lines.

Striping patterns can affect connectivity, over-subscription ratios,
and the effectiveness of redundant links in Aspen trees. Some strip-
ing schemes disconnect switches at one level from pods at the level
below. In fact, we made a striping assumption in § 4 to avoid ex-
actly this scenario, by introducing the constraint that each L, switch
connects to each L,_, pod at least once. The striping scheme of Fig-
ure 6(c) violates this constraint, as the two shaded L; switches do
not connect to all L, pods. Some striping patterns include parallel
links, as in Figure 6(d). Each L, switch connects twice to one of its
neighboring L, pods, via parallel connections to a sole pod member.

Introducing additional fault tolerance into an Aspen tree in-
creases the number of links between switches and pods at adjacent
levels, thus increasing the set of possibilities for distributing these
connections. Recall that ANP relies on the existence of ancestors
common to a switch s incident on a failed link and alternate mem-
bers of s’s pod; an acceptable striping policy must yield such com-
mon ancestors. This means that striping patterns should not consist
entirely of duplicate, parallel links. For instance, in Figure 5, the fact
that d has connections to e’s pod via two distinct pod members (e
and i) is the key property that allows d to successfully route around
the failure of link f — g. If instead d connected to e’s pod by two
duplicate links to e, d would have to drop all packets destined for y.

In general, any striping policy that yields the appropriate com-
mon ancestors discussed in § 6 is acceptable for Aspen trees. More
formally, ANP relies on the following characteristics of its underly-
ing topology: For every level L; with minimal connectivity to Li_,, if
Ly.p>; is the closest fault tolerant level above L;, each L; switch s shares
at least one Ly ancestor a with another member of s’s pod, t.

8. DISCUSSION

In this section, we consider an instance of Aspen trees that pro-
vides a significant reduction in convergence time at a moderate cost
(e.g. 80% faster convergence with 50% host loss). We also more care-
fully explore the topic of introducing more points of failure when
adding depth to a tree. Finally, we discuss the issues of concurrent
failures and some limitations of Aspen trees.

8.1 Practical Aspen Trees

We showed in § 6 that the most useful and efficient fault tolerance
is (1) above failures and (2) as close to failures as possible. While the
most fault-tolerant tree has an FT'V with all maximal (and non-zero)



entries, this may come at too high a scalability or network cost. To
enable usable and efficient fault tolerance, in FTVs with non maxi-
mal entries it is best to cluster non-zero values towards the left while
simultaneously minimizing the lengths of series of contiguous ze-
ros. For instance, if an FT'V of length 6 can include only two non-
zero entries, the ideal placement would be <x,0,0,x,0,0>, with x>o.
There are at most two contiguous zeros, so updates propagate a max-
imum of two hops, and each o has a corresponding x to its left, so
no failure leads to global propagation of routing information.

One Aspen tree in particular bears special mention. Given our
goal of keeping fault tolerance at upper tree levels, the largest value-
add with minimal cost is the addition of extra links at the single level
of the tree that can accommodate all failures, i.e. the top level. A tree
with only L, fault tolerance and an FTV of <1,0,0,...> supports half
as many hosts as does a traditional fat tree of the same depth. The
average convergence propagation distance for this tree is less than
half of that for a traditional fat tree, and more importantly, updates
only travel upward rather than fanning out to all switches in the tree.
For instance, an Aspen tree with n=4, k=16 and FTV=<1,0,0> sup-
ports only half as many hosts as an n=4, k=16 fat tree, but converges
80% faster. In fact, the topology used for VL2 [11] is an instance of
an Aspen tree with an FTV of <1,0,0,...>. While this type of tree
represents an interesting point in the design space, we reiterate that
our goal with Aspen is to explore fault tolerance, scalability, and net-
work cost tradeoffs rather than to select a “best tree” We aim to give
data center operators the insight they need in order to tune their
networks to their individual requirements.

8.2 Aspen Trees with Fixed Host Counts

The algorithm of Listing 1 builds Aspen trees by first selecting the
network size (in terms of switch size, k, and tree depth, n) and de-
sired fault tolerance, and then determining the number of hosts sup-
ported as compared to that of a traditional fat tree (Equation 6). If
we instead fix both the number of hosts supported and the desired
fault tolerance, network size becomes the dependent variable.

An Aspen tree with non-zero fault tolerance needs more levels of
switches to support the same number of hosts than does a fat tree
with identically sized switches. This raises the question of whether
the decreased convergence time in an Aspen tree outweighs the in-
creased probability of a packet encountering a link failure along one
of the added links. To evaluate this, we first calculate the number of
links added to turn a fat tree into a corresponding Aspen tree with
non-zero fault tolerance and an identical number of hosts. We then
calculate the average convergence time of each tree across failures
at all levels. Finally, for each tree, we multiple this average conver-
gence time by the number of links in the tree to determine the tree’s
convergence cost. This gives a single term that accounts for both the
total number of links in each tree (and thus the number of possible
points of failure) and the cost of each such failure.

Figure 7 compares this convergence cost of an n-level fat tree to
that of an Aspen tree with the same host count, for the range of n
that we expect to see in practice and for a varying number of levels
with added fault tolerance. The graph shows that when an n-level
fat tree is extended with up to x=#n —2 new levels that have non-zero
fault tolerance, the resulting (n + x)-level Aspen tree always has a
lower convergence cost than the corresponding fat tree.

Therefore, while a packet encounters more links in its path
through an Aspen tree than it would in the corresponding fat tree
with the same host count, the probability that the packet can be re-
routed around a failure rather than dropped more than makes up
for this introduction of more points of failure.

Note that increasing the depth of an Aspen tree also increases the
path length for the common case packet that does not encounter a
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Figure 7: Fat Tree versus Aspen Tree Convergence Costs

failure. In the data plane, this added latency is on the order of ns
or us. However, this may not be acceptable in all scenarios, and
therefore it is crucial that a data center operator use only the mini-
mal added fault tolerance absolutely necessary for correct operation
when building an Aspen tree with fixed host count.

8.3 Concurrent Failures

For clarity, we discuss Aspen trees and ANP in the context of of
single link failures. However, in most cases, our techniques apply
seamlessly to multiple simultaneous link failures. In fact, failures
far enough apart in a tree have no effect on one another and can be
considered individually. Additionally, ANP can enable re-routing
even when failures are close to one another, as long as the striping
policy of § 7 is satisfied. It is possible that in some pathological cases,
compound failures can lead to violations the striping policy of § 7,
ultimately causing packet loss. We leave a complete analysis of com-
pound failure patterns for future work.

8.4 Aspen Tree Limitations

As § 5 shows, there is a non-trivial cost associated with decreas-
ing re-convergence time from that of a traditionally-defined fat tree.
This cost can be in terms of the scalability of the tree (e.g. host sup-
port) or the network size. As discussed in § 4.2 and 8.2, decreasing
re-convergence time by increasing a tree’s network size can lead to
longer path lengths.

As such, we encourage data center operators to balance the trade-
offs of Equations 5 and 6 to design trees that satisfy their require-
ments with minimum cost. Hence, an understanding of these trade-
offs is crucial prior to deployment; Aspen trees are static topologies
and cannot be reconfigured through software. To change properties
such as a tree’s FT'V, a data center operator would have to physi-
cally add and/or remove network elements and links. Additionally,
quick failure reaction in Aspen trees requires the deployment of a
new protocol, ANP, as well as software reconfiguration of existing
global re-convergence protocols to run at a slower time scales and
off of the critical path to re-convergence.

While ANP reduces the re-convergence period after link failure or
recovery, it does not provide zero re-convergence time for all trees.
There is a window of vulnerability after a failure or recovery while
ANP notifications are sent and processed, and packet loss can occur
during this window. An Aspen tree with all non-zero FTV entries
would have instant re-convergence, but we expect that this comes at
too high a cost to be practical.

Finally, there are pathological tree configurations in which addi-
tional fault tolerance cannot help to avoid packet loss. In such cases,
we have bottleneck pods, i.e. pods with only a single switch, at high
levels in the tree. If a failure occurs immediately below a bottleneck
pod, no amount of redundancy higher in the tree can help as there
are no alternate pod members to route around the failure. We do
not expect to see such trees in practice.



9. EVALUATION

We now explore more closely the tradeoffs between convergence
time, scalability, and network size in Aspen trees. We first consider
the convergence time and scalability across Aspen trees with fixed
network sizes, as described in § 4.1. We then show the increase in
network size necessary to decrease convergence time without sacri-
ficing host support, as discussed in § 4.2.

9.1 Convergence versus Scalability

An Aspen tree with added fault tolerance, and therefore an FTV
with non-zero entries, has the ability to react to failures locally. This
replaces the global re-convergence of broadcast-based routing pro-
tocols with a simple failure notification protocol, ANP. ANP notifi-
cations require less processing time, travel shorter distances, and are
sent to fewer switches, significantly reducing re-convergence time
and control overhead in the wake of a link failure or recovery.

If the fault tolerance at a level Ly is non-zero, then switches at
Ly can route around failures that occur at or below L fs provided a
switch incident on an L; failure notifies its L s ancestors to use alter-
nate routes. So, the convergence time for a fault between L; and L;_,
is simply the set of network delays and processing times for an ANP
notification at each switch along an ( f—i)-hop path. Adding redun-
dant links at the closest possible level L above expected failures at
L; minimizes this convergence time.

The cost of adding fault tolerance to a fixed-depth fat tree is in
the tree’s scalability, in terms of both host support and hierarchical
aggregation. Each FTV entry x > o reduces the maximum possible
number of hosts by a multiplicative factor of x + 1.

We analytically evaluate the benefits of reducing re-convergence
time with respect to the scalability costs, using the equations derived
in § 5. We begin with a small example with n=4 and k=6 in order
to explain the evaluation process. For each possible 4-level, 6-port
Aspen tree, we consider the FT'V and correspondingly, the distance
that updates travel in response to a failure at each level. We cal-
culate this distance by simply using the number of hops between
a failure and the nearest ancestor level with non-zero fault toler-
ance. For instance if there is non-zero fault tolerance between L;
and L;_,, then the update propagation distance for failures at L; is o
and the distance for failures at L;_, is 2. If there is no area of non-
zero fault tolerance above a level, we are forced to revert to global re-
convergence, and the update propagation distance is that required to
reach the furthest switches in the tree. We express the average con-
vergence time for a tree as the average of this propagation distance
across failures at all levels of the tree.'

We consider the scalability cost of adding fault tolerance by
counting the number of hosts missing in each Aspen tree as com-
pared to a traditional fat tree with the same depth and switch size.
We calculate these numbers using Equation 6 (§ 5.3). We elect to
consider hosts removed, rather than hosts remaining, so that the
compared measurements (convergence time and hosts removed)
are both minimal in the ideal case and can be more intuitively de-
picted graphically. Figure 8 shows this convergence versus scalabil-
ity tradeoff; for each possible FTV option, the figure displays the
average convergence time (in hop count) across all levels, alongside
the number of hosts missing with respect to a traditional fat tree.”
To normalize, values are shown as percentages of the worst case.

Thus, we have a spectrum of Aspen trees. At one end of this spec-
trum is the tree with no added fault tolerance links (FTV=<0,0,0>)
but with no hosts removed. At the other end are trees with high

*We exclude 1% hop failures as Aspen trees cannot mitigate these
without introducing multi-homing for hosts.

"Because we average convergence times across tree levels, no indi-
vidual bar in the graph reaches 100% of the maximum hop count.
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Figure 8: Convergence vs. Scalability: n=4, k=6 Aspen Trees

fault tolerance (all failure reactions are local) but with over 95% of
the hosts removed. In the middle we find interesting cases: in these,
not every failure can be handled locally, but those not handled lo-
cally can be masked within a small and limited number of hops. The
convergence times for these middle-ground trees are significantly
less than that of a traditional fat tree, but substantially fewer hosts
are removed than for the tree with entirely local failure reactions.

We observe that there are often several trees with the same host
count but with differing convergence times. This is shown in the sec-
ond, third and fourth entries of Figure 8, in which the host counts
are all > of that for a traditional fat tree, but the average update prop-
agation distance varies from 1 to 2.3 hops. A network designer con-
strained by the number of hosts to support should select a tree that
yields the smallest convergence time for the required host support.
Similarly, there are cases in which the convergence times are identi-
cal but the host count varies, e.g. FT'Vs <2,0,0> and <0,2,2>. Both
have average update propagation distances of 1, but the former sup-
ports 54 hosts and the latter only 18.

In practice, we expect trees with 3<n<7 levels and 16<k<128 ports
per switch, in support of tens of thousands of hosts. Figure 9 shows
examples of larger trees. At these sizes, there are many possible As-
pen trees for each combination of # and k and we often find that nu-
merous trees (FT'Vs) all correspond to a single [host count, conver-
gence time] pair. We collapsed all such duplicates into single entries,
and because of this, we removed the FTV labels from the graphs of
Figure 9 for readability.

Figure 9(a) shows the same trend as does Figure 8, but since there
are more data points, the results are perhaps more apparent. As we
move from left to right in the graphs, we remove more hosts. Again,
the host removal bars are grouped into steps; each individual num-
ber of hosts removed corresponds to several different values for av-
erage convergence time. Figure 9(b) show trees with larger switches
and smaller depth, keeping our results in line with realistic data cen-
ter sizes. The shallower depth limits the number of possible trees, so
there are fewer entries than in Figure 9(a). Overall, Figure 9 con-
firms that with only modest reductions to host count, the reaction
time of a tree can be significantly improved.

9.2 Convergence versus Network Size

We next consider improving a fat tree’s fault tolerance by increas-
ing its network size while keeping host count constant, as introduced
in § 4.2. We examine the various Aspen tree options for a given host
count, measuring for each tree the financial cost (in terms of added
switches), re-convergence time (based on the distance between fail-
ures and redundant links), and control overhead (based on the num-
ber of switches that react to a failure).

For these evaluations, we implemented both ANP and a link-state
protocol based on OSPE, which we call LSP. We built the two pro-
tocols in Mace [7, 19], a language for distributed systems develop-
ment that includes an accompanying model checker [18] and simu-
lator [20] that allow us to consider a variety of different Aspen trees
and failure models. We used safety and liveness properties in the
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Mace model checker to verify the correctness of our implementa-
tions of ANP and LSP, and we used the Mace simulator to compare
the failure reaction time and overhead of the two protocols. We
chose LSP as a baseline routing protocol for comparison; we leave
a detailed comparison of the tradeoffs between routing complexity
and failure reactivity in more complex protocols (e.g. bounce rout-
ing, DDC [26], and F10 [27]) as future work.

We built a topology generator that takes as inputs the tree depth
(n), switch size (k), and FTV, and creates an n-level Aspen tree of
k-port switches matching the input FTV. We used this generator to
create input topologies for Mace as follows: for varying values of k
and n, we created an n-level, k- port fat tree and a corresponding
(n+1)-level, k-port Aspen tree with FTV <x,0,0,...>, with x such
that both trees have identical host counts. We highlight this partic-
ular FTV for the reasons introduced in § 8.1.

For each pair of trees, we initially ran LSP to set up routes for
the topology and verified the accuracy of these routes using the
Mace model checker. Using the Mace simulator, we then failed each
link in each tree several times and allowed the corresponding re-
covery protocol (for fat trees, LSP and for Aspen trees, ANP) to re-
act and update switches’ forwarding tables. We recorded the min-
imum, maximum, and average numbers of switches involved and
re-convergence times across failures for each tree.

Figure 10(a) shows the total number of switches in each fat tree
and corresponding Aspen tree, along with the average number of
switches involved in each failure reaction. Because the minimums
and maximums tracked the averages quite closely, we graph only the
averages for ease of visibility. The x-axis gives the number of hosts
in the tree, the switch size (k), and the depth (n) of the fat tree and
Aspen tree, respectively. In order to change an n-level, k-port fat
tree into an Aspen tree with FT'V <x,0,0,...>, we increase the num-
ber of switches at L, from g to S and add a new level, L,.,, with %
switches. In other words, we add S new switches to the tree. This
is a fixed percentage of the total switches in the tree for any given
n, and corresponds to 40%, 29% and 22% increases in total switch
count, for 3, 4 and s5-level fat trees, respectively, or a % increase in
the switch-to-host ratio. Figure 10(a) expresses both the cost of the
Aspen tree network in terms of increased switch count (the differ-
ence between the curves labeled Aspen Total and LSP Total) as well
as the reduced control overhead in terms of the number of switches
that react to each failure (the difference between the curves labeled
Aspen React and LSP React). In general, LSP involves most switches
on each failure reaction'” whereas ANP involves less than 15% of the
total switches in each Aspen tree.

Though all switches always process all LSAs, our measurements
only attribute an LSA to a switch that changes its forwarding table.
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Figure 10: Network Size, Convergence Time, and Control Overhead for Pairs of Corresponding Fat and Aspen Trees
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As Figure 10(b) shows, the convergence time for each fat tree is
substantially longer than that for the corresponding Aspen tree and
this difference grows as # increases. To give more realistic results,
we convert hop counts into time, estimating the propagation delay
between switches and the time to process ANP and LSA packets as
14s, 20ms, and 300 ms, respectively. These estimates are conserva-
tively tuned to favor LSP. Figure 10(b) shows convergence time on a
log scale, with actual hop count labels for reference.

Since the model checker scales to at most a few hundred switches,
we use additional analysis for mega data center sized networks. Fig-
ure 10(c) is similar to Figure 10(a), but shows a wider range of
topologies. Here, we plot switch-to-host ratios in order to normalize
across a wide range of trees. As in our simulations, a modest increase
to the total number of switches (the graph’s upper two curves) leads
to significantly fewer switches that react to each failure (the graph’s
lower two curves). In fact, as the figure shows, LSP re-convergence
consistently involves all switches in the tree, whereas only 10-20% of
Aspen switches react to each failure. Finally, Figure 10(d) compares
the average convergence times for each pair of trees, confirming the
drastic reduction in convergence time that Aspen trees can provide,
for a fairly small increase in network size. As the figure shows, ANP
converges orders of magnitude more quickly than LSP.

10. RELATED WORK

Our work is largely motivated by direct experience with large data
center operations as well as by the findings of [9], which show that
link failures are common, isolated, and impactful. The network re-
dundancy inherent to multi-rooted trees helps by only a factor of
40%, in part due to protocols not taking full advantage of redundant
links (e.g. requiring global OSPF re-convergence prior to switching
to backup paths). Together, Aspen trees and their corresponding
notification protocol ANP better leverage network redundancy for
quick failure reaction. The study in [9] also finds that links in the
core of the network have the highest probability of failure and bene-
fit most from network redundancy. This aligns well with the subset
of Aspen trees highlighted in § 8.1. Finally the study shows that link
failures are sporadic and short-lived, supporting our belief that such
failures should not cause global re-convergence.

Related Topologies: Aspen trees derive from the initial presen-
tations of Clos networks as non-blocking communication architec-
tures [s], fat trees as universal networks for supercomputer com-
munication [24], and Greenberg’s and Leiserson’s multi-rooted fat
trees [13], also referred to as Butterfly Fat Trees [12]. We also take in-
spiration from Upfal’s multi-butterfly networks [34], Leighton et al’s
corresponding routing algorithms [23], and Goldberg et al’s split-
ter networks [10], which create a subset of Aspen trees by raising c;
from1to x>1 uniformly at all levels of the tree. These works consider
topologies in the context of a priori message scheduling rather than
that of running packet-switched protocols (e.g. IP) over modern
switch hardware in today’s data centers. More recent topologies such
as DCell [15] and Bcube [14] are inherently more fault-tolerant than
Aspen trees, at the cost of more complex (non-shortest path) for-
warding protocols and in DCell, the possibility of forwarding loops.
Finally, Jellyfish [32] uses a random graph to trade bisection band-
width and regular graph structure for ease of expansion and reduced
hardware.

Alternative Routing Techniques: Alternative routing techniques
can provide fault tolerance in a network without the need for added
hardware. We discussed bounce routing, DDC and F1o0 in § 2; here
we consider DDC and Fio more closely.

DDC [26] and Aspen trees share the motivation that it is unac-
ceptable to disrupt communication for tens of seconds while wait-
ing for control plane re-convergence. DDC’s approach is to bounce
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a packet that encounters a failure back along its path until it reaches
a node with an alternate path to the destination, repeating as neces-
sary. This essentially performs a depth-first search (DFS) rooted at
the sender, in which the leaf of the first searched path is the switch
incident on the failure. This can lead to long paths but has the benefit
of working with arbitrary graphs. Unfortunately, DFS-style routing
performs particularly poorly over fat trees, as the decisions that af-
fect whether a packet will ultimately be bounced are made as early
as the path’s first hop. This means that many bounced DDC pack-
ets return all the way to the sender before trying an alternate path.
The authors’ evaluation of DDC’s effectiveness over various topolo-
gies hints at this fact, noting that fat trees lack “resilient nodes” with
multiple output ports to a destination. In fact, fat trees contain
such resilient nodes only on the upward segment of a packet’s path,
whereas Aspen trees contain resilient nodes on the downward seg-
ment as well. Finally, because of forwarding state size constraints,
DDC supports only exact-match forwarding, as opposed to longest
prefix-matching forwarding, a common data center requirement.

F1o [27] introduces a modified striping policy, coupled with a set
of cascading reaction protocols that bounce packets through a num-
ber of limited hops around transient failures. For many cases, a
two-hop detour is sufficient though in some cases £ targeted fail-
ures bounce packets all the way back to the sender’s level. This leads
to more significant path inflation and increased network state. On
the other hand, F1o does not require any additional hardware other
than that of a traditional fat tree and provides zero convergence time
on failure. Overall, F1o and Aspen trees take different points in the
design space, trading software complexity for hardware cost.

Failure carrying packets (FCP) [22] eliminate the need for net-
work re-convergence by encoding failure information in data pack-
ets, at the expense of the implementation and deployment of a new
data plane and the use of long paths. In general, the difficulty of
(temporary) path inflation is inherent to many alternative routing
techniques; Aspen trees leverage the underlying topology’s regular-
ity to render this a non-issue.

Multi-path TCP (MPTCP) [31] breaks individual flows into sub-
flows, each of which may be sent via a different path based on cur-
rent congestion conditions in the network. A path that includes a
failed link will appear to be congested since a portion of it offers no
bandwidth, and MPTCP will move any corresponding subflows to
another path. MPTCP relies on the ability to modify end host soft-
ware; this is not always possible in the data center. There has been
some work towards sub-second IGP convergence [8] but the topolo-
gies considered are orders of magnitude smaller than modern data
centers.

Another way to improve the fault tolerance of a network is to es-
tablish backup paths for use when a primary path (or link along the
path) fails. This can be done on flow entry [16, 33] or dynamically
on failure [2]. These works differ from Aspen trees in their use of
source routing. Additionally, a limitation of techniques based on
backup paths in general is that it may take a sender a full round-trip
delay to determine that a primary path has failed.

Finally, the idea behind this work is derived from fast failure re-
covery [21] techniques in WANs. Our approach is to engineer data
center topologies so as to enable FFR for link failures.

11. CONCLUSION

We have considered the issue of improving failure recovery in the
data center by modifying fat tree topologies to enable local failure
reactions. A single link failure in a fat tree can disconnect a portion
of the networK’s hosts for a substantial period of time while updated
routing information propagates to every switch in the tree. This is
unacceptable in the data center, where the highest levels of avail-



ability are required. To this end, we introduce the Aspen tree — a
multi-rooted tree topology with the ability to react to failures locally
— and its corresponding failure notification protocol, ANP. Aspen
trees provide decreased convergence times to improve a data center’s
availability, at the expense of scalability (e.g. reduced host count) or
financial cost (e.g. increased network size). We provide a taxonomy
for discussing the range of Aspen trees available given a set of in-
put constraints and perform a thorough exploration of the tradeoffs
between fault tolerance, scalability, and network cost in these trees.
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